用户名: 密码: 验证码:
甘草活性成分的模拟移动床和二维液相色谱分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘草作为一种公认的天然药用植物,其使用历史久远,应用领域也十分广泛。迄今为止,已发现甘草中含有大量活性成分,主要为三萜类和黄酮类化合物。药理作用研究表明:这些活性成分具有抗HIV病毒、抗SARS病毒、抗肿瘤、抗氧化等多种重要的药理活性。
     长期以来,甘草活性成分的提取分离是分离科学领域的重要研究内容之一,但由于甘草化学成分复杂,且有些活性成分含量甚微,使用传统的吸附及提取工艺有效的纯化高纯度的活性成分一直面临着巨大的挑战。模拟移动床色谱和二维液相色谱作为天然活性成分分离中的新技术,发展潜力巨大。利用模拟移动床色谱可以实现样品的连续分离制备,二维液相色谱可以更有效的实现多组分的分离提纯。本文的研究内容主要是用模拟移动床色谱和二维液相色谱分离纯化甘草中的活性成分。
     为了得到适合模拟移动床色谱的进样原料,对甘草总黄酮原料进行了前处理并对前处理过程进行了优化,前处理包括萃取与制备单柱分离。通过正交设计实验得到了原料的最佳萃取条件。在非线性色谱理论分析及实验分析的基础上,给出了非线性条件下萃取物在单柱富集甘草苷的过程中进样浓度与进样体积的优化值。
     在非线性条件下,首次使用模拟移动床色谱分离了甘草中重要活性成分甘草苷,所用设备为实验室自行设计研制的三带模拟移动床。根据模拟移动床进样原料的具体情况,提出二组分近似的竞争Langmuir模型作为甘草苷及其难分离杂质的吸附等温线模型,通过逆法得到吸附等温线参数。在此基础上,利用三角形方法并结合实际情况确定了模拟移动床的操作参数。确定的模拟移动床操作参数分别为Ⅰ带流速2 mL/min,Ⅱ带流速2 mL/min,进样流速2 mL/h,切换时间为8 min。经模拟移动床色谱分离得到了纯度为85%的甘草苷纯化物,甘草苷回收率为90.4%。此纯化物经重结晶后处理,最终得到纯度超过97%的甘草苷产品。
     首次探讨了甘草苷的二维液相色谱分离方法。在分析规模条件下,研究了甘草提取物中甘草苷在不同二维液相色谱分离模式组合下的分离,本部分所讨论的二维色谱模式包括排阻色谱/反相色谱、正相色谱/反相色谱和反相色谱/反相色谱。在上述二维模式下,通过选择色谱条件及洗脱馏分的切割时间,得到了高纯度的甘草苷纯化物。在半制备规模条件下,使用自行构建的二维正相/反相液相色谱体系,分别实现了甘草苷的离线与在线分离,其中在线第二维中使用C18和NH2的混合固定相,具有富集甘草苷的作用。
     系统研究了甘草中多种活性成分的离线二维液相色谱分离。所分离的主要目标活性成分包括甘草三萜类中的甘草酸和18β-甘草次酸以及黄酮类中的甘草苷、异甘草素和甘草查尔酮乙。通过选择确定适合上述甘草活性成分分离的二维反相/反相体系为:第一维使用SB C18固定相,第二维使用CN固定相,两维均使用体积比为2:3、pH值为6的乙腈水溶液作流动相。在此基础上,考察了进样浓度、进样体积、温度和流速因素对甘草活性成分二维分离的影响,结果表明:在所选范围内,进样浓度、进样体积对甘草活性成分的二维分离影响不显著;温度对甘草活性成分的二维分离有明显的影响;降低流速有利于提高活性成分的纯度。
     本文的研究结果表明,用模拟移动床色谱和二维液相色谱分离甘草活性成分是可行且有效的。本文的结果及所用方法对其他天然活性成分的分离提纯具有借鉴作用。
Licorice,an important medicinal plant,has been used in many fields for many years.So far,it has been found that there are many active components in licorice. Most of these active components belong to triterpenoids and flavonoids.The researches on the pharmacological function of the active components show that they possess many important activities,such as anti-HIV,anti-SARS,anti-tumor,anti-oxidative activities,and so on.
     For a long time,the extraction and separation of active components from licorice are one of important issues in separation science.Because of the complexity of the chemical components of licorice and the lower content of some active components in licorice,the efficient purification of active components from licorice is very difficult using the traditional extraction and adsorption processes.However,simulated moving bed(SMB) chromatography and two-dimensional liquid chromatography(2D LC), which are two new techniques for separation of natural active components,present huge potentials.The continuous preparative separation can be accomplished by SMB, the separation and purification of multi-component can be achieved more effectively by 2D LC.In this work,the separation and purification of active components from licorice by SMB and 2D LC were studied mainly.
     To gain the sample suitable for feeding to SMB,the pretreatment processes, including extraction and separation by preparative column,were carried out to treat the total flavonoids of licorice and the pretreatment processes were optimized.The optimal conditions for extraction were obtained through orthogonal experiments. Considering the nonlinear chromatographic theory and the experimental analysis,the optimized values of injection concentration and injection volume for preparative chromatography was founded to enrich the content of liquiritin.
     Under nonlinear conditions,the separation of liquiritin was for the first time studied with the three zones SMB set up in our laboratory.Liquiritin is an important active component in licorice.According to the specific situation of the sample fed into SMB,competitive Langmuir model of two-component approximation was put forwarded to describe adsorption behaviors of liquiritin and its nearest neighbor,the isotherm parameters were determined by inverse method.Based on this,the operational parameters of SMB were determined by Triangle Method and they were listed as follows.The flow rate of zoneⅠwas 2 mL/min,the flow rate of zoneⅡwas 2 mL/min,the flow rate of feed was 2 mL/h,and switching time was 8 min.85%pure of liquiritin product was achieved by three zones SMB.The recovery of liquiritin was 90.4%.The extract from SMB was recrystallized and eventually over 97%pure of liquiritin product was obtained.
     The separation of liquiritin by 2D LC was firstly explored.In the condition of analytical scale,the purification of liquiritin from extract of licorice by 2D LC was studied under different 2D modes,including SEC×RP,NP×RP and RP×RP.For the 2D modes mentioned above,liquiritin with high purity were gained through the selection of chromatographic conditions and cut time of the fractions.In the condition of semi-preparative scale,the purifications of liquiritin by off-line and on-line NP-RP constructed by myself were performed respectively.The mixed materials of C18 and NH2 stationary phases were used in the second dimension for the on-line 2D separation,to enrich liquiritin in this dimension.
     In this work,the off-line 2D separation of the mixture of multiple active components was studied systematically.The target active components included glycyrrhizic acid,18β-glycyrrhetinic acid,liquiritin,isoliquiritigenin,and licochalcone B.And the former two of them belong to triterpenoids and the latter three of them to flavonoids.The selected 2D RP-RP system suitable for the separation of the mixture above was as follows.The SB C18 stationary phase was used in the first dimension,CN stationary phase was used in the second dimension,the mobile phase of acitonitrile-water(2:3,v/v) with pH 6 was used in both dimensions.The effects of the influencing factors on 2D separation,including injection concentration, injection volume,temperature and flow rate,were discussed.And the results showed that in the selected range the effects of injection concentration and injection volume on the 2D separation of active components were not remarkable,while the effect of temperature was distinct.The decreasing of flow rate facilitated the gain of active components with high purities.
     The results of this study show that it is feasible and efficient to separate the active components in licorice by SMB and 2D LC.The obtained results and the used methods could be referred for the separation of other natural active components.
引文
[1]严令辅.中药走向世界之思考.中医药管理杂志,2004,14(2):37-38.
    [2]陈尚铆,刘诚,范国荣,等.天然产物中活性成分提取分离及分析技术.江西林业科技,2005,(3):32-36.
    [3]曹振恒,王亚明,郭会仙.天然植物有效成分提取分离技术研究进展.河北化工,2007,30(3):7-11.
    [4]王秀兰,常瑜,常艳红.甘草酸提取工艺的研究.应用科技,2001,28(12):46-48.
    [5]范云鸽,史作清,何炳林.甘草酸、甘草次酸的提取分离及应用概况.天然产物研究与开发,1996,8(4):93-99.
    [6]杨晓辉.甘草废渣中的有机成分鉴定.甘肃环境研究与监测,1996,9(3):30-32.
    [7]徐仁生,叶阳,赵维民.天然产物化学.北京:科学出版社,2004年.
    [8]刘湘,汪秋安.天然产物化学.北京:化学工业出版社,2005.
    [9]丛景香,高丽娟,林炳昌.甘草黄酮类化合物研究进展.精细化工,2004,21(S):121-124.
    [10]汪秋安.天然黄酮类化合物的生理功能及其应用.香料香精化妆品,1999,3(1):28-33.
    [11]Wei L,Yoshihisa A,Takafumi Y.Flavonoid constituents from Glycyrrhiza glabra hairy root cultures.Phytochemistry,2000,(55):447-456.
    [12]刑国秀,李楠,王童,等.甘草中黄酮类化学成分的研究进展.中国中药杂志,2003,28(7):593-597.
    [13]曾路,张如意,王动,等.粗毛甘草化学成分研究.植物学报,1991,33(2):124-129.
    [14]张聿梅,许旭东.黄甘草异黄酮成分的研究.药学学报,1997,32(4):301-304.
    [15]杨岚,刘永隆,林寿全.六种甘草属植物根中黄酮类成分的高效液相色谱分析.药学学报,1990,25(11):840-848.
    [16]曾路,楼之岑,张如意.国产甘草的质量评价.药学学报,1991,26(10):788-793.
    [17]张海军,刘援,张如意.乌拉尔甘草中黄酮甙类成分的研究.药学学报,1994,29(6):471-474.
    [18]王彩兰,韩永生,张新迎,等.圆果甘草化学成分研究.河南师范大学学报(自然科学版),1994,22(3):48-50.
    [19]张继,姚健,丁兰,等.甘草的利用研究进展.草原与草坪,2000,(289):12-17.
    [20]Li W,Koike K,Asada Y,et al.Flavonoids from Glycyrrhiza pallidiflora hairy root cultures.Phytochemistry,2002,(60):351-355.
    [21]Hayashi H,Hiraoka N,Ikeshiro Y,et ai.Organ specific localization of flavonoids in Glyeyrrhiza glabra L.Plant Science,1996,(116):233-238.
    [22]Hideki N,Toshio M,Osamu Y,et al.A new anti-humanimmuno-deficieney virus substance,glycyrrhizin sulfate:endowment of glycyrrhizin with reverse transcriptase-inhibitory activity by chemicalmo dification.Jpn.J.Cancer Res.,1987,78(8):767-771.
    [23]Masahiko I,Akihiko S,Kazuhiro H,et al.Mechanism of inhibitory effect Of glycyrrhizin on replication of human immunodeficiency virus(HIV).Anti-viral Res.,1988,10(6):289-298.
    [24]Kazuhiro H,Susumu I,Hiroatsu M,et al.Antiviral activities of glycyrrhizin and its modified compounds against human immunodeficiency virus typel(HIV-1) and herpes simplex virus typel(HSV-1)in vitro.Chem.Pharm.Bull.,1991,39(1):112-115.
    [25]Pliasunova O A,Egoricheva I N,Fediuk N V,et al.The anti-HIV activity of betaglycyrrhizic acid.Vopr Virusol.,1992,37(5-6):235-238.
    [26]Chen F,Chan K H,Jiang Y,et al.In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds.J Clin Virol,2004,31(1):692-751.
    [27]Hoever G,Baltina L,Michaelis M,et al.Antivirai activity of glycyrrhizic acid derivatives against SARS-coronavirus.J Med Chem,2005,48(4):1256-1259.
    [28]Cinatl J,Morgenstern B,Bauer G,et al.Glycyrrhizin,an active component of liquorice roots,and replication of SARS -associated coronavirus.Lancet,2003,361(9374):2045-2046.
    [29]Curreli F,Friedman-Kien A E,Flore O.Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency,triggering p53-mediated apoptosis in transformed B iymphocytes.J Clin Invest,2005,115(3):642-652.
    [30]Cohen J I.Licking latency with licorice.J Clin Invest,2005,115(3):591-593.
    [31]Nose M,Ito M,Kamlmura K.A comparison of the antihepato toxic altivity between glycyrrhizin and glycyrrhetintic acid.et al.Planta Med,1994,60(2):136-140.
    [32]王银环,范钰,张尤历,等.18β-甘草次酸对人胃癌细胞BGC823增殖的抑制.江苏大学学报(医学版),2007,17:251-253.
    [33]黄炜,黄济群,张东方,等.18β-甘草次酸和甘草酸对人肝癌细胞增殖的抑制和诱导分化作用.中国中医药科技,2002,9(2):92-94.
    [34]Jeong H.G.,You H.J.,Park S.J.,et al.Hepatoprotective effects of 18β-glycyrrhetinic acid on carbon tetrachloride-induced liver injury:inhibition of cytochrome P450 2E1 expression.Pharmacological Research,2002,46:221-227.
    [35]Ram A,Mabalirajan U.,Das M,et al.Glycyrrhizin alleviates experimental allergic asthma in mice.International Immunopharmacology,2006,6(9):1468-1477.
    [36]Wu Y,Shen C,Yin J,et al.Azathioprine hepatotoxicity and the protective effect of liquorice and glycyrrhizic acid.Phytotherapy Research.2006,20(8):640-645.
    [37]Kanazawa M,Satomi Y,Mizutant Y,et al.Isoliquiritigenin Inhibits the Growth of Prostate Cancer.European Urology,2003,(43):580-586.
    [38]Tamir S,Eizenberg M,Somjen D,et al.Estrogenic and Antiprolifer ative Properties of Glabridin from Licorice in Human Breast Cancer Cells.Cancer Research,2000,60:5704-5709.
    [39]Jackson K M.,Deleon M.Dibenzoylmethane Induces Cell Cycle Deregulation in Human Prostate Cancer Cells.Cancer Letters,2002,178:161-165.
    [40]董菁,王秀梅.甘草叶中黄酮成分体外诱生细胞毒因子的实验研究.汕头大学医学院学报,1994,(002):9-11.
    [41]Waya Jacob,Belinky Paula A.Antioxidant Constituents from Licorice Roots:Isolation,Structure Elucidation and Antioxidative Capacity Toward LDL Oxidation.Free Racical Biology & Medicine,1997,23(2):302-313.
    [42]Belinky P A.,Aviram M,Mahmood S,et al.Structural aspects of the inhibitory effect of glabridin on LDL oxidation.Free Radical Biology & Medicine,1998,24(9):1419-1429.
    [43]Hatano T,Yasubara T,Miyamoto K,et al.Anti-human immunodeficiency virus phenolics from licorice.Chem.Pharm.Bull.,1988,36(6):2286-2288.
    [44]贾国惠,贾世山.甘草中黄酮的药理作用研究进展.中国药学杂志,1998,33(9):513-516.
    [45]胡小鹰,彭国平,陈汝炎.甘草总黄酮抗心律失常作用研究.中草药,1996,27(12):733-735.
    [46]胡小鹰,彭国平,陈汝炎.甘草拮抗附子心律失常毒性的机理研究.南京中医药大学学报,1996,12(5):23-24.
    [47]Fukai T,Marumo A,Kaitou K,et al.Anti-Helicobacter Pylori flavonoids from licorice extract.Life Sciences,2002,71:1449-1463.
    [48]杨玉梅,覃建民,徐继辉,等.甘草总黄酮对大鼠血栓形成和凝血时间的影响.包头医学院学报,2003,19(2):90-91.
    [49]王根生,韩哲武.甘草类黄酮对四氯化碳致小鼠急性肝损伤的影响.药学学报,1993,28(8):572-576.
    [50]Wang Y and Yang Y.Simultaneous quantification of flavonoids and triter- penoids in licorice using HPLC.J.Chromatogr.B,2007,850(1-2):392-399.
    [51]Andrisano V.,Bonazzi D.and Cavrini V.HPLC analysis of liquorice triterpenoidsapplications to the quality control of pharmaceuticals.Journal of Pharmaceutical and Biomedical Analysis,1995,13(4-5):597-605.
    [52]Fu B,Liu J,Li H,et al.The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid.J.Chromatogr.A,2005,1089(1-2):18-24.
    [53]高素莲,王雪梅.甘草中皂甙和黄酮类化合物的提取分离与测定.安徽大学学报(自然科学版),2000,24(12):70-74.
    [54]纳鹏君,张继。陈平,等.乌拉尔甘草叶中氨基酸的反相高效液相色谱快速测定.分析测试学报,2002,21(6):21-23.
    [55]Sabbioni C,Ferranti A,Bugamelli F,etal.Simultaneous HPLC analysis,with isocratic elution,of glycyrrhizin and glycyrrhetic acid in liquorice roots and confectionery products.Phytochemical Analysis.2006,17(1):25-31.
    [56]高蕾,杨光丽,陈俐娟.高速逆流色谱快速分离四种甘草黄酮及其结构鉴定.四川化工.2007,10(2):34-38.
    [57]王巧娥,王小如,曹建敏,等.高速逆流色谱法分离纯化甘草查尔酮甲和胀果香豆素甲.现代中药研究与实践,2004,18:53-56.
    [58]Xu J,Tanaka H and Shoyama Y.One-step immunochromatographic separation and ELISA quantification of glycyrrhizin from traditional Chinese medicines.Journal of Chromatography B,2007,850(1-2):53-58.
    [59]Bo T,Li K A,Liu H.Fast determination of flavonoids in Glycyrrhizae radix by capillary zone electrophoresis.Analytica Chimica Acta,2002,458(2):345-354.
    [60]Sabbioni C,Mandrioli R,Ferranti A,et al.Separation and analysis of glycyrrhizin,18β-glycyrrhetic acid and 18α-glycyrrhetic acid in liquorice roots by means of capillary zone electrophoresis.Journal of Chromatography A,2005,1081(1):65-71.
    [61]周蓉,齐莉,王雅芬,等.甘草多糖的分离纯化及高效毛细管电泳分析.分析化学,1999,27:245.
    [62]Guiochon G,Felinger A,Shirazi D G,et al.Fundamentals of Preparative and Nonlinear Chromatography.Boston:Academic Press,2006.
    [63]Toumi A.,Engell S.,Ludemann-Hombourger O.,et al.Optimization of simulated moving bed and Varicol processes.J.Chromatogr.A,2003,1006:15-31.
    [64]Zhang Z,Mazzotti M,Morbidelli M.PowerFeed operation of simulated moving bed units:changing flow-rates during the switching interval.J.Chromatogr.A,2003,1006:87-99
    [65]Schramm H,Kaspereit M,Kienle A,et al.Simulated moving bed process with cyclic modulation of the feed concentration.Journal of Chromatography A,2003,1006:77-86.
    [66]林炳昌.模拟移动床色谱技术.北京:化学工业出版社,2008.
    [67]Huthmann E.and Juza M.Less common applications of simulated moving bed chromatography in the pharmaceutical industry.Journal of Chromatography A,2005,1092:24-35.
    [68]Bechtold M,Makart S,Heinemann M,et al.Integrated operation of continuous chromatography and biotransformations for the generic high yield production of fine chemicals.Journal of Biotechnology,2006,124:146-162.
    [69]Blehaut J and Nicoud R M.Recent aspects in simulated moving bed.Analusis Magazine,1998,26(7):60-70.
    [70]Negawa M and Shoji F.Optical resolution by simulated moving-bed adsorption technology.Journal of Chromatography A,1992,590:113-117.
    [71]Wongso F,Hidajat K.and Ray A K.Improved performance for continuous separation of 1,1'-bi-2-naphthol racemate based on simulated moving bed technology.Separation and Purification Technology,2005,46:168-191.
    [72]Won J H,Cho Y S,Kim Y D,et al.Enantio-separation of R,S-ibuprofen using simulated moving bed(SMB) chromatography.Hwahak Konghak,2001,39:685-691.
    [73]Biressi G,Rajendran A,Mazzotti M,et al.The GC-SMB separation of the enantiomers of isoflurane.Sep.Sci.Technol.,2002,37:2529-2543.
    [74]Veredas V,Carpes M J S,Correia C R D,et al.Continuous chromatographic separation of a baclofen precursor(N-Boc-4-[p-chloro- phenyl]-2-pyrrolidone) in a simulated moving bed using a polysaccharide earbamate as chiral stationary phase.Journal of Chromatography A,2006,1119:156-162.
    [75]李勃,肖国勇,林炳昌,等.模拟移动床色谱分离紫杉醇.鞍山钢铁学院学报,2000,23(4):244-246.
    [76]高丽娟,刘望才,张伟,等.银杏内酯B的纯化.精细化工,2004,21(6):418-420.
    [77]张伟,林炳昌.人参皂甙Rb1的模拟移动床分离.精细化工,2007,24(6):554-558.
    [78]林炳昌,宋峰,高丽娟,等.抗菌素替考拉宁模拟移动床色谱分离的中试研究.化学世界,2003,10:524-528.
    [79]L(u|¨) Y,Wei F,Shen B,et al.Modeling,Simulation of a Simulated Moving Bed for Separation of Phosphatidylcholine from Soybean Phospholipids.Chin.J.Chem.Eng.2006,14(2):171-177.
    [80]Park B,Lee C,Mun S,et al.Novel application of simulated moving bed chromatography to protein refolding.Process Biochemistry,2006,41:1072-1082.
    [81]Giovanni O.Di,Mazzotti M.,Morbidelli M,et al.Supercritical fluid simulated moving bed chromatography:Ⅱ.Langmuir isotherm.J.Chromatogr.A,2001,919:1-12.
    [82]Stefanie A.,Mazzotti M.,Morbidelli M.Solvent gradient operation of simulated moving beds:I.Linear isotherms.J.Chromatogr.A,2002,944:23-39.
    [83]Ruthven D.M,Ching C.B.Counter-Current and Simulated.Counter-Current Adsorption Separation Processes.Chem.Eng.Sci.,1984,44:1011-1038.
    [84]Zhang Ziyang,Mazzotti Marco and Morbidelli Massimo.Multiobjective optimization of simulated moving bed and Varicol processes using a genetic algorithm.J.Chromatogr.A,2003,989:95-108.
    [85]Ma Z.and Wang N-H.L.Standing Wave Analysis of SMB Chromatography:Linear Systems,AIChE J.,1997,43(10):2488-2508.
    [86]Migliorini Cristiano,Mazzotti Marco,Morbidelli Massimo.Continuous chromatographic separation through simulated moving beds under linear and nonlinear conditions.Journal of chromatography A,1998,827:161-173.
    [87]Pais L.S.,Loureiro J.M.Separation of enantiomers of a chiral epoxide by simulated moving.Journal of Chromatography A,1998,827:215-233.
    [88]Gentilini A,Migliorini C,Mazzotti Marco,et al.Optimal operation of simulated moving bed units for non-linear chromatographic separations: II. Bi-Langmuir isotherm. Journal of Chromatogr. A. 1998,805:37-44.
    [89] Giddings J C. Two dimensional separations: concept and promise. Anal Chem, 1984, 56: 1258-1270A.
    [90] Mondello L, Casilli A, Tranchida P Q, et al. Fast enantiomeric analysis of a complex essential oil with an innovative multidimensional gas chromatographic system. Journal of Chromatography A, 2006,1105(1-2): 11-16.
    [91] Begnaud F and Chaintreau A. Multidimensional gas chromatography using a double cool-strand interface. Journal of Chromatography A, 2005, 1071(1-2): 13-20.
    [92] Cass Q B , Degani A. L. G., Cassiano N. M., et al. Enantiomeric determination of pantoprazole in human plasma by multidimensional high performance liquid chromatography. Journal of Chromatography B, 2001, 766: 153-160.
    [93] Wagner K, Miliotis T, Marko-Varga G, et al. An automated on-line multidimensional HPLC system for protein and peptide mapping with integrate sample preparation. Anal. Chem., 2002,74: 809-820.
    [94] Popovici S T., Horst A , Schoenmakers Peter J. Two-dimensional chromatography as a tool for studying band broadening in size-exclusion chromatography. J. Sep. Sci. 2005, 28: 1457-1466.
    [95] Aturki Z, Brandi V, and Sinibaldi M. Separation of Flavanone-7-o- glycoside Diastereomers and Analysis in Citrus Juices by Multidimensional Liquid Chromatography Coupled with Mass Spectrometry. JAgric. Food Chem.2004,52: 5303-5308.
    [96] Ma Sai, Chen Lingxin, Luo Guoan, et al. Off-line comprehensive two-dimensional high performance liquid chromatography system with size exclusion column and reverse phase column for separation of complex traditional Chinese medicine Qingkailing injection. Journal of Chromatography A, 2006,1127:207-213.
    [97] Dugo Paola, Favoino Olinda, Luppino Rosario, et al. Comprehensive Two-Dimensional Normal-Phase (Adsorption)-Reversed-Phase Liquid Chromatography. Anal. Chem. 2004, 76: 2525-2530.
    [98] Charlwood Joanne, Birrell Helen, Tolson David, et al. Two-Dimensional Chromatography in the Analysis of Complex Glycans from Transferrin Anal. Chem. 1998, 70:2530-2535.
    [99] Venkatramani Cadapakam J., Zelechonok Yury. Two-dimensional liquid chromatography with mixed mode stationary phases. Journal of Chromatography A, 2005, 1066:47-53.
    [100] Apffel Alex, Chakel John A., Hancock William S, et al. Application of multidimensional affinity high-performance liquid chromatography and electrospray ionization liquid chromatography-mass Spectrometry to the characterization of glycosylation in single-chain plasminogen activator Initial results. Jourmal of Chromatography A, 1996, 750:35-42.
    [101] Andersson Terhi, Hyotylainen Tuulia, Riekkola Marja-Liisa. Analysis of phenols in pyrolysis oils by gel permeation chromatography and multidimensional liquid chromatography. Journal of Chromatography A, 2000, 896: 343-349.
    [102] Adrian J., Esser E., Hellmann G., et al. Two-dimensional chromatography of complex polymers Part 1. Analysis of a graft copolymer by two-dimensional chromatography with on-line FTIR detection. Polymer, 2000, 41: 2439-2449.
    [103]Jandera P.Column selectivity for two-dimensional liquid Chromatography.J.Sep.Sci.2006,29:1763-1783.
    [104]Lowe E A.,Lu M,Andy W,et al.Stationary phase-based two-dimensional chromatography combining both covalent and noncovalent interactions on a single HPLC column.J.Sep.Sci.2006,29:959-965.
    [105]Rogatsky E,Stein D T.Two-dimensional reverse phase-reverse phase chromatography:A simple and robust platform for sensitive quantitative analysis of peptides by LC/MS.Hardware design.J.Sep.Sci.2006,29:539-546.
    [106]张玉奎,张维冰,张丽华.多维立体分离分析技术面临的挑战性问题及对应策略.色谱,2003,21(4):299-302.
    [107]刘照胜,李永民,蒋生祥,等.多维高效液相色谱分离模式组合.色谱,1997,15(06):490-493.
    [108]Hu L.,Chen X.,Kong L.,et al.Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights.J.Chromatogr.A,2005,1092(2):191-198.
    [109]Chen X,Kong L,Su X,et al.Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry.J.Chromatogr.A,2004,1040(2):169-178.
    [110]Hsieh Y.L.F.,Wang H.,Elicone C.,et al.Automated Analytical System for the Examination of Protein Primary Structure.Anal.Chem.,1996,68(3):455-462.
    [1]冯年平,范广平,韩朝阳.中药提取技术研究进展.中国中医药信息杂志,2000,7(10):15-16.
    [2]郭春晓,王世宽.高新技术在天然产物有效成分分离中的应用.化学与生物工程,2006,23(5):38-40.
    [3]丛景香,林炳昌.甘草苷的分离纯化及鉴定.精细化工,2005,22(12):912-915.
    [4]林炳昌.色谱模型理论导引.北京:科学出版社,2004.
    [1]Lehoucq S,Verheve D.SMB enantioseparation:process development,modeling and operating conditions.The American Institute of Chemical Engineers Journal,2000,46:247-256.
    [2]Francotte E.,Richer P.,Mazzotti M.,et al.Simulated moving bed chromatographic resolution ofa chiral antitussive.Journal of Chromatography A,1998,796:239-248.
    [3]Huthmann E,Juza M.Less common applications of simulated moving bed chromatography in the pharmaceutical industry. J Chromatogr. A, 2005,1092(1): 24-35.
    [4] Wu C H, Kuo CY, Lo S L, et al. Modeiling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm. Chemosphere, 2002,47(3): 283-292.
    [5] Szepesy L., Sebesty'en Zs., Feh'er I., et al. Continuous Liquid Chromatography. Journal of Chromatogr. 1975,108:285-297.
    
    [6] Seidel-Morgenstern Andreas. Experimental determination of single solute and competitive adsorption isotherms. Journal of chromatography A,2004,1037(1-2): 255-272.
    [7] Felinger A, Zhou D M, Guiochon G Determination of single component and competitive adsorption isotherms of the 1-indanol enantiomers by the inverse method. J. Chromatogr A., 2003, 1005(1): 35-49.
    [8] Arnell Robert, Forssen Patrik and Fornstedt Torgny. Accurate and rapid estimation of adsorption isotherms in liquid chromatography using the inverse method on plateaus. Journal of chromatography A, 2005,1099(1 -2): 167-174.
    [9] Zhang Yan, Rohani Sohrab and Ajay K. Ray.Numerical determination of competitive adsorption isotherm of mandelic acid enantiomers on cellulose-based chiral stationary phase. Journal of chromatography A, 2008,1202(1):34-39A.
    [10] Lin B. and Guiochon G Numerical Simulations of Chromatographic Band Profiles at Large Concentrations: Length of Space Increment and Height Equivalent to a Theoretical Plate. Separation Science and Technology, 1989,24: 31-40.
    [11] Guiochon G., Lin B. Modeling for Preparative Chromatography. Boston: Academic Press, 2003.
    [12] Cristiano M, Mazzotti M, Morbidelli M. Continuous chromatographic separation through simulated moving beds under linear and nonlinear conditions. J Chromatogr A, 1998, 827: 161-173.
    [13] Abel S, Erdem G, Mazzotti M, et al. Optimizing control of simulated moving beds-linear isotherm. J Chromatogr A, 2004, 1033 (2): 229-239.
    [14] Pais L.S., Loureiro J.M. Separation of enantiomers of a chiral epoxide by simulated moving. Journal of Chromatography A.1998, 827:215-233.
    [15] Rauchensteiner F, Matsumura Y, Yamamoto Y, et al. Analysis and comparison of Radix Glycyrrhizae (licorice) from Europe and China by capillary-zone electrophoresis (CZE). J Pharm. Biomed Anal, 2005,38 (4): 594-600.
    [16] Liu B C, Fang J N. Isolation, purification and chemical structure of a glucan from Glycyrrhiza uralensis Fisch. Acta pharmaceutica sinica, 1991, 26 (9): 672-675.
    [17] Lorenz H., Perlberg A., Sapoundjiev D., et al. Crystallization of enantiomers. Chem. Eng. Process, 2006,45: 863-873.
    
    [18] Worlitschek J., Mazzotti M. Model-based optimization of particle size distribution in batch- cooling crystallization of paracetamol. Cryst. Growth Des, 2004,4: 891-903.
    
    [19] 高素莲,王雪梅. 甘草中皂甙和黄酮类化合物的提取分离与测定. 安徽大学学报(自然科学版), 2000, 24(12): 70-74.
    [1]Ma S,Chen L,Luo G,et al.Off-line comprehensive two-dimensional high-performance liquid chromatography system with size exclusion column and reverse phase column for separation of complex traditional Chinese medicine Qingkailing injection.J.Chromatogr.A,2006,1127:207-213.
    [2]Opiteck G J,Jorgenson J W.Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis ofpeptides.Anal.Chem.1997,69:2283-2291.
    [3]Peng J,Elias J E,Gygi S P,et al.Evaluation of multidimensional chromatography coupled with tandem mass spectrometry(LC/LC-MS/MS) for large scale protein analysis:the yeast proteome.Journal of proteome research.2005,4:2283-2293.
    [4]Charlwood J,Birrell H,Camilleri P,et al.Two-Dimensional Chromatography in the Analysis of Complex Glycans from Transferrin.Anal.Chem.1998,70:2530-2535.
    [5]Apffel A,Chakel J A,Hancock W S,et al.Application of multidimensional affinity high-performance liquid chromatography and electrospray ionization liquid chromatographymass spectrometry to the characterization of glycosylation in single-chain plasminogen activator Initial results.J.Chromatogr.A,1996,750:35-42.
    [6]Dugo P,Favoino O,Mondello L,et al.Comprehensive Two-Dimensional Normal-Phase (Adsorption)-Reversed-Phase Liquid Chromatography.Anal.Chem.2004,76:2525-2530.
    [7]Murphy R E,Schure M R,Foley J P.One-and two-dimensional chromatographic analysis of alcohol ethoxylates.Anal.Chem.,1998,70:4353-4360.
    [8]Aturki Z,Brandi V,Sinibaldi M.Separation of Flavanone-7-o-glycoside Diastereomers and Analysis in Citrus Juices by Multidimensional Liquid Chromatography Coupled with Mass Spectrometry.J Agric.Food Chem.,2004,52:5303-5308.
    [9]Cass Q B,Degani A L G,Cassiano N M,et al.Enantiomeric determination of pantoprazole in human plasma by multidimensional high-performance liquid chromatography.Journal of Chromatography B,2001,766:153-160.
    [10]Popovici S T,Horst A,Schoenmakers P J.Two-dimensional chromatography as a tool for studying band broadening in size-exclusion chromatography.J.Sep.Sci.2005,28:1457-1466.
    [11]Biela T,Duda A,Penczek S,et al.Well-Defined Star Polylactides and Their Behavior in Two-Dimensional Chromatography.Journal of Polymer Science,2002,40:2884-2887.
    [12]卢佩章,戴朝政编著.色谱理论基础.北京:科学出版社,1989.
    [13]史景江,马熙中主编.色谱分析法.重庆:重庆大学出版社,1999.
    [14]Bovanova L.,Brandsteterova E.Direct analysis of food samples by high-performance liquid chromatography.Journal of chromatography,2000,880:149-168.
    [15]Nishino I.,Fujitomo H.,Umeda T.Determination of a new oral cephalosporin,cefmatilen hydrochloride hydrate,and its seven metabolites in human and animal plasma and urine by coupled systems of ion-exchange and reversed-phase high-performance liquid chromatogramphy.Journal of Chromatography B,2000,749:101-110.
    [1]Wooley R.,Ma Z.and Wang N.-H.L.A Nine-Zone Simulating Moving Bed for the Recovery of Glucose and Xylose from Biomass Hydrolyzate.Ind.Eng.Chem.Res.1998,37(9):3699-3709.
    [2]Whelan T J,Gray M J,Sloneeker P J,et al.Study of the selectivity of reversed-phase columns for the separation of polycarboxylie acids and polyphenol compounds.J.Chromatogr.A,2005,1097(1-2):148-156.
    [3]Blahova E,Jandera P,Cacciola F,et al.Two-dimensional and serial column reversed-phase separation of phenolic antioxidants on octadecyl-,polyethyleneglycol-,and pentafluoro-phenylpropyl-silica columns.J.Sep.Sci.,2006,29:555-566.
    [4]Jandera P,Skeifikova V,Rehova L,et al.RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plantextracts using a CoulArray detector.J.Sep.Sci.,2005,28(9-10):1005-1022.
    [5]McCalley D V.Analysis of the Cinchona alkaloids by high-performance liquid chromatography and other separation techniques.J Chromatography A,2002,967:1-19.
    [6]MeCalley D V.Evaluation of reversed-phase columns for the analysis of very basic compounds by high-performance liquid chromatography:Application to the determination of the tobacco alkaloids.J.Chromatogr.A.1993,636:213-220.
    [7]Gilar M,Olivova P,Daly A E,et al.Orthogonality of separation in two-dimensional liquid chromatography.Anal.Chem.,2005,77:6426-6434.
    [8]林炳昌.模拟移动床色谱技术.北京:化学工业出版社,2008.
    [9]Greibrokk T,Andersen T.High-temperature liquid chromatography.J.Chromatogr.A,2003,1000:743-755.
    [10]Dolan J W.Temperature selectivity in reversed-phase high performance liquid chromatography.J.Chromatogr.A,2002,965(1-2):195-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700