用户名: 密码: 验证码:
MCrAlY涂覆的镍基高温合金及其基体合金的等温和热机械疲劳行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基高温合金具有较高的高温屈服强度和蠕变强度,以及良好的抗热腐蚀和抗氧化性能,因此被广泛应用于制作涡轮叶片和导向叶片,以及其它高温结构部件。绝大多数的高温结构部件在服役条件下都承受着热机械疲劳(TMF)载荷,研究表明,材料的热机械疲劳寿命比在热机械疲劳循环最高温度下的等温低周疲劳(IF)寿命低。热机械疲劳试验是在实验室中最能够模拟高温部件服役状态的方法,因此对材料在TMF试验条件下的损伤和失效机制的研究是十分重要的,这将为高温结构部件的疲劳设计和寿命预测提供可靠的理论依据。
     本文研究了两种铸造镍基高温合金M38和M963在900℃下的低周疲劳行为,并对M963进行了450-900℃的热机械疲劳行为研究和寿命预测研究。结果表明,M38和M963在900℃下均表现出了良好稳定的低周疲劳性能。将M38与M963在900℃的抗氧化性能、强度和延性加以对比发现,M963具有与M38接近的抗氧化性能,可以接受的延性,以及较为突出的高温强度,适合用来进行条件更为苛刻的热机械疲劳试验。
     对M963合金的同相位(IP)和反相位(OP)热机械疲劳研究表明,与同应变速率下的900℃IF相比较,IP和OP TMF总是具有较低的寿命。这是由于热机械疲劳高温半周和低温半周不同形变机制的交互作用导致了热机械疲劳损伤较大的原因。此外,IPTMF和OP TMF的机械应变—疲劳寿命曲线有轻微的交叉现象,当机械应变幅较大时,IP TMF的寿命较低,这是因为在较高的机械应变幅下发生了蠕变损伤;而当机械应变幅较小时,OP TMF的寿命较低,这被认为是OP TMF时的拉伸平均应力以及氧化与疲劳的交互作用发生综合损伤的结果。对断口和剖面分析表明,IP TMF试验条件下,当机械应变幅较大时,疲劳裂纹沿晶萌生,而当机械应变幅较小时,裂纹倾向于在枝晶间萌生;OP TMF试验条件下,所有应变幅时疲劳裂纹都穿晶萌生。
     对用等温疲劳数据预测热机械疲劳寿命的研究表明,Zamrik模型和Miller模型能够很好地使用等温疲劳数据预测热机械疲劳寿命,这是因为其损伤参量综合考虑了塑性应变和弹性应变;而只考虑塑性应变的Ostergren模型不能够用等温疲劳数据预测热机械疲劳寿命。本文提出了一种热机械疲劳总能量损伤寿命预测模型,此模型很好地解决了高强度低韧性镍基高温合金热机械疲劳条件下塑性应变幅过低导致无法用其进行寿命预测的问题。
     由于实际服役条件下热端部件表面经常涂覆MCrAlY防护涂层和陶瓷热障涂层,因此研究MCrAlY涂层对材料疲劳性能的影响十分重要。本文研究了分别涂覆大气等离子喷涂(APS)和高速氧火焰喷涂(HVOF)MCrAlY涂层的M963合金在900℃等温疲劳及450-900℃热机械疲劳条件下的开裂机制以及涂层对M963合金失效机制和疲劳寿命的影响。
     对涂覆MCrAlY涂层的M963合金在900℃IF以及IP和OP TMF试验条件下的失效机制和寿命的研究表明,在900℃IF试验条件下,MCrAlY涂层为韧性金属,涂层中的裂纹是在高温氧化与疲劳机制的交互作用下逐渐萌生的,而试样的失效并不是由涂层的开裂所引起,因此涂层延长合金的疲劳寿命;在IP TMF试验条件下,MCrAlY涂层中没有发现任何裂纹,失效是由于涂层/基体界面的缺陷引起的,涂层延长合金的疲劳寿命;而在OP TMF试验条件下,MCrAlY涂层循环五周内即发生了脆性开裂,裂纹直接贯穿至涂层/基体界面,造成基体中提前萌生疲劳裂纹,因此降低了试样的疲劳寿命。此外,在同等试验条件下HVOF MCrAlY涂层中的裂纹密度较APS MCrAlY涂层小,而且涂层中存在较多未贯穿的短小裂纹,这是由于HVOF MCrAlY涂层具有较低的孔隙率和较大的裂纹扩展阻力的原因。
Nickel base superalloys are widely used for making turbine blades,vanes,and other high-temperature structural components,due to their high yield strength,high creep strength, and good resistance against hot corrosion and oxidation at elevated temperatures.The majority of structural components used in high-temperature applications experience some form of thermomechanical fatigue(TMF) loadings.Some investigations showed that the fatigue life of a real component under thermomechanical fatigue was lower than that under isothermal low-cycle fatigue(IF) at the same maximum temperature and corresponding strain amplitude.Since thermomechanical fatigue test can really simulate the service condition of a high-temperature component in laboratory,it is very important to investigate the damage and failure mechanisms of superalloys working under TMF,which would provide a reliable theoretical basis for design and life prediction of high-temperature structural components.
     In this paper,the isothermal low-cycle fatigue behavior of two kinds of cast nickel-based superalloys,i.e.M38 and M963,was investigated at 900℃,and the thermomechanical fatigue behavior and life prediction of M963 in temperature range of 450-900℃were also investigated.Results revealed that both M38 and M963 exhibited a good and stable low-cycle fatigue property.After the comparison of their resistance against oxidation,their strength and ductility at 900℃,it was found that M963 has a similar oxidation resistance,an acceptable ductility,and a much higher high-temperature strength than M38.Therefore,M963 was selected as the material for TMF tests.
     Two types of TMF tests were carded out,i.e.in-phase(IP) and out-of-phase(OP). Results revealed that isothermal fatigue exhibited a longer lifetime than both types of TMF at corresponding mechanical strain amplitude in spite of its higher fraction of plastic strain amplitude.This is because the interaction of different deformation mechanisms in high-temperature half cycle and low-temperature half cycle can cause a much severer damage in TMF than in 900℃IF.Moreover,there was a crossover of the IP and OP mechanical strain-life curves.IP fatigue lives were shorter than OP lives at high mechanical strain amplitudes due to creep damage occurred;while IP lives were greater than OP fatigue lives at low mechanical strain amplitudes,which is because the additional damage caused by the tensile mean stress and the oxidation-fatigue interaction in OP.Cracks initiated intergranularly at high mechanical strain amplitude and interdendritically at low mechanical strain amplitude in IP TMF,while totally transgranular cracking occurred in OP TMF.
     The Zamrik model and Miller model,which incorporated elastic strain and plastic strain together as damage parameters,can give satisfactory thermomechanical fatigue life prediction by using IF data,while the Ostergren model,which only incorporated plastic strain as TMF damage parameter failed to predict TMF lives.In this paper,a total energy model was proposed to predict TMF lives,result revealed that this model successfully solved the problem that the TMF plastic strain range is so small for high-strength low-ductility superalloys that large errors arise when attempting to either measure it experimentally or predict the TMF life analytically by using the plastic strain range,and a satisfactory prediction result was achieved by using this total energy model.
     Since the hot-section components are commonly coated with MCrAlY overlay coatings and thermal barrier coatings consisting of a ceramic topcoat and a MCrAlY bond coat in real applications,it is very important to understand the effect of MCrAlY coatings on fatigue property of components.Therefore,two types of spraying techniques were employed to deposit a MCrAlY overlay coating on superalloy M963,i.e.air plasma spray(APS) and high velocity oxyfuel(HVOF).The cracking mechanisms of MCrAlY coatings and the effect of MCrAIY coatings on failure mechanisms and fatigue life of M963 under 900℃IF and 450-900℃TMF were investigated.Furthermore,comparison of the two types of coating was also made.
     Investigations on the effect of MCrAIY coating on failure mechanisms and fatigue lives of M963 under 900℃IF and IP,OP TMF showed that the coating is like a ductile metal in 900℃IF condition,the coating cracks gradually initiated at the surface imperfections by fatigue and oxidation interactions,but the failure of specimen was not caused by coating cracks,therefore the coating had a beneficial effect on fatigue life;In IP TMF condition,the coating also exhibited a beneficial effect on fatigue life,no crack was found in coating after tests,the failure was caused by coating/substrate interface defects;While under OP TMF conditions,brittle cracking of MCrAlY coating occurred in the first five cycles,and then the cracks penetrated to the coating/substrate interface directly.Early cracking of coating under OP TMF conditions accelerated the crack initiation process in superalloy and thus lead to a reduced fatigue life.In addition,it was observed that the crack density in HVOF coating was smaller than that in APS coating,and there existed many small cracks that did not reach the coating/substrate interface in HVOF coating,this is because the HVOF MCrA1Y coating has a lower porosity and a better cracking resistance than the APS one.
引文
[1]Tien J K,Vignoul G E,Kopp M W.Materials for elevated-temperature applications.Mater.Sci.Eng.A,1991,143:43-49.
    [2]Bill R C,Verrilli M J,McGaw M A.Preliminary study of thermomechanical fatigue of polycrystalline Mar-M 200.NASA,TP-2280,1984.
    [3]Boismier D A,Sehitoglu H.Thermo-mechanical fatigue of Mar-M247:Part 1-- experiments.Trans.ASME J.Eng.Mater.Technol.1990,112(1):68-79.
    [4]Sehitoglu H,Boismier D A.Thermo-mechanical fatigue of Mar-M247:Part 2--life prediction.Trans.ASME J.Eng.Mater.Technol.1990,112(1):80-89.
    [5]Qian L H,Wang Z G,Toda Het al.High temperature low cycle fatigue and thermo-mechanical fatigue of a 6061A1 reinforced with SiCW.Materials Science and Engineering A,2000,291:235-245.
    [6]Neu R W,Sehitoglu H.Thermomechanical fatigue,oxidation,and creep:Part Ⅰ.Damage mechanisms.Metallurgical and Materials Transactions A,1989,20(9):1755-1767.
    [7]Neu R W,Sehitoglu H.Thermomechanical fatigue,oxidation,and creep:Part Ⅱ.Life prediction.Metallurgical and Materials Transactions A,1989,20(9):1769-1783.
    [8]Shi H J,Pluvinage G.Damage analysis of high temperature isothermal and thermomechanical fatigue on a TZM alloy.Key Engineering Materials,1998,145-149:649-654.
    [9]Zhou H,Harada H,Ro Yet al.Investigations on the thermo-mechanical fatigue of two Ni-based single-crystal superalloys.Mater.Sci.Eng.A,2004,394(1-2):161-167.
    [10]Ro Y,Zhou H,Koizumi Y et al.Thermal-mechanical fatigue property of Ni-base single crystal superalloys tms-82+ and tms-75.Mater.Trans.,2004,45(2):396-398.
    [11]Zhou H,Okada I,Ro Y et al.Thermomechanical fatigue behavior of the third-generation,single-crystal superalloy TMS-75:Deformation structure.Metallurgical and Materials Trans.A,2004,35A:1779-1787.
    [12]Plumbridge W J,Ellison E G.Low-cycle-fatigue behaviour of superalloy blade materials at elevated temperature.Mater.Sci.Technol.,1987,3:706.
    [13]He Y H,Chen L J,Liaw P K et al.Low-cycle fatigue behavior of HAYNES~(?) HR-120~(?) alloy.Inter.J.Fatigue,2002,24:931-942.
    [14]杨富民,孙晓峰,管恒荣等.K40S钴基高温合金的高温低周疲劳行为Ⅰ疲劳性能.金属学报.2002,38(10):1047-1052.
    [15]Lu Z,Xu Y B,Hu Z Q.Low cycle fatigue behavior of a directional solidified cobalt base superalloy.Mater.Sci.Eng.A,1999,270:162-169.
    [16] Valsan M, Parameswaran P, Rao K B S et al. High-temperature low-cycle fatigue behavior of a NIMONIC PE-16 superalloy—correlation with deformation and fracture. Metallurgical Trans. 1992, 23A: 1751-1761.
    
    [17] Guo J T, Ranucci D, Picco E et al. Low cycle fatigue behavior of cast nickel-base superalloy IN738LC at room temperature. Int. J. Fatigue, 1983, 5(2): 95-97.
    
    [18] Decamps B, Brien V, Morton A J. Deformation microstructures after low-cycle fatigue at 950 C in Ni-based superalloys: The effect of test conditions. Scripta Metallurgica et Materialia, 1994, 31(7): 793-798.
    [19] Kadioglu Y, Sehitoglu H. Thermomechanical and isothermal fatigue behavior of bare and coated superalloys. Journal of Engineering Materials and Technology, 1996, 118(1): 94-102.
    [20] Ye D Y, Ping D H, Wang Z L et al. Low cycle fatigue behavior of nickel-based superalloy GH4145/SQ at elevated temperature. Mater. Sci. Eng. A, 2004, 373: 54-64.
    [21] Zrnik J, Semenak J, Vrchovinsky V et al. Influence of hold period on creep-fatigue deformation behaviour of nickel base superalloy. Mater. Sci. Eng. A, 2001,319-321: 637-642.
    [22] Rao K B S, Schiffers H, Schuster H et al. Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of alloy 617. Metall. Trans. A, 1988, 19(2): 359-371.
    [23] Li J, Wahi R P, Chen H et al. Deformation substructure in the nickel-base alloy IN738LC under superimposed creep-fatigue loading. Z. Metallkd., 1993, 84(4): 268-272.
    [24] Coffin L F. The effect of frequency on the cyclic strain and fatigue behavior of cast Rene at 1600T. Metallurgical Trans., 1974, 5(5): 1053-1060.
    [25] Coffin L F. The effect of frequency on the cyclic strain and low cycle fatigue behavior of cast Udimet 500 at elevated temperature. Metallurgical and Materials Transactions B, 1971, 2(11): 3105-3113.
    [26] Reger M, Remy L. High temperature, low cycle fatigue of IN-100 superalloy II: influence of frequency and environment at high temperatures. Mater. Sci. Eng. A, 1988, 101: 55-63.
    [27] Guo J T, Ranucci D, Picco E et al. Effect of environment on the low cycle fatigue behaviour of cast nickel-base superalloy IN 738 LC. Int. J. Fatigue, 1984, 6(2): 95-99.
    [28] Valsan M, Sastry D H, Rao K B S et al. Effect of strain rate on the high-temperature low-cycle fatigue properties of a Nimonic PE-16 superalloy. Metallurgical and Materials Trans. A, 1994, 25A: 159-171.
    [29] Coffin L F. A study of the effects of cyclic thermal stresses on a ductile material. Trans. ASME, 1954, 76: 931-950.
    [30] Manson S S. NASA, TN-2933, Cleveland Lewis Flight Propulsion Laboratory, 1954.
    [31] Basquin O H. The exponential law of endurance tests. Proc. ASTM, 1910, 10(2): 625-630.
    [32] Zhou H, Ro Y, Harada H et al. Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138. Mater. Sci. Eng. A, 2004, 381: 20-27.
    [33] Zhang J H, Hu Z Q, Xu Y B et al. Dislocation structure in a single-crystal nickel-base superalloy during low cycle fatigue. Metall. Trans. A, 1992, 23(4): 1253-1258.
    
    [34] Brien V, Decamps B. Low cycle fatigue of a nickel based superalloy at high temperature: deformation microstructures. Mater. Sci. Eng. A, 2001, 316: 18-31.
    
    [35] Antolovich S D, Jayaraman N. Metallurgical instabilities during the high-temperature low-cycle fatigue of nickel-base superalloys. Mater. Sci. Eng. A, 1982, 57: L9-L12.
    [36] Monier C, Bertrand C, Dallas J P et al. Transmission electron microscopy analysis of the early stages of damage in a γ/γ' nickel-based alloy under low cycle fatigue. Mater. Sci. Eng. A, 1994, 188: 133-139.
    [37] Antolovich S D, Domas P, Strudel J L. Low cycle fatigue of Rene 80 as affected by prior exposure. Metallurgical Transactions A, 1979, 10A(12): 1859-1868.
    [38] Antolovich S D, Rosa E. Low cycle fatigue of Rene 77 at elevated temperatures. Mater. Sci. Eng., 1981, 47: 47-57.
    [39] Hwang S K, Pande C S. Effects of high temperature fatigue on microstructure and mechanical properties of a nickel-base precipitation hardened alloy. Metall. Trans. A. 1983, 14(10): 2021-2030.
    [40] Jiao F, Bettge D, Osterle W et al. Tension compression asymmetry of the (001) single crystal nickel base superalloy SC16 under cyclic loading at elevated temperatures. Acta Mater., 1996, 44(10): 3933-3942.
    [41] Gayda J, Miner R V. Fatigue crack initiation and propagation in several nickel-base superalloys at 650℃. Inter. J. Fatigue, 1983, 15: 135-143.
    [42] Lerch B A, Jayaraman N. A study of fatigue damage mechanisms in Waspaloy from 25 to 800℃, Materials Science and Engineering, 1984, 66: 151-166.
    [43] Mcmahon C J, Coffin L F. Mechanisms of damage and fracture in high-temperature, low cycle fatigue of a cast nickel-based superalloy. Metallurgical Transactions, 1970, 1(12): 3443-3450.
    [44] Knowles D M, Skelton D K. High temperature fatigue of a polycrystalline nickel base superalloy. Materials Science and Technology, 2001, 17(11): 1403-1412.
    [45] Antolovich S D, Liu S, Baur R. Low cycle fatigue behavior of Rene 80 at elevated temperature. Metallurgical Trans. A, 1981, 12(3): 473-481.
    [46] Wahi R P, Auerswald J, Mukherji D et al. Damage mechanism of single and polycrystalline nickel base superalloys SC16 and IN738LC under high temperature LCF loading. Int. J.Fatigue, 1997, 19(1): S89-S94.
    [47] Gell M, Leverant G R. Mechanisms of high-temperature fatigue. Fatigue at elevated temperatures. 1973, ASTM STP 520: 37-67.
    [48]Fournier D,Pineau A.Low cycle fatigue behavior of Inconel 718 at 298K and 823K.Metall.Trans.A,1977,8A(7):1095-1105.
    [49]Fleury E,Remy L.Low cycle fatigue damage in nickel-base superalloy single crystals at elevated temperature.Mater.Sci.Eng.A,1993,167:23-30.
    [50]Ohtani R,Tada N,Shibata Met al.High temperature fatigue of the nickel-base superalloy CMSX-10.Fatigue Fract.Engng Mater.Struct.,2001,24:867-876.
    [51]Reger M,Remy L.High temperature,low cycle fatigue of IN-100 superalloy Ⅰ:influence of temperature on the low cycle fatigue behavior.Mater.Sci.Eng.A,1988,101:47-54.
    [52]Reuchet J,Remy L.High temperature low cycle fatigue of Mar-M509 superalloy Ⅰ:influence of temperature on the low cycle fatigue behavior from 20 to 1100℃.Mater.Sci.Eng.,1983,58:19-32.
    [53]陈立佳.两种镍基高温合金低周疲劳及疲劳-蠕变交互作用的研究:(博士学位论文).沈阳:中科院金属研究所。1999.
    [54]Chen L J,Wang Z G,Yao Get al.The influence of temperature on low cycle fatigue behavior of nickel base superalloy GH4049.Int.J.Fatigue,1999,21:791-797.
    [55]Goswami T.Low cycle fatigue-dwell effects and damage mechanisms.Inter.J.Fatigue,1999,21:55-76.
    [56]Goswami T,Hanninen H.Dwell effects on high temperature fatigue behavior Part Ⅰ.Materials and Design.2001,22:199-215.
    [57]Goswami T,Hanninen H.Dwell effects on high temperature fatigue damage mechanisms Part Ⅱ.Materials and Design.2001,22:217-236.
    [58]Chen L J,Yao G,Tian J F et al.Fatigue and creep-fatigue behavior of a nickel-base superalloy at 850℃.Int.J.Fatigue,1998,20(7):543-548.
    [59]Chen L J,Liaw P K,He Y H et al.Tensile hold low-cycle fatigue behavior of cobalt-based HAYNES188 superalloy.Scripta Mater.,2001,44:859-865.
    [60]Castelli M G,Ellis J R.Improved techniques for thermomechanical testing in support of deformation modeling.Thermomechanical Fatigue Behavior of Materials,1993,ASTM STP 1186:195-211.
    [61]Xiao L,Chen D L,Chaturvedi M C.Effect of boron and carbon on thermomechanical fatigue of IN 718 superalloy Part Ⅰ.Deformation behavior.Mater.Sci.Eng.A,2006,437(2):157-171.
    [62]Xiao L,Chen D L,Chaturvedi M C.Effect of boron and carbon on thermomechanical fatigue of IN 718 superalloy Part Ⅱ.Deformation microstructures.Mater.Sci.Eng.A,2006,437(2):172-182.
    [63]Moalla M,Lang K H,Lohe D.Effect of superimposd high cycle fatigue loadings on the out-of-phase thermal-mechanical fatigue behaviour of CoCr22Ni22W14.Materials Science and Engineering A,2001,319-321:647-651.
    [64]Bartsch M,Marci G,Mull K et al.Fatigue testing of ceramic thermal barrier coatings for gas turbine blades,Advanced Engineering Materials,1999,1(2):127-129
    [65]Fang D N,Berkovits A.Mean stress models for low-cycle fatigue of a nickel-base superalloy.Fatigue,1994,16(08):429-437.
    [66]Liu F,Wang Y C,Zhang H et al.Evolutionary stress cycle behavior and damage mechanisms in nickel based superalloy under thermomechanical fatigue.Materials Science and Technology.2003,19(7):853-858.
    [67]Liu F,Wang Z G,Ai S H et al.Thermo-mechanical fatigue of single crystal nickel-based superalloy DD8.Scripta Mater.2003,48:1265-1270.
    [68]Chen H J,Chen W Y,Mukherji D et al.Cyclic life of superalloy IN738LC under in-phase and out-of-phase thermomechanical fatigue loading.Z.Metallkd.,1995,86(6):423-427.
    [69]Beck T,Pitz G,Lang K H et al.Thermal-mechanical and isothermal fatigue of IN 792CC.Mater.Sci.Eng.A,1997,234-236:719-722.
    [70]Pahlavanyalia S,Drewb G,Rayment A et al.Thermo-mechanical fatigue of a polycrystalline superalloy:The effect of phase angle on TMF life and failure.Int.J.Fatigue,2008 30(2):330-338.
    [71]Vasseur E,Remy L.High temperature low cycle fatigue and thermal-mechanical fatigue behaviour of an oxide-dispersion-strengthened nickel-base superalloy.Materials Science and Engineering A,1994,184:1-5.
    [72]Kraft S,Zauter R,Mughrabi H.Aspects of high-temperature low-cycle thermomechanical fatigue of a single crystal nickel-base superalloy.Fatigue Fract.Engng Mater.Struct.,1993,16(2):237-253.
    [73]王跃臣.镍基高温合金热机械疲劳行为及微观机制研究:(博士学位论文).沈阳:中科院金属研究所,2004.
    [74]Busso E P,McClintock F A.Thermal fatigue degradation of an overlay coating.Materials Science and Engineering A,1993,161:165-179.
    [75]Maclachlan D W,Knowles D M.Fatigue behavior and lifing of two single crystal superalloys.Fatigue Fract.Engng Mater.Struct.,2001,24:503-521.
    [76]Kleinpass B,Lang K,Lobe D et al.Influence of the mechanical strain amplitude on the in-phase and out-of-phase thermo-mechanical fatigue behaviour of NiCr22Co12Mo9.Thermomechanical Fatigue Behavior of Materials,2000,ASTM STP 1371:36-50.
    [77]Feltner C E.A debris mechanism of cyclic strain hardening for f.c.c.metals.Philosophical Magazine,1965,12(120) 1229-1248.
    [78]Lerch B A,Gerold V.Room temperature deformation mechanisms in Nimonic 80A.ActaMetall.Mater.1985,33(9):1709-1716.
    [79]Raman S S,Padmanabhan K A.Room-temperature low-cycle fatigue behaviour of a Ni-base suoeralloy.Int.J.Fatigue,1994,16(3):209-215.
    [80] Zhang J X, Harada H, Ro Y et al. Superior thermo-mechanical fatigue property of a superalloy due to its heterogeneous microstructure. Scripts Mater., 2006, 55: 731-734.
    [81] Baufeld B, Bartsch M, Heinzelmann M. Advanced thermal gradient mechanical fatigue testing of CMSX-4 with an oxidation protection coating. Int. J. Fatigue, 2008, 30(2): 219-225.
    [82] Wang Y C, Li S X, Zhou L et al. Microstructures of a single-crystal nickel-base superalloy after thermo-mechanical fatigue. Philosophical Magazine. 2004, 84(31): 3335-3351.
    [83] Nazmy M, Denk J, Baumann R et al. Environmental effects on tensile and low cycle fatigue behavior of single crystal nickel base superalloys. Scripta Materialia, 2003, 48: 519-524.
    [84] Esmaeili S, Engler-Pinto C C, Ilschner B et al. Interaction between oxidation and thermo-mechanical fatigue in IN738LC superalloy—I. Scripta Mater., 1995, 32(11): 1777-1781.
    [85] Fleury E, Ha J S. Thermomechanical fatigue behaviour of nickel base superalloy IN738LC. Part 2- Life prediction. Mater. Sci. Technol. 2001,17: 1087-1092.
    [86] Neu R W. A mechanistic-based thermomechanical fatigue life prediction model for metal matrix composites. Fatigue & Fracture of Engineering Materials and Structures, 1993, 16(8): 811-828.
    [87] Kadioglu Y, Sehitoglu H. Modeling of thermomechanical fatigue damage in coated alloys. Thermomechanical Fatigue Behavior of Materials, 1993, ASTM STP 1186: 17-34.
    [88] Cai C A, Liaw P K, Ye M L et al. Recent developments in the thermomechanical fatigue life prediction of superalloys. J. 0. M., 1999, 51(4).
    [89] ZhuangWZ, SwanssonNS. Thermo-mechanical fatigue life prediction: a critical review. NASA, 1998.
    [90] Ostergren W J. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J. Test. Eval., 1976, 4(5): 327-339.
    [91] Liu F, Ai S H, Wang Y C et al. Thermal-mechanical fatigue behavior of a cast K417 nickel-based superalloy. Int. J. Fatigue, 2002, 24: 841-846.
    [92] Zhang H, Wang Y C, Liu F et al. Thermal-mechanical fatigue behavior and life analysis of cast Ni-base superalloy K417. J. Mater. Sci. Technol., 2002, 18(2): 176-180.
    [93] Manson S S, Halford G R, Hirschberg M H et al. Creep-fatigue analysis by strain-range partitioning. Pro. of Symposium on Design for Elevated Temperature Envrironments. New York, 1971: 12-28.
    [94] Henderson P J. The use of strain range partitioning in thermo-mechanical fatigue. Scripta Mater., 1996, 34(12): 1839-1844.
    [95] Nazmy M Y. High temperature low cycle fatigue of IN 738 and application of strain range partitioning. Metallurgical and Materials Trans. A, 1983, 14A(3): 449-461.
    [96] Halford G R, Manson S S. Life prediction of thermal-mechanical fatigue using strain range partitioning. NASA, TM X-71829, 1975.
    [97] Miller M P, McDowell D L, Oehmke R L T et al. A life prediction model for thermomechanical fatigue based on microcrack propagation. 1993, ASTM STP 1186: 35-49.
    [98] Dowling N E. Crack growth during low-cycle fatigue of smooth axial specimens. 1977, ASTM STP 637: 97-121.
    [99] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(04): 280-284.
    [100] Baufeld B, Bartsch M, Dalkilic S et al. Defect evolution in thermal barrier coating systems under multi-axial thermomechanical loading. Surface and Coatings Technology, 2005, 200(5-6): 1282-1286.
    [101] Shi J, Karlsson A M, Baufeld B et al. Evolution of surface morphology of thermo-mechanically cycled NiCoCrAlY bond coats. Materials Science and Engineering A, 2006, 434: 39-52.
    [102] Sidhu T S, Agrawal R D, Prakash S. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review. Surface and Coatings Technology, 2005, 198: 441-446.
    [103] Mevrel R. State of the art on high-temperature corrosion-resistant coatings. Mater. Sci. Eng. A, 1989, 120: 13-24.
    [104] Brandl W, Toma D, Grabke H J. The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings. Surface and Coatings Technology, 1998, 108-109: 10-15.
    [105] Jang H J, Park D H, Jung Y G et al. Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surface and Coatings Technology, 2005, 200(14-15): 4355-4362.
    [106] Czech N, Stamm W. Thermal cycle fatigue properties of coated and uncoated single crystal superalloy. Surface and Coatings Technology, 1996, 86-87: 15-21.
    [107] Schneider K, Arnim H V, Grunling H W. Influence of coatings and hot corrosion on the fatigue behaviour of nickel-based superalloys. Thin Solid Films, 1981, 84(1): 29-36.
    [108] Santhanam A T, Beck C G. The influence of protective coatings on thermal fatigue resistance of Udimet 710. Thin Solid Films. 1980, 73(2): 387-395.
    [109] Okazaki M. High-temperature strength of Ni-base superalloy coatings. Science and Technology of Advanced Materials, 2001, 2: 357-366.
    [110] Totemeier T C, Gale W F, King J E. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part I. Metallurgical and Materials Transactions A, 1996, 27A(02): 353-361.
    [111] Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys. Journal of Materials Science, 1999, 34: 3957-3966.
    [112] Zhang Y H, Knowles D M, Withers P J. Microstructural development in Pt-aluminide coating on CMSX-4 superalloy during TMF. Surface and Coating Technology, 1998, 107:76-83.
    [113] Zhang Y H, Knowles D M, Withers P J. Micromechanics of failure of aluminide coated single crystal Ni superalloy under thermomechanical fatigue. Scripta Materialia, 1997, 37(6): 815-820.
    [114] Warnes B M, Purvis A L, Schilbe J E. The manufacture and fatigue cracking resistance of grit free aluminide diffusion coatings. Surface & Coatings Technology, 2003, 163-164: 100-105.
    [115] Bernstein H L, Grant T S, McClung R C et al. Prediction of thermal-mechanical fatigue life for gas turbine blades in electric power generation. Thermomechanical Fatigue Behavior of Materials, ASTM STP, 1993, 1186: 212-238.
    [116] Wright P K. Influence of cyclic strain on PVD TBC life. Materials Science and Engineering A, 1998, 245: 191-200.
    [117] Totemeier T C, Gale W F, King J E. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part II. Effects of brittle precracking. Metallurgical and Materials Transactions A, 1996, 27A(02): 363-369.
    [118] Sadasue T, Okazaki M, Mutoh Y et al. Fatigue fracture behaviour of Ni-base superalloy IN738LC coated with MCrAlY alloys at high temperatures. Journal of the Society of Materials Science, Japan, 1997, 46(1): 32-38.
    [119] Grunling H W, Schneider K, Singheiser L. Mechanical properties of coated systems. Mater. Sci. Eng., 1987, 88: 177-189.
    [120] Kowalewski R K, Mughrabi H. Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-based superalloy. Materials Science and Engineering A, 1998, 247: 295-299.
    [121] Zhang Y H, Withers P J, Fox M D et al. Damage mechanisms of coated systems under thermomechanical fatigue. Materials Science and Technology, 1999, 15(09): 1031-1036.
    [122] Sequeira A D, Moretto P, Bressers J. Residual stress and microstructure of CoNiCrAlY coated superalloys upon thermo-mechanical fatigue. Materials Science Forum, 2000, 321-324: 748-753.
    [123] Ott M, Mughrabi H. Dependence of the high-temperature low-cycle fatigue behaviour of the monocrystalline nickel-base superalloys CMSX-4 and CMSX-6 on the γ/γ' -morphology. Mater. Sci. Eng. A, 1999, 272: 24-30.
    [124]Guo J T,Ranucci D,Picco E.Low cycle fatigue behavior of case nickel-base superalloy IN738LC in air and in hot corrosive environments.Mater.Sci.Eng.,1983,A58(1):127-133.
    [125]Standard E606.In:Annual book of ASTM standards,Philadelphia,PA,ASTM,1996,03.01.
    [126]陈立佳,王中光,姚戈等.铸造Ni基高温合金K417的高温低周疲劳行为.金属学报,1999,35(11):1144-1150.
    [127]Bettge D,Osterle W,Ziebs J.Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution.Z.Metallkd.,1995,86(3):190-197.
    [128]Laird C,Smith G C.Crack propagation in high stress fatigue.Phil.Mag.,1962,7(77):847-857.
    [129]Nazmy M Y.The effect of environment on the high temperature low cycle fatigue behavior of cast nickel-base IN-738 alloy.Mater.Sci.Eng.,1982,55:231-237.
    [130]Reuchet J,Remy k.High temperature low cycle fatigue of Mar-M 509 superalloy Ⅱ:the influence of oxidation at high temperatures.Mater.Sci.Eng.,1983,58:33-42.
    [131]He L Z,Zheng Q,Sun X F et al.High temperature low cycle fatigue behavior of Ni-base superalloy M963.Mater.Sci.Eng.A,2005,402:33-41.
    [132]Marchionni M,Osinkolu G A,Maldini M.High temperature cyclic deformation of a directionally solidified Ni-base superalloy.Fatigue Fract.Engng Mater.Struct.,1996,19(8):955-962.
    [133]Bathias C,Gabra M,Aliaga D.Low-cycle fatigue damage accumulation of aluminum alloys ASTM STP 770,1982:23-44.
    [134]工程材料实用手册编辑委员会.工程材料实用手册.第2版,北京:中国标准出版社,2002.
    [135]杨金侠.K465镍基高温合金的组织和性能稳定性及热疲劳性能:(博士学位论文).沈阳:中科院金属研究所,2006.
    [136]Francois M,Remy L.Thermal-mechanical fatigue of Mar-M509 superalloy.Comparson with low-cycle fatigue behaviour.Fatigue Fract.Engng Mater.Struct.,1991,14(1):115-129.
    [137]Engler-Pinto C C,Rezai-Aria R.Thermo-mechanical fatigue investigation of single crystal nickel base superalloy SRR 99.Thermomechanical Fatigue Behavior of Materials,2000,ASTM STP 1371:150-164.
    [138]Frenz H,Meersmann J,Ziebs Jet al.High-temperature behaviour of IN 738 LC under isothermal and thermo-mechanical cyclic loading.Mater.Sci.Eng.A,1997,230:49-57.
    [139]Fleury E,Ha J S.Thermomechanical fatigue behaviour of nickel base superalloy IN738LC.Part 1-Comparison of two unified constitutive models for description of mechanical behaviour.Mater.Sci.Technol.2001,17:1079-1086.
    [140]Remy L,Bernard H,Malpertu J Let al.Fatigue life prediction under thermal-mechanical loading in a nickel-base superalloy.ASTM STP,1993,1186:3-16.
    [141]Sakaguchi M,Okazaki M.Thermo-mechanical and low cycle fatigues of single crystal Ni-base superalloys;importance of microstructure for life prediction.JSME International Journal Series A,2006,49(3):345-354.
    [142]周东,施惠基,王中光.高温合金材料时间相关热机械疲劳寿命预测技术.工程力学,2000,17(1):68-74.
    [143]Wilson D A,Warren J R.Thermal mechanical crack growth rate of a high strength nickel base alloy.Transactions of the ASME,1986,108(04):396-402.
    [144]Wang Y L.A generalized frequency modified damage function model for high temperature low cycle fatigue life prediction.Int.J.Fatigue,1997,19(4):345-350.
    [145]Chen L J,Wang Z G,Yao G at al.An assessment of three creep-fatigue life prediction methods for nickel-based superalloy GH4049.Fatigue & Fracture of Engineering Materials and Structures,2000,23:509-519.
    [146]Skelton R P,Webster G A.History effects on the cyclic stress-strain response of a polycrystalline and single crystal nickel-base superalloy.Mater.Sci.Eng.A,1996,216:139-154.
    [147]Bhattachar V S,Stouffer D C.Constitutive equations for the thermomechanical response of Rene 80:Part 1:Development from isothermal data.Journal of Engineering Materials and Technology,1993,115(4):351-357.
    [148]Bhattachar V S,Stouffer D C.Constitutive equations for the thermomechanical response of Rene 80:Part 2:Effects of temperature history.Journal of Engineering Materials and Technology,1993,115(4):358-364.
    [149]Skelton R P.The determination of hysteresis loops in thermo-mechanical fatigue using isothermal stress-strain data.Fatigue Frac.Engng Mater.Struct.,1994,17(4):479-496.
    [150]Liu J R,Li S X,Li D et al.Isothermal and thermomechanical fatigue behaviour of a high temperature titanium alloy.Materials Science and Technology,2004,20(10):1266-1272.
    [151]Zamrik S Y,Renauld M L.Thermo-mechanical out-of-phase fatigue life of overlay coated IN-738 LC gas turbine material.Thermomechanical Fatigue Behavior of Materials,2000,ASTM STP 1371:119-137.
    [152]Yang F M,Sun X F,Guan H R et al.On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature.Materials letters.2003,57:2823-2828.
    [153]Itoh Y,Saitoh M,Takaki K et al.Effect of high-temperature protective coatings on fatigue lives of nickel-based superalloys.Fatigue Fract.Engng Mater.Struct.,2001,24:843-854.
    [154]Veys J M,Mevrel R.Influence of protective coatings on the mechanical properties of CMSX-2 and Cotac 784.Materials Science and Engineering,1987,88:253-260
    [155] Okrajni J, CieslaM, SwadzbaL. High-temperature low-cycle fatigue and creep behaviour of nickel-based superalloys with heat-resistant coatings. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21: 947-954.
    
    [156] Guedou J Y, Honnorat Y. Thermomechanical fatigue of turbo-engine blade superalloys. Thermomechanical Fatigue Behavior of Materials, 1993, ASTM STP 1186: 157-175.
    [157] Goward G W. Progress in coatings for gas turbine airfoils. Surface and Coatings Technology, 1998, 108-109: 73-79.
    [158] Baufeld B, Tzimas E, Hahner P et al. Phase-angle effects on damage mechanisms of thermal barrier coatings under thermomechanical fatigue. Scripta Materialia, 2001, 45: 859-865.
    [159] Mumm D R, Evans A G, Spitsberg I T. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Materialia, 2001, 49: 2329-2340.
    [160] Stiger M J, Yanar N M, Topping M G et al. Thermal barrier coatings for the 21st century. Z. Metallkd., 1999, 90(12): 1069-1078.
    [161] Baufeld B, Tzimas E, Mullejans H et al. Thermal-mechanical fatigue of MAR-M 509 with a thermal barrier coating. Materials Science and Engineering A, 2001, 315: 231-239.
    
    [162] Peichl A, Beck T, Vohringer O. Behaviour of an EB-PVD thermal barrier coating system under thermal-mechanical fatigue loading. Surface & Coatings Technology, 2003, 162: 113-118.
    [163] Tang F, Ajdelsztajn L, Schoenung J M. Characterization of oxide scales formed on HV0F NiCrAlY coatings with various oxygen contents introduced during thermal spraying. Scripta Materialia, 2004, 51: 25-29.
    [164] Zhao L D, Parco M, Lugscheider E. High velocity oxy-fuel thermal spraying of a NiCoCrAlY alloy. Surface and Coatings Technology, 2004, 179: 272-278.
    [165] Li C J, Li W Y. Effect of sprayed powder particle size on the oxidation behavior of MCrAlY materials during high velocity oxygen-fuel deposition. Surface and Coatings Technology, 2002, 162: 31-41.
    [166] Ajdelsztajn L, Picas J A, Kim G E et al. Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder. Materials Science and Engineering A, 2002, 338: 33-43.
    [167] Tang F, Ajdelsztajn L, Kim G E et al. Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating. Surface and Coatings Technology, 2004, 185: 228-233.
    [168] Tzimas E, Mullejans H, Peteves S D et al. Failure of thermal barrier coating systems under cyclic thermomechanical loading. Acta Materialia, 2000, 48: 4699-4707.
    [169] Wood M I. Mechanical interactions between coatings and superalloys under conditions of fatigue. Surf. Coat. Technol., 1989, 39/40: 29-42.
    [170] Stover D, Funke C. Directions of the development of thermal barrier coatings in energy applications. Journal of Materials Processing Technology, 1999, 92-93: 195-202.
    [171] Evans A G, Mumm D R, Hutchinson J W et al. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science, 2001, 46: 505-553.
    [172] Strangman T E, Hopkins S W. Thermal fatigue of coated superalloys. Ceramic Bulletin, 1976, 55(3): 304-307.
    [173] Okazaki M, Okamoto M, Harada Y. Interfacial fatigue crack propagation in Ni-base superalloy protective coatings. Fatigue Fract. Engng Mater. Struct., 2001, 24: 855-865.
    [174] Qian L, Zhu S, Kagawa Y et al. Tensile damage evolution behavior in plasma-sprayed thermal barrier coating system. Surface & Coatings Technology, 2003, 173: 178-184.
    [175] He M Y, Hutchinson J W. Crack deflection at an interface between dissimilar elastic materials. International Journal of Solids Structures, 1989, 25: 1053-1066.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700