用户名: 密码: 验证码:
机组组合理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济发展和企业的变革,电力系统规模和经营机制日益迅猛发展和变化,发电与用电的地域和时域差异、负荷峰谷差、不确定性及市场竞争的程度等都在加大,电力系统运行调度决策越来越复杂。在这一背景下,电力系统运行调度理论面临挑战、完善和适应,有针对性的对其深入研究具有重要的理论意义和实际价值。本文以数学优化理论为基础,以实际电力工业发展为背景,以机组启停、优化调度等电力系统运行调度理论的核心问题为线索,开展了细致而深入的研究与实践工作,该工作也是国家自然科学基金项目“电力系统运行调度中刚性优化与柔性决策理论研究”中的重要内容,本论文是这一研究、实践工作的总结。论文分为8章,第1章是绪论,第2章至第7章是在前人研究、实践基础上的主要工作,第8章是结论与展望。本论文的研究工作和创新性成果主要体现在如下方面:
     1.对机组组合与经济调度中拉格朗日乘子的差异及作用机理进行了研究与分析,在逆序排序的机组组合(Unit Decommitment)方法中提出一种新的拉格朗日乘子的修正方法,免去了繁复的经济调度计算,并对机组的搜索范围及机组运行的经济指标进行了相应的改进,在保证原有算法解的经济性的同时,使计算速度得到显著提高。
     2.机组投运风险水平与机组强迫停运容量呈离散型的分布关系,因而难以与机组组合的拉格朗日松弛法等有机结合。就这一问题,对系统投运风险曲线的两种拟合形式,即高斯函数和指数函数,进行了分析和研究,发现前者精度较后者明显提高。在此基础上,将投运风险度约束以解析表达的方式引入拉格朗日松弛法中,有机一体的完成了机组组合概率备用约束的优化处理,对大规模电力系统有良好的实用前景。
     3.将计及安全约束机组组合问题分解为两个子优化问题,建立了两个子优化问题间衔接与协调的约束表达,由此提出了两个子优化问题间交替求解的算法。两个子优化问题分别为无安全约束的机组组合问题和计及安全约束的优化潮流问题,通过在后者中引入虚拟变量来反映机组组合对电网输电元件安全的牵制及影响,并借用虚拟变量和发电转移因子,构建前者与后者间关联的补充约束条件,从而形成前者随后者变化的影响机制及优化方向的修正手段。算法充分兼容现有成型方法,符合电力系统实际,对解决安全约束对机组组合的制约,以及对机组组合方案评价,有良好的适应性。
     4.在对传统计及有功安全约束机组组合问题研究的基础上,进一步引入了电压无功约束,构建了较全面的机组组合优化模型,对该模型依据Benders分解原理,将其分解为主从两层及层间联系的表达,由此提出相应的主从决策迭代算法。其中,主决策是以直流潮流模型为基础的安全约束机组组合,从决策为给定有功模式下的系列无功优化,通过从决策引导的Benders割形成了主从关联的附加约束。在本文算法机制下,可充分兼容各种优秀的成型方法,形成了从无网络制约的机组组合,到仅考虑有功安全约束的机组组合,再到考虑电压无功制约的机组组合的灵活决策机制,符合大规模电网实际。
     5.针对考虑机组输出功率速率约束的安全经济调度问题,建立了Dantzig-Wolfe分解的主从优化问题及其迭代机制来求解。主问题是仅计及时间关联约束的优化问题,从问题是按研究期间所划分时段数构成的若干静态子优化问题。主问题在由从问题确定的解空间内寻优;从问题依据主问题解所对应的拉格朗日乘子来修正其目标,以间接松弛时间关联约束。在给出主从问题交替求解的收敛条件及其论证的基础上,提出了详细的计算方法和特殊问题的处理手段。此方法能有效解决带有时间关联约束的一类安全经济调度问题,具有对大规模系统实际应用的前景。
     6.在电力系统一定运行模式(有功、无功给定)下,通过潮流方程雅可比矩阵的特征结构规律分析,发现雅可比矩阵最小特征值对应的特征向量与无功分布有密切关系,进而可以作为电压支撑薄弱环节发现、二次电压控制及其中区域划分的依据,同时也可用以检验机组组合及机组有功功率分布是否合理。
With the development of the national economy and the reform of enterprises, the scale and the operation mechanism of power systems are rapid developing every day. The degrees of areal and time difference between energy generation and consumption, the uncertainty and the difference between peak and valley load, the electricity market competition are all increasing which make the operation dispatch decision-makings ever more complicated. Against this background, the theory of power system operation and dispatch is facing challenge and must be improved to accommodate the situation. So it is of important theoretical and practical significance to make an in-depth study on the theory. The thesis, based on mathematical optimization theories and guided by power system operation and dispatch theory, performs meticulous and thorough work of research and practice. At the same time, the work summarized by the thesis is also the important content of the project entitled 'Rigid Optimization and Flexible Decision-making in Electrical Power System' and supported by National Natural Science Foundation of China. There are 8 chapters in the thesis. The first chapter is the introduction. Chapter 2 to chapter 7 are the main works based on the accumulated research and practice. Chapter 8 is the conclusion and future works. The main works and innovative achievements of the thesis are as follows:
     1. On the basis of expounding the difference between Largrangian multipliers in ED and the ones in UC and their mechanisms of action, a new method of modifying Largrangian multipliers in unit decommitment (UD) method is proposed to reduce the burden of numerous economic dispatch computations. The proposed method not only reduces the search range but also improves economical indices of units correspondingly. Thus the accuracy and calculation speed of the original method are evidently enhanced.
     2. The relation between unit commitment risk and unit forced outage capacity is discrete, which leads to a difficult combination with the Lagrangian relaxation method of unit commitment. Two kinds of curve fitting of the unit commitment risk are analyzed. They are the Gauss function fitting and exponential function fitting. The research shows that the results of Gauss function fitting are more accurate than those of the exponential function fitting. By incorporating the analytic expressed unit commitment risk constraints into the Lagrangian relaxation method of unit commitment, the probability reserve constrained unit commitment problem can be truly achieved and optimized.
     3. The security-constrained unit commitment problem is decomposed into two subproblems. The constraint expression of connection and coordination between them is built, by which an alternative algorithm is proposed. The two subproblems are the unit commitment problem without security constraints and the optimal power flow problem considering security constraints. Virtual variables are introduced into the latter to reflect the restriction and influence of the unit commitment to transmission elements. Hence complementary constraint conditions correlating the two subproblems are set up by the use of the virtual variables and generation shift factors. They form the influence mechanism that the former subproblem varies according to the latter one and the means to modify the optimizing direction. The proposed algorithm is sufficiently compatible to the present method but also conforms to the reality of the power system. Thus it is quite adaptive to solve the security restraint phenomenon of the unit commitment and to evaluate the results of unit commitment problems.
     4. Based on the traditional research on the unit commitment considering active power security constraints, the voltage and reactive power constraints are further introduced to build a relatively comprehensive model. Using Benders decomposition, the optimization problem is decomposed into a master problem and a subproblem and the corresponding iterative process is also proposed. The master problem solves unit commitment considering security constraints based on the DC power flow model, the subproblem is composed of a series of reactive power optimization problems. Benders cuts guided by the subproblem form the additional constraints correlating the master problem and the subproblem. With the proposed optimization mechanism, all kinds of present methods are applicable, and a flexible decision-making mechanism, from unit commitment without network constraints to one with active power security constraints and finally to one with voltage and reactive power constraints is set up. It is applicable to the large scale power system in practice as well.
     5. For the security economic dispatch problems considering generator ramp rate limits, a master-slave optimization model and iterative solving mechanism based on Dantzig-Wolfe decomposition are proposed. In the master problem, only time correlation constraints are considered with the solution areas determined by slave problems. Depending on the study periods, the slave problems are made up of some static optimization sub-problems. In order to decouple the time correlation constraints indirectly, the slave problems objective functions are modified with the Lagrangian multipliers corresponding to the optimal solution of the master problem. Based on the convergence conditions and examples of the iterative solutions, the detailed algorithm and special problem solutions are proposed. The proposed method can solve the kind of security economic dispatch problems considering time correlation constraints effectively and also has the prospect of large scale application in practice.
     6. Under the condition that the operation pattern of the power system is given (active power and reactive power are given), analyzing Jacobian matrix eigenstructure variation mode of the power flow finds that the eigenvector determined by the minimum eigenvalue is closely related to reactive power distribution. This is the basis of searching weak links of voltage support, network partition in secondary voltage control and also can be used to test whether the unit commitment result and the active power distribution are reasonable.
引文
[1]Wood A J,Wollenberg B F.Power Generation,Operation and Control.John Wiley,New York,1984.
    [2]李文沅.电力系统安全经济运行-模型与方法.重庆大学出版社,重庆,1989,3.
    [3]陆延昌,姜绍俊.21世纪初期中国电力工业展望,中国电力,2000,33(7):1-8.
    [4]朱道立.大系统优化理论和应用.上海交通大学出版社,上海,1987.
    [5]Shahidehpour S M,Yamin H,Li Z Y.Market Operations in Electrical Power System-Forecasting,Scheduling,and Risk Management.John Wiley&Sons,New York,2002.
    [6]尚金成,张立庆.电力节能减排与资源优化配置技术的研究与应用.电网技术,2007,31(22):58-63.
    [7]刘振亚.特高压电网.中国经济出版社,北京,2005.
    [8]梁才浩,段献忠.分布式发电及其对电力系统的影响.电力系统自动化,2001,25(12):53-56.
    [9]Senjyu T,Shimabukuro K,Uezato K,et al.A fast technique for unit commitment problem by extended priority list.IEEE Trans on Power Systems,2003,18(2):882-888.
    [10]Lee F N The application of commitment utilization factor(CUF) to the thermal unit commitment.IEEE Trans on Power Systems,1991,6(2):691-698.
    [11]何坚勇,运筹学基础.清华大学出版社,北京,2000.
    [12]Pang C K,Chen M C.Optimal short-term thermal unit commitment.IEEE Trans on Power Apparatus and Systems,1976,PAS-95(4):1336-1346.
    [13]Pan C K,Sheble G B,Albuyeh F.Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitment.IEEE Trans on Power Apparatus and Systems, 1981, PAS-100(3): 1212-1218.
    [14] Van den Bosh PPJ, Honderd G. A solution of the unit commitment problem via decomposition and dynamic programming. IEEE Trans on Power Apparatus and Systems, 1985, PAS-104(7): 1684-1690.
    [15] Nieva R, Inda A, Guillen I. Lagrangian reduction of search-range for large-scale unit commitment. IEEE Trans on Power Systems, 1987, 2(2):465-473.
    [16] Hsu Y Y, Su C C, Liang C C, et al. Dynamic security constrained multi-area unit commitment. IEEE Trans on Power Systems, 1991, 6(3): 1049-1055.
    [17] Su C C, Hsu Y Y. Fuzzy dynamic programming: an application to unit commitment. IEEE Trans on Power Systems, 1991, 6(3): 1231-1237.
    [18] Dillon T S, Edwin K, Kochs H D, et al, Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Trans on Power Apparatus and Systems, 1978,PAS-97(6): 2154-2166.
    [19] Lauer G S, Sandell Jr N R, Bertsekas N R, et al. Solution of large scale optimal unit commitment problems. IEEE Trans on power apparatus, 1982,PAS-101(1): 79-96.
    [20] Cohen A I, Yoshimura M. A branch and bound algorithm for unit commitment. IEEE Trans on Power Apparatus and Systems, 1983, PAS-102(2):444-451.
    [21] Muckstadt A, Koening S A. An application of lagrangian relaxation to scheduling in power generation system. Operation Research, 1977, 25(3):387-430.
    [22] Bertsekas D P, Lauer G S, Sandell Jr N R, et al, Optimal short-term scheduling of large scale power systems. IEEE Trans on Automatic Control,1983, 28(1): 1-11.
    [23] Merlin A, Sandrin P. A new method for unit commitment at electricite de France. IEEE Trans on Power Systems, 1983, PAS-102(5): 1218-1225.
    [24] Held M , Wolfe P , Corwder H P . Validation of subgradient Optimization. Mathematical Programming, 1974: 62-88.
    [25] Guan X, Luh P B, YanH, et al. A short-term scheduling of thermal power systems. IEEE Power Industry Computer Application Conference, May 7-10,1992, Baltimore, MD, USA: 120-126.
    [26] Cohen A I, Wan S H. A method for solving the fuel constrained unit commitment problem. IEEE Trans on Power Systems, 1987, 2(3): 608-614.
    [27] Aoki K, Satoh T, Itoh M, et al. Unit commitment in a large-scale power system including fuel constrained thermal and pumped-storage hydro. IEEE Trans on Power Systems, 1987, 2(4): 1077-1084.
    [28] Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation. IEEE Trans on Power Systems, 2004, 19(1): 620-628.
    [29] Ferreira L A F M. On the duality gap for thermal unit commitment problems . IEEE International System Symposium on Circuits and Systems. Vol 4, May 3-6, 1993, Chicago, IL, USA: 2204-2207.
    [30] Virmani S, Adrian E C, Imhof K, et al. Implementation of a lagrangian relaxation based unit commitment problem. IEEE Transactions on Power Systems, 1989, 4(4): 1373-1380.
    [31] Aoki K, Itoh M, SatonT, et al. Optimal long-term unit commitment in large scale systems including fuel constrained thermal and pumped-storage hydro. IEEE Trans on Power Systems, 1989, 4(3): 1065-1073.
    [32] Yan H, Luh P B, Guan X. Scheduling of hydrothermal power systems. IEEE Trans on Power Systems, 1993, 8(3): 1358-1365.
    [33] Lee F N, Short-term unit commitment-a new method. IEEE Trans on Power Systems, 1988, 3(2): 691-698.
    [34] Fan J Y, Zhang L, McDonald J D. Enhanced techniques on sequential unit commitment with interchanges transactions . IEEE Trans on Power Systems. 1996, 11(1): 93-100.
    [35] Lee F N, Feng Q. Multi-area unit commitment. IEEE Trans on Power Systems,1992,7(2):591-599.
    [36]Lee F N,Huang J,Adapa R.Multi-area unit commitment via sequential method and a dc power flow network model.IEEE Trans on Power Systems,1994,9(1):279-287.
    [37]Li C A,Johnson R B,Svobada A J.A new unit commitment method,IEEE Trans on Power Systems,1997,12(1):113-119.
    [38]Hu F X,Yan Z,Ni Y,et al.Unit commitment based on modified unit decommitment method.IEEE Power Engineering Society General Meeting,Vol 1,Jun 10,2004,Denver,CO,USA:1150-1154.
    [39]Li C A,Johnson R B,Svoboda A J,et al.A robust unit commitment algorithm for hydro-thermal optimization.IEEE Trans on Power Systems,1998,13(3):1051-1056.
    [40]Zhuang F,Galiana F D.Unit commitment by simulated annealing.IEEE Trans on Power Systems,1990,5(1):311-318.
    [41]周家启,石立宝,郝晋.一种求解最优机组组合问题的随机扰动蚁群优化算法.电力系统自动化,2002,2 6(23):1-6.
    [42]吴金华,吴耀武,熊信艮.机组组合问题的扩展Hopfield神经网络算法.电力系统自动化,2003,27(7):41-44.
    [43]蔡兴国,初壮.用遗传算法解算机组组合的研究.电网技术,2003,27(7):36-39.
    [44]钟德惠,熊信艮,吴耀武,等.机组优化组合问题的随机tabu搜索算法.电网技术,2003,27(10):35-38.
    [45]杨俊杰,周建中,喻普,刘芳.一种求解大规模机组组合问题的混合智能遗传算法.电网技术,2004,28(19):47-50.
    [46]王品,余贻鑫,张弘鹏.社会演化算法在机组组合中的应用.中国电机工程学报,2004,24(4):12-17.
    [47]胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法.中国电机工程学报,2004,24(4):24-28.
    [48]Ouyang Z,Shahidehpour S M.A hybrid artificial neural network-dynamic programming approach to unit commitment.IEEE Trans on Power Systems,1992,7(1):236-242.
    [49]陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法.中国电机工程学报,1999,19(12):9-13.
    [50]Allan R N,Billinton R,Breipohl A M.Bibliography on the application of probability methods in power system reliability evaluation.IEEE Trans on Power Systems,1999,14(1):51-57.
    [51]Bilinton R,Chowdhury N A.Operating reserve assessment in interconnected generating systems.IEEE Trans on Power Systems,1988,4(3):1479-1487.
    [52]Chowdhury N,Bilinton R.Unit commitment in interconnected generating systems using a probabilistic technique.IEEE Trans on Power Systems,1990,5(4):1231-1238.
    [53]Lee F N,Chen Q,Breipohl A.Unit commitment risk with sequential rescheduling.IEEETrans onPower Systems,1991,6(3):1017-1023.
    [54]Chowdhury N,Bilinton R.Export/Import of spinning reserve in interconnected generation systems.IEEE Trans on Power Systems.1991,6(1):43-50.
    [55]Bilinton R,Li W.A monte carlo method for multi-area generation system reliability assessment.IEEE Trans on Power Systems,1992,7(4):1487-1492.
    [56]Tong S K,Shahidepour S M.Hydrothermal unit commitment with probabilistic constraints using segmentation method.IEEE Trans on Power Systems,1990,5(1):276-282.
    [57]Gooi H B,Mendes D P,Bell K R W,et al.Optimal scheduling of spinning reserve.IEEE Trans on Power Systems,1999,14(4):1485-1490.
    [58]Wu Hui,Gooi H B.Optimal scheduling of spinning reserve with Ramp Constraints.IEEE Power Engineering Society Winter Meeting,Vol 2,31 Jan 31-Feb 4,1999:785-790.
    [59]Chattopadhyay D,Baldick R.Unit Commitment With Probabilistic Reserve.IEEE Power Engineering Society Winter Meeting,Vol 1,Jan 27-31, 2002:280-285.
    [60]Ruzic S,Rajakovic N.A new approach for solving extended unit commitment problem.IEEE Trans on Power Systems,1991,6(1):269-277.
    [61]Batut J,Renaud A.Daily generation scheduling optimization with transmission constraints:A new class of algorithms.IEEE Trans on Power Apparatus and Systems,1992,7(3):982-989.
    [62]Cohen G.Auxiliary problem principle and decomposition of optimization problems.Journal of Optimization theory and application.1980,32(3):277-305.
    [63]Wang S J,Shahidehpour S M,Kirschen D S.Short-term generation scheduling with transmission and environmental constraints using an augmented lagangian relaxation.IEEE Trans on Power Systems,1995,10(3):1294-1301.
    [64]Shaw J J.A direct method for security-constrained unit commitment.IEEE Trans onPower Systems,1995,10(3):1329-1342.
    [65]Tseng C L,Oren S S,Cheng C S,et al.A transmission-constrained unit commitment method.Proceedings of the thirty-first Hawaii International Conference on System Sciences,Vol 3,Jan 6-9,1998,Kohala Coast,HI,USA:71-80.
    [66]Tseng C L,Guan X H,Svoboda A J.Multi-area unit commitment for large-scale power systems.IEE Proceedings- Generation,Transmission and Distribution,1998,145(4):415-421.
    [67]张利,赵建国,韩学山.考虑网络安全约束的机组组合问题新算法.电网技术,2006,30(21):50-55.
    [68]Baldick R.The generalized unit commitment problem.IEEE Trans on Power Systems,1995,10(1):465-475.
    [69]Murillo-Sanchez C E.Thomas R J.Thermal Unit commitment including optimal AC power flow.Proceedings of the Thirty-First Hawaii International Conference on,Vo13,Jan6-9,1998,KohalaCoast,HI,USA:81-88.
    [70]Benders J F.Partitioning procedures for solving mixed-variables programming problems. Numerical Mathematics, 1962, 4(2): 238-252.
    [71] Geoffrion A M. Generalized Benders decomposition. Journal of optimization theory and applications, 1972, 10(4): 237-260.
    [72] Yellen J, Al-Khamis T M, Vemuri S, et al. A decomposition approach to unit commitment maintenance schedule. IEEE Trans on Power Systems, 1992,7(2): 726-733.
    [73] Marwali M K C, Shahidehpour S M. Integrated generation and transmission maintenance scheduling with network constraints. IEEE Trans on Power Systems, 1998, 13(3): 1063-1068.
    [74] Alguacil N, Conejo A J. Multiperiod optimal power flow using Benders decomposition. IEEE Trans on Power Systems, 2000, 15(1): 196-201.
    [75] Kuan E, Ano O, Vargas A. Unit commitment optimization considering the complete network modeling. 2001 IEEE Porto Power Tech Conference, Vol 3,Sept 10-13, 2001, Porto, Portugal.
    [76] Ma H, Shahidehpour S M. Transmission-constrained unit commitment based on Benders decomposition. Electrical Power & Energy Systems, 1998, 20(4):287-294.
    [77] Ma H, Shahidehpour S M. Unit commitment with transmission security and voltage constraints. IEEE Trans on Power Systems, 1999, 14(2): 757-764.
    [78] FuY, Shahidehpour S M, Li Z. Security-constrained unit commitment with AC constraints. IEEE Trans on Power Systems, 2005, 20(3): 1538-1550.
    [79] Ross D W, Kim S. Dynamic economic dispatch of generation. IEEE Trans Power Apparatus and Systems, 1980, PAS-99(6): 2060-2068.
    [80] Wood W G. Spinning reserve constrained static and dynamic economic dispatch. IEEE Trans on Power Apparatus and Systems, 1982, PAS-101(2):381-389.
    [81] Isoda H. On line load dispatching method considering load variation characteristic and response capabilities of thermal units. IEEE Trans on Power Apparatus and Systems, 1982, PAS-101(8): 2925-2930.
    [82]陈小虎.电力系统动态优化调度研究.华北电力学院与哈尔滨工业大学联合培养博士论文,1992,8.
    [83]Mukai S,Singh J,Sppare J,et al.A reevaluation of the normal operating state control of power system using computer control and system theory.IEEE Trans on Power Apparatus and Systems,1981,PAS-100(1):309-317.
    [84]Van den Bosh P P J.Optimal dynamic dispatch owing to spinning reserve and power-rate limits.IEEE Trans on Power Apparatus and Systems,1985,104(12):3395-3401.
    [85]Somuah G B,Khunaizi N.Application of linear programming redispatch technique to dynamic generation allocation.IEEE Trans on Power System,1990,5(1):20-26.
    [86]韩学山.动态优化调度的积留量法,哈尔滨工业大学博士论文,1994,7.
    [87]Han X S,Gooi H B,Kirschen D S.Dynamic economic dispatch:feasible and optimal solutions.IEEE Trans on Power Systems,2001,16(1):22-28.
    [88]韩学山,柳焯.考虑机组爬坡速度和网络安全约束的经济调度解耦算法.电力系统自动化,2002,26(13):32-37.
    [89]Han X S,Gooi H B.Effective economic dispatch model and algorithm.International Journal of Electrical Power and Energy Systems,2007,29(2):113-120.
    [90]Irisarri G,Kimball M,Clements A,et al.Economic Dispatch with Network and Ramping Constraints via Interior Point Method.IEEE Trans on Power Systems,1998,13(1):236-242.
    [91]Xie K,Song Y H.Optimal Power Flow With Time-related Constraints by A Nonlinear Interior Point Method.Proceedings of IEEE Power Engineering Society WinterMeeting,Vo13,Jan23-27,2000,Singapore:1751-1759.
    [92]刘方,颜伟,徐国禹.动态最优潮流的预测/校正解耦内点法.电力系统自动化,2007,31(14):38-42.
    [93]孙英云,何光宇,梅生伟,等.基于变分模型的动态最优潮流新算法.电力系统自动化,2007,31(17):16-20.
    [94]Lagonotte P,Sabonadiere J C,Leost J Y,et al.Structural analysis of the electrical system:application to the secondary voltage control in France.IEEETrans on Power Systems,1989,4(2):479-486.
    [95]Quintana V H,MullerN.Partitioning of power networks and applications to security control.IEE Proceedings on Gener,Transm and Distrib,1991,138(6):535-545.
    [96]Stankovic A,Ilic M,Maratukulam D.Recent results in secondary voltage control of power systems.IEEE Trans on Power Systems.1989,6(2):479-484.
    [97]Conejo A,de la Fuente J I,Goransson S.Comparison of altemative algorithms to select pilot buses for secondary voltage control in electric power networks.Proceedings of the IEEE MELECON94 International Conference,Vol3,1994,Antalya,Turkey:940-943.
    [98]Conejo A,Aguilar M.A nonlinear approach to the selection of pilot buses for secondary voltage control.Fourth International Conference on Power System Control andManagement,16-18April,1996,London,UK:191-195.
    [99]许文超,郭伟,李海峰,等.AVC应用于江苏电网的初步研究.继电器,2003,31(5):23-26.
    [100]冯治鸿,周双喜.大规模电力系统电压失稳区的确定方法.中国电机工程学报,1997,17(3):152-156.
    [101]Padhy N P.Unit commitment-a bibliographical survey.IEEE Trans on Power Systems,2004,19(2):1196-1205.
    [102]柳焯,最优化原理及其在电力系统中的应用.哈尔滨工业大学出版社,哈尔滨,1988,11.
    [103]Bakirtzis A G,Zoumas C E.Lambda oflagrangian relaxation solution to unit commitment problem.IEE Proceedings-Generation,Transmission and Distribution,2000,147(2):131-136.
    [104]Orero S O,Irving M R.Large scale unit commitment using a hybrid genetic algorithm.Electrical Power & Energy Systems,1997,19(1):45-55.
    [105]孟祥星,韩学山.不确定性因素引起备用的探讨.电网技术,2005,29(1):30-34.
    [106]周家启,任震译.电力系统可靠性评估,科学技术文献出版社重庆分社,重庆,1986.
    [107]Chen L N,Toyoda J.Maintenance schedule based on two level hierarchical structure to equalize incremental risk.IEEE Trans on Power Systems,1990,5(4):1510-1516.
    [108]王淑芬,万仲平,樊恒,等.基于无功优化的二层规划模型及其混合算法.电网技术,2005,29(9):22-25.
    [109]Wu Y C,Debs A F,Marsten R E.A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows.IEEE Trans on Power Systems,1994,9(2):876-882.
    [110]Murillo-Sanchez C E.Zimmerman R.D.Thomas R J.Kirchhoff vs.competitive electricity markets:a few examples.Power Engineering Society Winter Meeting,Vol 3,Jan 28-Feb 1,2001,Columbus,OH,USA:1256-1261.
    [111]Enamorado J C,Ramos A,Gomez T.Multi-area decentralized optimal hydro-thermal coordination by the Dantzig-Wolfe decomposition method.IEEE Power Engineering Society Summer Meeting,Vol 4,July 16-20,2000,Seattle,WA,USA:2027-2032.
    [112]Aganagic M,Mokhtari S.Security constrained economic dispatch using nonlinear Dantzig-Wolfe decomposition.IEEE Trans on Power Systems,1997,12(1):105-112.
    [113]Yan Xihui,Quintana V H.An infeasible interior-point algorithm for optimal power-flow problems.Electric Power Systems Research,1996,39(1):39-46.
    [114]Fu Yong,Shahidehpour M,Li Zuyi.Long-term security-constrained unit commitment:hybrid Dantzig-Wolfe decomposition and subgradient approach.IEEE Trans on Power Systems,2005,20(4):2093-2106.
    [115]Aguado J A,Quintana V H.Inter-utilities power-exchange coordination:a market-oriented approach.IEEE Trans on Power Systems,2001,16(3): 513-519.
    [116]Lee F N,Lemonidis L,Liu K C.Price-based ramp-rate model for dynamic dispatch and unit commitment.IEEE Trans on Power Systems,1994,9(3):1233-1242.
    [117]Christer R D.Power system test case archive,http://www.ee.washington.edu/research/pstca.
    [118]Sasaki H,Yamamoto T,Kubokawa J,et al.A solution of unit commitment with transmission and voltage constraints by heuristic method and optimal power flow.Proceedings of International Conference on Power System Technology,Vol 1,Dec4-7,2000,Perth,Australia:357-362.
    [119]周双喜.电力系统电压稳定性及其控制.中国电力出版社,北京,2004,1.
    [120]范磊,陈珩.二次电压控制研究(一).电力系统自动化,2000,24(11):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700