用户名: 密码: 验证码:
功率超声振动珩磨技术的基础与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通珩磨效率较低,易产生噪声和油石堵塞,从而导致油石寿命低,尺寸精度难以控制,需频繁更换油石,由于配件互换性差,对工人技术级别要求高,劳动强度大,废品率高,生产效率低,致使这种精密加工方法的应用受到限制。本研究就是针对这种现状,将超声振动附加在珩磨油石条上,使得每一颗磨粒在磨削的同时进行高频振动,从而实现脉冲磨削,这就是功率超声振动珩磨技术。本论文在系统总结了国内外大量文献资料的基础上,通过理论分析和试验研究相结合的方法,在功率超声珩磨加工理论研究的基础上,研制成功了功率超声珩磨装置和新型磨削液发生装置,特别是功率超声珩磨装置中谐振系统的研究和新型磨削液发生装置中特殊多段式喷嘴的研制,有新意,论文关于功率超声振动珩磨加工机理和工艺的研究,丰富和完善了功率超声珩磨加工的理论成果。论文所完成的有创意的基础与应用研究工作可以概括为:
     1.在普通珩磨切削加工理论的基础上,进行了功率超声振动珩磨切削机理的研究和分析,确定了纵向和径向功率超声振动珩磨的临界速度;同时对功率超声振动磨料空切削现象进行了分析。并在分析功率超声振动珩磨的磨粒运动的基础上,给出功率超声珩磨材料去除率的理论公式。材料去除量的理论分析和试验研究均表明,在同比条件下,超声珩磨的磨削效率是普通珩磨的磨削效率的2.5倍。
     2、提出了一种有新意的功率超声珩磨装置的设计理念,即以珩磨孔径为参数的谐振系统的设计方法,研制成功了新型立式功率超声振动珩磨装置,同时将超短型专用压电换能器用于功率超声珩磨设计中,把有限元分析技术引入功率超声珩磨谐振系统动力特性的研究中,有限元分析结果所得结构系统的固有频率和相应振型,与试验实测数据基本吻合。通过仿真研究和试验研究确定的振动系统的振动参数、结构尺寸是科学可行的,解决了功率超声振动珩磨应用中的关键问题。
     3、研制成功了新型磨削液供液系统及装置,特别是研制成功了关键部件——特殊多段式喷嘴,填补了国内空白。研究了新型磨削液的形成机理和物理特性,探讨了其优良的冷却润滑性能的作用机理。完成了新型磨削液在功率超声珩磨中磨削性能的试验研究,研究结果表明:新型磨削液具有良好的润滑性能,在加工精度和油石寿命方面具有明显优势,因此适用于功率超声珩磨加工。
     4、完成了普通珩磨和功率超声珩磨对比工艺试验研究,研究结果表明:功率超声珩磨比普通珩磨具有更小的表面粗糙度值。完成了功率超声振动珩磨加工工艺优化试验研究,确定了可适应加工对象的最佳油石参数和工艺参数,应用优化参数加工后的新型缸套与原缸套进行台架性能的对比试验结果表明,已完全达到并超过了该项目预定的要求指标,也说明采用自行研制的功率超声振动珩磨加工装置和新型磨削液确可很好的适应生产现场的加工要求。
The efficiency of the ordinary honing is low and it produces big noise and chocking-up easily which causes lots of deficiency such as loss of life for oil-stone, dimensional accuracy controls with difficulty, fittings interchangeable badly, replace the oil-stone frequently, high technology requests and labor intensity to the workers, high rejection rate and low efficiency. Thus the application of this processing method is restricted. This paper aims at this situation and proposed a method to solve them. It attaches ultrasonic vibration on oil stone strip which causes high-frequency vibration to each abrasive when it grinding simultaneously. It realizes pulse grindings, so is the power ultrasonic vibration honing technology.This dissertation summarized the literature of domestic and foreign, unified fundamental research and experimental study, based on the theoretical research of the power ultrasonic vibration honing, finally developed the power-ultrasonic-honing installment and new machine-finishing-fluid generator successfully. And the resonance system in the honing installment and the multi-zone injecting nozzle in the machine-finishing-fluid generator filled the domestic blank. The research also studies further on the processing mechanism and the craft to the power ultrasonic vibration which richen the theory achievement of power ultrasonic vibration.
     1. On the base of ordinary honing machining theory, this dissertation analyzed the cutting mechanism and the cutting motion, determined the longitudinal and the radial critical speed, researched the spatial cutting phenomenon. With the analysis of abrasive grain motion, this dissertation produced the material removing rate theoretical formula of power ultrasonic honing. The correlation experimental showed that the bigger the oil stone particle, the higher the grinding efficiency. And if in the same size, the efficiency of ultrasonic vibration honing is 2.5 than that of ordinary honing, which meets the theoretical analysis.
     2. This dissertation firstly proposed a kind of new design idea to the ultrasonic vibration honing installment, that is using hone aperture as the parameter to design the resonance system and developing the new vertical power ultrasonic vibration honing installment successfully. The installment is adopted special-purpose piezoelectric transducer for the first time. This dissertation firstly introduced the finite element analysis technology into the dynamic properties of the power ultrasonic honing system. The natural frequency and corresponding mode from the result of the finite element analysis is approaches to the experimental data. This dissertion showed that the definition of vibration parameter and physical dimension through the simulation research and the experimental study is feasible. It solved the key problem in the application of the power ultrasonic vibration honing.
     3. This dissertation developed the new grinding-fluid generator successfully. Specially, the multi-zone injecting nozzle----the key component of the generator has filled the domestic blank. It also studied the new grinding fluid formation mechanism and the physical property, and discussed its cooling lubricity action mechanism.The dissertation completed the experimental research of the new grinding fluid grinding performance in power supersonic honing . The results shows that the new grinding fluid has good lubricating property, it has obvious superiority in working accuracy and in life of oil stone, therefore it is suitable to the power supersonic honing processing.
     4. This dissertation compared the craft testing between ordinary honing and the power supersonic honing, it has much smaller surface roughness value than ordinary honing . The dissertation complete the processing craft optimization experiment of the ultrasonic vibration honing, determined the optimally oil stone parameter and the craft parameter when processing object. After contrast bench test between the original cylinder jacket and the new cylinder jacket, results completely achieved the requested arm. This explained that the power ultrasonic vibration installment and the cooling-lubricating arrangement can meet the scene processing request.
引文
[1]金滩,蔡光起,郑换文,第48届CIRP大会磨削方面论文简介,金刚石与磨具磨料工程,1999,95(2):1-10
    [2]陆玲,双浮动式珩磨头,工具技术,1994,28(4):12-15
    [3]杨雪樱,挤压珩磨—新型的表面光整加工工艺,第七届全国电加工学术年会论文集—中国机械工程学会电加工学会,1993,10:290-293
    [4]苏达智,影响珩磨精度的各种要素分析,新技术新工艺,1989(2):9-12
    [5] S.Malkin,Current trends in CBN Grinding Technology,Annals of the CIRP,1995,34(2):37-39
    [6]严文浩,发展我国CBN磨削技术的主要问题和对策,机械工艺师,1993,12(1):35-37
    [7]刘明辉译,超硬材料珩磨技术在生产中的应用,1988,44(2):24-25
    [8]胡永强,金刚石油石在缸套珩磨中的应用,磨料磨具与磨削,1991,(3):24-27
    [9]邝广镛,JHT系列精密金刚石珩磨头及其应用,机械制造,1992(9):16-19
    [10]杨永华,金刚石珩磨和平顶金刚石珩磨,内燃机制造技术,1988(12):1-2
    [11]邝广镛,汽车工业应积极推广超硬磨料平顶网纹珩磨,机械制造,1994,(5):21-24
    [12]于思远,赵艳红,超声磨削加工工程陶瓷小孔的实验研究,电加工与磨具,2001,4:31-34
    [13]高桥,孝诚,超声波磨削陶瓷材料上的孔,机械技术,1992,40(11):123-127
    [14] Moreiand M.A.,Ultrasonic advantages revealed in hole story,Ceramics Application Manufacture,1988,187:156-162
    [15] Sedh.K.H.W,Wong Y.S.&Lee L.C.,Design of tool holders for ultrasonic machining using FEM,Journal of materials processing technology,1993,37(4):801-816
    [16] T.B.Thoe,D.K.Aspinwall and M.L.H. , Wise.Review on Ultrasonic Machining ,International Journl of Machine Tools and Manufacture,1998,38(4):239-255
    [17]隈部淳一郎著,精密加工—振动切削基础和应用(中译本),北京,机械工业出版社,1985:342-424
    [18]汤铭权,超声振动切削技术研究应用状况与发展动向(上),电加工,1992,18(5):12-16
    [19]汤铭权,超声振动切削技术研究应用状况与发展动向(下),电加工,1992,18(6):3-7
    [20]海野,邦昭,精密陶瓷超声波磨削,机械技术,1989,33(3):67-72
    [21]植松哲太郎,加工中心和超声波复合磨削陶瓷,机械技术,1989,33(7):98-102
    [22] Jiroarn Tsujino.,A Review of new Industrial Applications of High Power Ultrasonics in Japan,Ultrasonics International 89 Conference Proceedings:346-353
    [23] Komaraiah M.&Reddy P.Narasimha,Rotary ultrasonic machining-A new cutting process and its performance,International Journal of Production Research,1991,29(11):2177-2187
    [24]РОМАНюКВФ,王敬一译,缸套的超声波金刚石珩磨,国外内燃机,1992,24(4):12
    [25] Gilmore.Randy,Ultrasonic machining,A Case Study ,Mater Process Technol v28 n1-2 sep 1991 7th International conference on computer-Aided production Enginering,Cookeville ,TN,USA.Aug 13-14,1991:139-148
    [26] Kennedy D.C.&Grieve R.J,Ultrsonic machining—a review,The Production Engineer,1975,54(9):481-486
    [27] Kremer D,Bazine G.&Moison A.,Ultrasonic machining improves EDM technology,Electro machining,Proceedings of the 7th International symposium,edited by prof.Crookall J.R.,Birmingham,UK,1983,4:67-76
    [28] Kremer D.Saleh S.M.Ghabrial S.R.&Moisan A.,The state of art of ultrasonic machining ,Annals of the CIPP,1981,30(1):107-110
    [29] Konig Wilfried,超声波加工过程的控制,Maschinenmarkt ,1993,99(33):16-21
    [30] M.Komaraiah and P.Reddy.,Rotary Ultrasonic Mchining—A New Cutting Process and Its Performance,International Journal of Production Research.,1991,29(11):2177-2187
    [31]林仲茂,20世纪功率超声在国内外的发展,声学技术,2000,19(2):101-104
    [32]范国良,超声加工概况和未来展望,电加工,1994(6):21-25
    [33]赵波,硬脆材料超声珩磨系统及延性切削特征研究,[博士学位论文],上海,上海交通大学,1999,7
    [34]冯冬菊,赵福令,超声波加工工具对复合变幅杆谐振性能影响,大连理工大学学报,2004,44(5):685-688
    [35]冯冬菊,超声波铣削加工原理及相关技术研究,[博士学位论文],大连,大连理工大学,2005,10
    [36] Zhu Xijing,Xin Zhijie ,Experiment study on ultrasonic vibration cutting slender-shaft spares,Journal of North China Institute of Technology,1996,17(4):114-118
    [37] Qixin Zhang,Study on ultrasonic vibration drilling in carbon fiber reinforced polymers,Chinese Journal of Mechanical Engineering(English Edition),1994,7(1):72-77
    [38]李伯民,赵波编,现代磨削技术,北京,机械工业出版社,2003:296-322
    [39]张建华,陶湛,精密与特种加工技术,北京:机械工业出版社,2003:192-193
    [40]祝锡晶,超声波珩磨,机械制造,1995,45(6):28-30
    [41] NePPiras,E.A.,Ultrasonic Machining and Forming Process,30th International MATADOR Conference,1993:472-476
    [42]奚凤丰,王诚德,磨具上附加超声波的切削加工机理,电加工,1987,21(2):13-16
    [43] Nandi,G.,Mukherjee,S.K,,et al,Tool wear in Ultrasonic Trepanning of glass eramics,The Japan Society of Precision Engineering,Proceeding of 5th International Conference on Prodution Engineering,Tokyo,1984
    [44]芮小健等,振动切削过程的实质与机理研究,机械制造,1994,46(12):26-28
    [45] Kazantsev V.F.,& Rozenberg L.D.,The mechanicsm of ultrasonic cutting,Ultrasonics,1965,3:166-174
    [46]李祥林,薛万夫,张日升,振动切削及其在机械加工中的应用,北京:北京科学技术出版社,1985:78-129
    [47] Moreland. M.A.,Ultrasonic impact grinding:What it will do.1984 proceedings—Twenty Second Abrasive.Engineering Society Conference,1984:111-117
    [48] Zhang Bi and T.D.Howes,Material Removal Mechanisms in grinding Ceramics,Annals of the CIRP,1994,43(1):305-308
    [49] K.P.Rajurkara,Z.Y.Wangb,A.Kuppattana.,Micro removal of ceramic material material in the precision ultrasonic machining,Precision engineering,1999,23:73-78
    [50] Hsueh-Ming Stave Wang,Analysis of the effect of process parameters on material removal rate in ultrasonic machining ,doctor thesis,Lehigh university,1998
    [51] Prabhakar D&Haselkorn M.,An experimental investingation of materiall removal rates in rotary ultrasonic machining,Transations of NAMRI/SME,1992,20:211-218
    [52] Q.H.Zhang,J.H.Zhang,Z.X.Jia etc. , Material removal rate analysis in the ultrasonic machining of engineering ceramics,Journal of Materials Processing Technology,1999,88:180-184
    [53] Shaw M.C.,Ultrasonic grinding,Microtechnic,1956,10(6):257-265
    [54] Miller G.E.,Special theory of ultrasonic machining,Journal of applied physics,1957,28(2):149-156
    [55] Pentland E.W.& Ektermanis J.A.,Improving ultrasonic machined rates-somefeasibility studies,Journal of Engineering for Industry,Transactions of the ASME,1965,Feb.,87,Series B:39-46
    [56] Markov A.I.,Kinematics of the dimensional ultrasonic machining method,Machines & tooling,1959,30(10):28-31
    [57] Kainth G.S,Nandy Amitav ,Singh Kuldeep,On the mechanics of material removal in ultrasonic machining,International Journal of Machine Tool Design & Research.,1979,19(1):33-41
    [58] T.C.Lee,C.W.Chan,Mechanism of the ultrasonic machining of ceramic composites,Journal of materials processing technology,1997,7(1):195-201
    [59] Tone T.B.,Aspinwal,D.K.Zhao,F.L,The Effecf of Operating Parameters when Ultrasonic Contour Machining,12th Annual Conference of the Irish Manufacturing Committee,Cork,Ireland,1995
    [60] H.Hocheng,K.L.Kuo,On-Line tool wear monitoring during ultrasonic machining using tool resonance frequency,Journal of Materials Processing Technology,2002,123:80-84
    [61] Kamoun H.,Houbt M.,Kremer D.,Lecoco B.,Coffignal G.,Modelling the material removal in stationary mode for ultrasonic contour machining,American Society of Mechanical Engineers,Production Engineering Division(Publication)PED,v64,Manufacturing Science and Engineering,1993:759-770
    [62] Z.J.Pei,P.M.Ferreira,M.Haselkorn,Plastic flow in rotary ultrasonic machining of ceramics,Journal of materials processing technology,1995,48:771-777
    [63] Z.J.Pei,P.M.Ferreira,An experimental investigation of rotary ultrasonic face milling, International Journal of Machine Tools & Manufacture,1999,39(8):1327-1344
    [64] Z.J.Pei,P.M.Ferreira,Modeling of ductile mode material removal in rotary ultrasonic machining,International Journal of machine Tools & Manufacture,1998,38:1399-1418
    [65] Komaraiah M.&Reddy P.Narasimha,A study on the influence of workpiece properties in ultrasonic machining,International journal of machine tools and manufacture,1993,33(3):495-505
    [66] Z.Y.Wang.K.P.Rajurkar,Dynamic analysis of the ultrasonic machining process,Journal of manufacturing science and engineering,Transctions of the ASME,1996,118(8):376-381
    [67] M.Wiercigroch,R.D.Neilson,M.A.Player,Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach,Physics letters A 1999,259:91-96
    [68] G.Ya,H.W.Qin,S.C.Yang,et al,Ananlysis of the rotary ultrasonic machining mechanicsm,Journal of materials processing technology,2002,129:182-185
    [69]曹凤国编,超声加工技术,北京,化学工业出版社,2005:128-178
    [70]谷口修主编,尹传家译,振动工程大全,北京,机械工业出版社,1983
    [71]张云电著,超声加工及其应用,北京,国防工业出版社,1995:163-194
    [72]胡传忻,夏志东,特种加工手册,北京:工业大学出版社,2001年:228-229
    [73]郭东明,王晓明,赵福令等,面向快速制造的特种加工技术,中国机械工程,2000,11(1-2):206-212
    [74] Suzuki,K.,A new Grinding Method for Ceramics Using a Biaxially Vibrated Nonrotational Ultrasonic Tool,Annals of the CIRP,1993,42(1):375-378
    [75] Suzuki,K.,A study on the influence of workpiece properties in ultrasonic machining,Annals of the CIRP,1993,42(1):275-278
    [76] Qixin Zhang,Study on ultrasonic vibration drilling in carbon fiber reinforced polymers,Chinese Journal of Mechanical Engineering(English Edition),1994,7(1):72-77
    [77] Hiroshi Suauki,Moritoshi Abe and Yoshiharu Namba,Ductile Grinding of Glass-Ceramics with Bronze-Bonded Diamond Wheels,精密工学会志,1997,63(4):535-539
    [78] E.Uhimann,Surface Formation in Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance,Annals of the CIRP 1998,47(1):249-252
    [79]祝锡晶,功率功率超声珩磨缸套加工中谐振系统的试验研究,中国机械工程,2002,13(9),727-730
    [80] T.Tsuchiya,Y.Kagawa,M.Doi,T.Tsuji,Finite element simulation of non-linear acoustic generation in a horn loudspeaker,Journal of sound and Vibration,2003,266(5):993-1008
    [81]冯若编,超声手册,南京,南京大学出版社,1999:550
    [82]臼井英治著,高希正,刘德忠译,切削磨削加工学,北京,1980
    [83]庄表中,刘明杰,工程振动学,北京,高等教育出版社,1989
    [84]林祖森,有限元基本理论方法与程序,太原,太原机械学院,1988
    [85]蔡锁章,计算方法,北京,中国科学技术出版社,1987
    [86] S.Y.Lin,Coupled vibration and natural frequency analysis of isotropic cylinders or disks of finite dimensions,Journal of Sound and Vibration,1995,185(2):193-199
    [87] S.G.Amin,Computer-aided Design of Acoustic Horns for Ultrasonic Machining Using Finite-element Analysis,Journal of Materials Processing Technology,1995,55(3-4):254-260
    [88] T.Tsuchiya,Y.Kagawa,M.Doi,T.Tsuji,Finite element simulation of non-linear acoustic generation in a horn loudspeaker,Journal of sound and Vibration,2003,266(5):993-1008
    [89]曹源,韩晓林,黄跃平,基于时间平均成像的结构振动测量,振动、测试和诊断,2003,23(1):51-53
    [90] Zhu Xijing,Study on the Technology of New Ultrasonic Honing,Key Engineering Materials,2001,(202-203):407-410
    [91] Zhu Xijing,Research on the New Technology and system of Ultrasonic Honing,The 10th international Manufacturing Conference in China,Xiamen,China,October 2002
    [92] Komaraiah ,M.A study on the influence of workpiece properties in ultrasonic maching,Reddy,P.Narasimha, int J Mach Tools Manuf 1993,33(3):495~505
    [93] Seah,K.H.W,Design of tool holder for ultrasonic maching using FEM,process technology,1991,28(1-2):147-150
    [94]陈桂生,超声换能器设计,北京,海洋出版社,1984
    [95]林书玉,超声换能器的原理及设计,北京,科学出版社,2004
    [96]林中茂,超声变幅杆的原理和设计,北京,科学出版社,1987
    [97]张云电等,中间有圆柱孔的换能器和变幅杆,太原机械学院学报,1993,12(3):6-9
    [98]戴向国,傅水根,全永义,两面定位变幅杆的制造工艺与性能试验,新技术新工艺,2004,6:24-25
    [99]顾煜橦,杨昆,严宗讯,超声变幅器的机械阻抗分析,现代电力,1999,16(1):24-29
    [100] Gallego-Juarez J A,et al,An ultrasonic transducer for high power application in gasesUltrasonics,1988,6:267-271
    [101] H.H.Hansen,Optimal Design of An Ultrasonic Transducer,Structural Optimization,1997,14(2-3):150-157
    [102]祝锡晶,大功率超声换能器的研制,电加工与模具,2001,35(1):31-33
    [103]祝锡晶,新型功率超声换能器的设计研究,全国高等学校制造自动化研究会议论文集,北京,机械工业出版社,1999:384-387
    [104]祝锡晶,功率超声加工中新型换能器的研制,中国机械工程学会第三界全国青年学术会议论文集,北京,机械工业出版社,1998:823-825
    [105] Shaw M.C.,Ultrasonic grinding,Microtechnic,1956,10(6):257-265
    [106] Z.J.Pei,P.M.Ferreira,Rotary ultrasonic machining for face miling of ceramics,International Journal of Machine Tools & Manufacture,1995,35(7):1033-1046
    [107]刘志峰,清洁生产与切削液的环境适应性,机械制造,1997(3) :6-7
    [108] Specials,Man and environment friendly machining technology,Journal of JSAM, 1999,43(1):15-21 (in Japanese).
    [109] J. Wang, W. Scott, L.C. Zhang.,ABRASIVE TECHNOLOGY:Current Development and Applications I. Proceedings of the Third Int. Conf. on Abrasive Technology (ABTEC '99), Singapore: World Scientific Publishing Co. Pte. Ltd., Nov., 1999:556
    [110]时忠明,范训慧,汪通悦,切削液的使用和环境保护,机械制造与自动化,1999,17(6): 26-29
    [111]孙建国,刘镇昌,李久立,现代切削液的特点及发展趋势,工具技术,2000,34(4 ):11 -12
    [112]栾芝云,孙建国,刘镇昌,切削液技术发展新动向,机械工程师,2000,16(7) :5-7
    [113]高航,王继先,切削加工冷却方法的现状与发展,机械,2001,22(1) :1-3
    [114]丁有光,李克微,黄大祥,陈红琳,多用途环保型水基切削液的研制,机车车辆工艺, 1997,7(4) :9-11
    [115]葛泉江,孙民,环保型合成切削液的研制及其作用机理分析,化学工程师,2000,12(6):38-42
    [116]阳范文,刘勇平,刘远立,等,新型环保型水溶性磨削液的研制,表面技术,2001,7(5):55-56
    [117]陈战,王家序,秦大同,新型环保水基切削液的研制及应用,润滑与密封,2001,21(6):55-56
    [118]赵振保,切削液:功能、类型及发展方向,山西煤炭管理干部学院学报,2003,10(1) :83-84
    [119]裴宏杰,张春晔,王贵成,绿色机械加工中切削液优选的基本途径,组合机床与自动化加工技术,2003,42(7):32-35
    [120]孙建国,刘镇昌,李久立,液氮冷却在切磨削加工中的应用,机械工艺师,2001,25(2):35-36
    [121]孙建国,葛培琪,刘镇昌,绿色切削液研究开发的生命周期分析与评价,工具技术, 2000,34(12):13-14
    [122]孙建国,刘镇昌,论绿色切削液的必要性和可行性,润滑与密封,2001,21(2):68-74
    [123]孙建国,葛培琪,刘镇昌,基于生命周期分析的绿色切削液模糊综合评价,润滑与密封,2001,21(4):52-54.
    [124]刘志峰,干切削加工的原理、特点及应用,机械工程师,1997,13(2):44.
    [125]李志英,罗勇,张伯霖,等,干切削及其对刀具的要求,机械开发,2000,17(1):1-4
    [126]侯世香,刘献礼,文东辉,等,干式切削技术发展现状,机械工艺师,2000,24(7): 37-38
    [127]马祖军,代颖,干切削加工及其措施,制造技术与机床,2001,32(1) :41-43
    [128]张伯霖,夏红梅,黄晓明,干切削的关键技术,机电工程技术,2001,16(2):1-6.
    [129]张伯霖,夏红梅,黄晓明,新世纪的干切削技术,制造技术与机床,2001,32(10):5-7.
    [130]张书桥,干式切削加工技术及其应用,工具技术,2002,36(2):29-32.
    [131]邓定瀛,干式切削加工技术的现状与未来,机械设计与制造工程,2002,28(4):30-31.
    [132] M. Yokogawa, et al,Cooled air cutting and grinding technologies based on ISO14000, Mechanical Technology,1996(11) (in Japanese).
    [133] M. Yokogawa, et al,Study of Environmentally Conscious CBN Cooling-Air Grinding Technology,Int. J. of JSPE,1997,31(3):187-192
    [134] Specials,Environmentally benign cutting, grinding and lapping technologies,Journal of JSAM,2002,46(9):424-444 (in Japanese).
    [135]徐莹,曹华军,刘飞,面向绿色制造的工艺参数优化数学模型,工具技术,2001,35(4):14-16.
    [136]裴宏杰,王贵成,绿色机械加工的研究现状及其发展,机械设计与制造工程, 2001,27(5):1-2.
    [137]侯滨,陈波水,方建华,关于绿色切削液研究开发的几点思考,润滑与密封,2002,22(4):37-39.
    [138]贾晓鸣,王宝中,冯喜京,绿色切削加工技术分析,润滑与密封,2002,22(6):83-84.
    [139]谭显春,刘飞等,面向绿色制造的切削液综合选择模型及其应用实例,工具技术, 2002,36(9):10-14.
    [140]江志刚,张华,谭显春,等,切削液系统的绿色特性分析及优化策略,工具技术, 2003,37(5):23-27.
    [141] Specials,Research tendency of eco-machining,Journal of JSPE,2002,68(7):885-923 (in Japanese).
    [142] T. Nakamura, et al,Study of environmentally conscious machining fluids of minimum oils on water,Proceedings of JSPE 1999 Vernal Meeting,Tokyo,Japan,550 (in Japanese).
    [143] T. Nakamura, et al,Research on the new machining fluids of oils on water—the influences of the spraying conditions on end-milling,Proceedings of JSPE 2001 Vernal Meeting of the JSPE,Tokyo,Japan,218 (in Japanese).
    [144] T. Nakamura, et al,Research on the new machining fluids of oils on water,Proceedings of JSPE 2000 Autumnal Meeting,Nagoya,Japan, 194 (in Japanese).
    [145] T. Nakamura, et al,The spraying conditions and machining characteristics of the new machining fluids of oils on water,Proceedings of JSPE 2000 Vernal Meeting of the JSPE,Tokyo, 308 (in apanese).
    [146] T. Nakamura, et al,Grinding characteristics of the new machining fluids of oils on water under the emphases on eco-environment,Proceedings of JSPE 1999 Autumnal Meeting,Sentai, Japan,89 (in Japanese).
    [147] Y. Q. Wei, T. Nakamura, T. Matsubara, et al,Study on the new grinding fluids of oils on water,Journal of Donghua University (English Edition),2003,20(3):66-68
    [148] D.C. Chen, Y. Suzuki and K. Sakai,Study of turning using a combined mist supplying method,Journal of JSPE,2001,67(6):922-926 (in Japanese).
    [149] D.C. Chen, Y. Suzuki and K. Sakai,The effect of using small amount of lubricating oil and cold air cooling on the quality of machining surface of high-silicon aluminum alloy,The 5th ICPMT,Sept,2000:175-179.
    [150] D.C. Chen, Y. Suzuki and K. Sakai,A study of turning operation by oil-water combined mist lubrication machining method,The 5th ICPMT,Sept,2000:180-184.
    [151]陈德成,铃木康夫,酒井克彦,复合喷雾加工法在切削加工过程中的冷却和润滑效果,中国机械工程,2000,11(9):1035-1038
    [152]陈德成,铃木康夫,酒井克彦,微量润滑油润滑和冷风冷却加工法对高硅铝合金切削面的影响,机械工程学报,2000,36(11):70-74
    [153]陈德成,铃木康夫,酒井克彦,冷风切削加工对不锈钢加工表面的效果,机械工程学报,1999,35(4):93-95
    [154]史兴宽,脆性材料塑性磨削的研究,金刚石与磨料磨具工程,1997,18(s):92-98
    [155] S.Malkin and T.W.Hwang,Grinding Mechanisms for ceramics,Annals of the CIRP,1996,45(2):569-580
    [156] Komaraiah M.&Reddy P.N. , Relative performance of tool materials in ultrasonic machining,wear,1993,161(1-2):1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700