用户名: 密码: 验证码:
超(特)高压输电线路电流差动保护的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统的发展,超高压和特高压线路逐渐出现和增多,对继电保护装置性能提出了更高的要求。针对目前超高压和特高压线路保护中存在的问题,论文在以下几个方面开展了深入的研究:
     论文基于电容电流稳态补偿和暂态补偿法,提出适合于TV断线或通道容量受限某侧电压无法获取的单端电压补偿方案,并将补偿方法从双端线路扩展到T接分支线路。对两种模型的仿真表明:稳态补偿法和暂态补偿法都能有效补偿稳态电容电流,但区外故障、空充合闸等暂态过程中电容电流频率成分复杂,两种方法均只能补偿部分暂态电容电流,无法完全消除电容电流对差动保护的影响。
     论文基于行波基本特性和行波差动保护原理,提出4种行波差流的构成方案,并深入分析了区内故障时各自的灵敏性和动作速度,以寻求适合于不同条件的最优方案;对于实际三相线路,解耦变换得到的分相动作判据能实现保护选相跳闸。
     线路无故障时行波差流值理论上为零,但在实用时由于受数据插值误差、同步对时误差、线路模型误差、波速不一致性、线路参数不确定性以及CVT暂态噪声等因素的影响,会产生一定的不平衡差流。论文从上述6方面着手,在理论上深刻剖析了不平衡差流来源及各自影响因素,从而得出一些重要的结论,为行波差动保护的应用奠定基础。
     论文在行波不平衡差流分析的基础上,研究提出一种行波差动保护实用方案及其具体的实现技术。该方案引入比例制动判据,采用滤波算法消除暂态高频分量的影响,并采取措施消除波速不一致和测量误差等的影响,可在现有光纤通道基础上实现,能有效防止区外故障、线路空充时误动,区内故障时能快速灵敏动作,有很强的选相跳闸能力。
     随着电力系统的发展,一些特殊结构的输电线路如带并联电抗器线路、T接线路、带串补线路、同杆双回线等应用日益广泛。当行波差动保护应用于这些特殊线路时会面临一些新的问题。为此,论文基于这些特殊线路各自的模型分别研究推导出合理准确的行波差流定义式,同时结合所提的实用方案及技术,实现了行波差动保护在这些特殊线路中的应用。
     特高压线路空充暂态电流大且衰减缓慢,电流差动保护按此整定的门槛值较高,为此论文研究了一种空载合闸于故障保护来作为电流差动保护的辅助保护。论文基于线路空载合闸的暂态特性及其对传统合闸于故障保护的影响,通过分析合闸于正常线路和故障线路时保护安装处测量阻抗角的不同,以及两种情况下电流谐波噪声水平的差异,提出了一种适用于超(特)高压线路空载合闸于故障保护的新方案。大量的仿真计算表明,该方案能快速准确地识别线路正常或故障状态,且灵敏度很高。
As the development of the power system, the EHV and UHV transmission line are appeared and increased rapidly, which elevates the performance requirements of the protective relay equipments. Currently the micro-computer based protection devices are widely used in EHV/UHV lines, the effect are good as whole, but some limitations are also emerged through long-term practical operations. In order to solve these problems, comprehensive and systematic researches are discussed in this thesis.
     Based on the capacitance current steady-state compensation and time domain transient compensation, the compensation scheme using single-terminal voltage is described in this thesis in view of TV wire-break or capacity limitation of communication channel. Since teed lines are increased, the compensation method suitable for teed lines is also presented. Large numbers of simulation results for two topology lines show that the steady-state capacitance current could be calculated well in two kinds of compensation method, however, the transient capacitance current is difficult to compensate fully. Therefore, the traveling-wave differential relay is proposed for its immune to capacitance current.
     4 kinds of differential current expressions are presented in this thesis based on the basic characteristics of traveling-wave and principle of traveling-wave differential protection. Further more, in order to seek the optimal differential current expression in different conditions, the sensitivity and operation speed for in-zone fault are compared and analyzed respectively. With respect to actual three-phase line, the fault phase selected trip could be realized by split-phase criterion from decoupling transformation.
     Traveling-wave differential protection possesses a special advantage in EHV/UHV transmission line protection. However, unbalanced differential current is brought under normal conditions due to the interpolated truncation error, the data synchronization error, the line resistance model error, the unequal traveling speed between earth sequence and spatial sequence, the uncertainty of line parameters and the transient noise of capacitor voltage transformer(CVT). These causations of unbalanced differential current afore-cited are analyzed theoretically and detailedly, and then draw some important conclusions, which provide a good foundation for the application of traveling-wave differential relay.
     Referring to the conventional current differential protection, an applied scheme and its specific implementation technique for traveling-wave differential protection are presented in this thesis. Theoretical research and simulation study show that the relay scheme operates sensitively, rapidly and selectively, and possesses a good capacity for application.
     Several specific transmission lines such as lines with shunt reactors, teed lines, lines with series compensated capacitor and double-circuit parallel line on the same pole are widely used in the power system. When applying traveling-wave differential protection to these particular transmission lines, it will confront with some new problems. Based on ilka equivalent model, alternative forms of the differential current expressions suitable for each specific transmission line are described in this thesis which makes it possible to apply such schemes to the protection of such lines.
     The rapidity of conventional switching into fault protection is decelerated heavily because of the serious transient of unloaded switching in EHV/UHV transmission lines. Based on analyzing the difference of the measurement impedance angle between switching into normal and fault state, comparing the level of harmonic noise under the two conditions, the thesis presents a novel scheme of unloaded switching into fault protection which is assisted by speedy distance relay with diviation characteristic. Theoretical analysis and simulation shows that the scheme can distinguish fault state from normal line quickly and accurately. Accordingly it possesses a good engineering application prospect for its sensitivity and rapidity.
引文
[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [2]韩祯祥,吴国炎.电力系统分析[M].杭州:浙江大学出版社,1992.
    [3]Berglund R O,Mittelstadt W A,Shelton M L,et al.One-cycle fault interruption at 500kV:system benefits and breaker design[J].IEEE Transactions on Power Apparatus and System,1974,PAS-93(5):1240-1248.
    [4]Akke M,Thorp J S.Algorithm for fast transmission line protection[J].IEEE Transactions on Power Delivery,1998,13(1):66-72.
    [5]贺家李,宋从矩.电力系统继电保护原理(增订版)[M].北京:中国电力出版社,2004.
    [6]朱声石.高压电网继电保护原理与技术[M].北京:中国电力出版社,2005.
    [7]罗四倍,张保会,曹瑞峰,等.基于中值滤波的超高速暂态量方向元件[J].中国电机工程学报,2007,27(34):64-69.
    [8]陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992.
    [9]李一泉.电容式电压互感器(CVT)对超(特)高压输电线路保护影响的研究[D].博士论文,杭州:浙江大学,2006.
    [10]Johns A T.New ultra high speed directional comparison technique for the protection of EHV transmission lines[J],IEE Proceeding[C],1980,127(4):228-239.
    [11]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2005.
    [12]Thorp J S,Phadke A G,Horowitz S H,et al.Some application of phasor measurements to adaptive protection[J].IEEE Transactions on Power Systems,1988,3(2):791-798.
    [13]李岩.超高压线路高性能继电保护新原理与新技术的研究[D].博士论文,武汉:华中科技大学,2003.
    [14]高中德.超高压电网继电保护专题分析[M].北京:水利水电出版社,1990.
    [15]李斌,李永丽,贺家李.750kV线路保护与并联电抗器动作的研究[J].电力系统自动化,2005,29(11):4044.
    [16]郭宝甫,张建国,赵应兵,等.750kV并联电抗器新原理的匝间短路及单相接地保护研制[J].继电器,2005,33(19):10-13.
    [17]孙瑜.西北750kV输变电工程投运翻开电网建设新篇章[J].电力设备,2005,6(10):98-99.
    [18]交流特高压试验示范工程二次系统工作总体安排,2005年3月.
    [19]交流特高压试验示范工程二次系统研究用关键参数与边界条件(第一版),2005年3月.
    [20]关于抓紧开展交流特高压试验示范工程二次系统工作的通知[J].国家电网公司,2006.
    [21]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [22]伍志荣,陈江波,李璿.特高压交流试验基地1000kV变压器选型及试验[J].高电压技术,2007,33(11):10-14.
    [23]张晋华,刘云,印永华,等.特高压交/直流电网仿真技术研究[J].电网技术,2007,31(23):1-5.
    [24]董俊,束洪春,司大军,等.特高压远距离大容量云电送粤中的稳定问题研究[J].电网技术,2006,30(24):10-15.
    [25]舒印彪,胡毅.交流特高压输电线路关键技术的研究及应用[J].中国电机工程学报,2007,27(36):1-7.
    [26]董新洲,苏斌,薄志谦,等.特高压输电线路继电保护特殊问题的研究[J].电力系统自动化,2004,28(2):19-22.
    [27]郭剑波.影响特高压交流输电发展的主要因素分析[J].中国电力,1998,31(8):33-35.
    [28]贺家李,李永丽,郭征,等.特高压输电线路继电保护配置方案:(一)特高压输电线的结构与运行特点[J].电力系统自动化,2002,26(23):1-6.
    [29]贺家李,李永丽,李斌,等.特高压输电线路继电保护配置方案:(二)保护配置方案[J].电力系统自动化,2002,26(24):1-6.
    [30]Gayvoronsky A,Ovsyannikov A,Karasjuk K V.The lightning-surge proofness of UHV overhead lines[C].In The third Russian-Korean International Symposium on Science and Technology.Novosibirsk:1999,vol.2:765-768.
    [31]舒印彪,张文亮,周孝信,等.特高压同步电网安全性评估[J].中国电机工程学报,2007,27(34):1-6.
    [32]柴济民,郑玉平,吴通华.交流1000kV特高压输电线路距离保护特殊问题[J].电力系统自动化,2007,31(12):55-60.
    [33]葛耀中.电流差动保护动作判据的分析和研究[J].西安交通大学学报,1980,14(2):93-108.
    [34]陈德树,陈卫,尹项根,等.差动保护运行动作特性的相量分析[J].继电器,2002,30(4):1-3.
    [35]廖泽友,鲍伟廉,杨维那,等.高压线路电流差动保护的现状及其前景展望[J].继电器,1999,27(1):4-7.
    [36]李岩,陈德树,尹项根,等.超高压长线的分相纵差保护方案设计[J].电力 系统自动化,2002,26(15):49-52.
    [37]林湘宁,刘沛.全电流与故障分量电流比例差动判据的比较研究[J].中国电机工程学报,2004,24(10):27-31.
    [38]高厚磊,江世芳,贺家李.输电线路新型电流差动保护的研究[J].中国电机工程学报,1999,19(8):49-53.
    [39]李瑞生,王强,文明浩,等.WXH-803光纤电流差动保护的研究[J].继电器,2004,32(2):40-43.
    [40]Taalab A I,Darwish H A,Ahmed E S.Performance of power differential relay with adaptive setting for line protection[J].IEEE Transactions on power delivery,2007,22(1):50-58.
    [41]罗姗姗,彭鹏,毛亚胜,等.基于光纤通信的多端线路电流差动保护装置[J].电力系统自动化,2006,30(9):50-55.
    [42]王绪昭,伍叶凯,杨奇逊.一种适用于双端系统微机微波电流差动保护的跳闸判据[J].继电器,1991,19(4):2-8.
    [43]陆于平,李玉海,李鹏,袁宇波.差动保护灵敏度与启动电流、制动系数和原理之间的关系[J].电力系统自动化,2002,26(8):51-55.
    [44]贺敏,陆于平,宋斌,等.一种适用于中低压短线路的光纤纵差保护方案[J].继电器,2003,31(9):31-34.
    [45]文明浩,陈德树,尹项根.超高压长线相量差动保护的研究[J].电力系统自动化,2000,24(20):37-40.
    [46]李清波,刘沛.光纤纵差保护的应用及灵敏度的提高[J].电力自动化设备,2002,22(4):21-24.
    [47]梁国艳,许晓峰.数字式线路差动保护的动作判据及实现方法[J].沈阳电力高等专科学校学报,2001,3(3):18-20.
    [48]张新国,杨维娜,杨明玉,王绪昭.数字式微波零序电流差动保护判据的研究[J].继电器,1993,21(2):1-6.
    [49]苗世洪.超高压输电线路继电保护原理和相关技术研究[D].博士论文,武汉:华中科技大学,2003.
    [50]GE Multilin.L90线路差动继电器安装手册.2005.
    [51]罗姗姗,张源会.一种分相式电流差动微波保护新判据[J].电力系统及其自动化学报,1995,7(1):49-58.
    [52]郭庆阳.基于故障分量的微机线路分相电流差动保护的研究[D].硕士论文,上海:上海交通大学,2001.
    [53]Wheatley J M.A microprocessor based current differential protection[C].Fourth International Conference on Developments in Power Protection.Edinburgh,1989: 116-120.
    [54]Lee J B,Junq C H,Kim I D,et al.Protective relay testing and characteristic analysis for high impedance faults in transmission line[C].In Proceedings of IEEE Power Engineering Society summer meeting.Edmonton,Alta,1999,vol.2:1076-1081.
    [55]Kasztenny B,Voloh I.Application of distance and line current differential relays in breaker-and-a-half configurations[C].IEEE/PES Transmission & Distribution conference andexposition:Dallas,TX,2005:1-7.
    [56]Fodero K,Rosselli G.Applying digital current differential systems over leased digital service[C].The 58~(th) Annual Conference for Protective Relay Engineers,2005:291-298.
    [57]Voloh I,Johnson R.Applying digital line current differential relays over pilot wires[C].The 58~(th) Annual Conference for Protective Relay Engineers,2005:287-290.
    [58]Crossley P A,Li H Y,Parker A D.Design and evaluation of a circulating current differential relay test system[J].IEEE Transactions on power delivery,1998,13(2):427-433.
    [59]Aggarwal R K,Husseini A H,Redfem M A.Design and testing of a new microprocessor-based current differential relay for EHV teed feeders[J].IEEE Transactions on power delivery,1991,6(3):991-999.
    [60]Villamagna N,Crossley P A,Li H Y.Design of a symmetrical component based current differential protection scheme[C].In Proceedings of IEEE Power Teehnology Conference.Bologna,Italy,2003,vol.4:1-6.
    [61]Serizawa Y,Imamura H,Sugaya N.Experimental examination of wide-area current differential backup protection employing broadband communications and time transfer systems[C].In Proceedings of IEEE Power Engineering Society summer meeting.Edmonton,Alta,1999,vol.2:1070-1075.
    [62]林湘宁,何战虎,刘世明,等.复式电流比例差动保护判据的可靠性评估[J].中国电机工程学报,2001,21(7):98-102.
    [63]伍叶凯,邹东霞.电容电流对差动保护的影响及补偿方案[J].继电器,1997,25(4):4-8.
    [64]索南加乐,张怿宁,齐军,等.n模型时域电容电流补偿的电流差动保护研究[J].中国电机工程学报,2006,26(5):12-18.
    [65]吴通华,郑玉平,朱晓彤.基于暂态电容电流补偿的线路差动保护[J].电力系统自动化,2005,29(12):61-67.
    [66]毕天姝,于艳莉,黄少锋,等.超高压线路差动保护电容电流的精确补偿方法[J].电力系统自动化,2005,29(15):30-34.
    [67]丁蕾,房鑫炎.基于电容电流半补偿的高压电力电缆分相电流差动保护研究[J].电网技术,2005,29(4):45-49.
    [68]Sachdev M S,Sidhu T S,Liu X.High-speed differential protection of parallel teed transmission lines[C].In Proceedings of IEEE:WESCANEX 95.Communications Power and Computing conference,Winnipeg:1995,vol.2:495-500.
    [69]Thomas D W P,de Lima F R F,Christopoulos C.A travelling-wave relay for the protection of EHV transmission-lines with teed feeds[C].In:Developments in Power System Protection Fifth International Conference.New York:1993:232-235.
    [70]郭征.继电保护动态性能仿真及三端线路光纤保护的研究[D].硕士论文,天津:天津大学,2001.
    [71]束洪春,高峰,陈学允等.T型输电系统故障测距算法研究[J].中国电机工程学报,1998,18(6):416-420.
    [72]袁荣湘,陈德树,文明皓等,T接线路故障仿真计算与分析[J].电力自动化设备,1999,19(1),7-10.
    [73]郭征,贺家李.三端线路光纤保护的研究[J].电力系统自动化,2003,27(10):57-59.
    [74]Ching-Shan Chen,Chih-Wen Liu,Joe-Air Jiang.Three-terminal transmission line protection using synchronized voltage and current phasor measurements[C].In:Transmission and Distribution Conference and Exhibition.2002,vol.3:1727-1732.
    [75]董新洲,葛耀中,贺家李,等.输电线路行波保护的现状与展望[J].电力系统自动化,2000,24(10):56-61.
    [76]唐勇,陈珩,戴方涛,等.行波保护研究中输电线路模型的选择[J].中国电机工程学报,1997,17(4):269-273.
    [77]李幼仪,董新洲,孙元章.基于电流行波的输电线横差保护[J].中国电机工程学报,2002,22(11):6-10.
    [78]段建东,张保会,陈坚等.电流行波差动式母线保护的研究[J].电力系统自动化,2004,28(9):43-48.
    [79]TAKAGI T,BABA J,UEMURA K,et al.Fault protection based on travelling wave theory:part Ⅰ theory.In Proceedings of IEEE Power Engineering Society Summer Meeting,Jul 17-22,1977,Mexico City,Mexico.1977:750-753.
    [80]TAKAGI T,BABA J,UEMURA K,et al.Fault protection based on travelling wave theory:part Ⅱ sensitivity analysis and laboratory test.In Proceedings of IEEE Power Engineering Society Winter Meeting,Jan 29-Feb 3,1978,New York,NY,USA.1978:220-226.
    [81]苏斌,董新洲,孙元章,等.基于小波变换的行波差动保护[J].电力系统自动化,2004,28(18):25-29.
    [82]苏斌,董新洲,孙元章.特高压带并联电抗器线路的行波差动保护[J].电力系统自动化,2004,28(23):41-44.
    [83]苏斌,董新洲,孙元章.串联电容补偿线路行波差动保护研究[J].清华大学学报(自然科学版),2005,45(1):137-140.
    [84]白嘉,徐玉琴,田彬,等.基于形态综合算法的行波差动保护方案[J].电网技术,2006,30(5):98-102.
    [85]高厚磊,江世芳,贺家李.基于GPS的电流纵差保护设计及试验[J].电力系统自动化,2001,25(21):61-65.
    [86]郭征,贺家李.输电线纵联差动保护的新原理[J].电力系统自动化,2004,28(11):1-5.
    [87]DOMMEL H W.Digital computer solution of electromagnetic transients in single and multiple networks[J].IEEE Transactions on Power Apparatus and Systems,1969,88(4):388-399.
    [88]郑玉平,吴通华,丁琰,等.基于贝瑞隆模型的线路差动保护实用判据[J].电力系统自动化,2004,28(23):50-55.
    [89]梁军,麻常辉,贠志皓.基于线路参数估计的高压架空输电线路故障测距新算法[J].电网技术,2004,28(4):60-63.
    [90]束洪春.基于分布参数线路模型的架空电力线故障测距方法研究[D].哈尔滨:哈尔滨工业大学,1997.
    [91]刘乾业.并联电抗器在电力系统中的应用[J].电工技术杂志,1994,6(6):30-32.
    [92]李斌,李永丽,盛鹍,等.带并联电抗器的超高压输电线单相自适应重合闸的研究[J].中国电机工程学报,2004,24(5):52-56.
    [93]Santos L F,Silveira P M.Evaluation of numerical current differential protection algorithms for series compensated transmission lines[C].In IEEE/PES Transmission & Distribution conference and exposition:Latin America,2006:1-6.
    [94]雷宪章,D Povh.串联补偿技术在远距离高电压交流输电系统中的应用[J].电网技术,1998,22(11):34-38.
    [95]钟胜.与超高压输电线路加装串补装置有关的系统问题及其解决方案[J].电网技术,2004,28(6):26-30.
    [96]黄子俊,陈允平.基于小波变换的行波故障定位法在串补输电线路中的应用 [J].电网技术,2004,28(18):5-9.
    [97]王为国,尹项根,余江,等.固定串补电容对输电线路继电保护影响的综述[J].电网技术,1998,22(11):18-21.
    [98]束洪春,司大军,陈学允.基于分布参数模型的串补线路故障测距方法研究[J].中国电机工程学报,2002,22(4):72-76.
    [99]覃剑,黄震,杨华,等.同杆并架双回线路行波传播特性的研究[J].中国电机工程学报,2004,24(5):30-34.
    [100]郭征,贺家李.有串补电容输电线纵联差动保护原理[J].天津大学学报,2005,38(3):195-200.
    [101]苏斌,董新洲,孙元章.适用于特高压线路的差动保护分部电容电流补偿算法[J].电力系统自动化,2005,29(8):36-40.
    [102]李斌,贺家李,郭征,等.线路中间带并联电抗器的线路差动保护[J].电力系统自动化,2006,30(7):31-36.
    [103]赵京立,余恺,陈建.高压电网的合闸于故障保护[J].电力自动化设备,2001,21(7):67-70.
    [104]罗四倍,段建东,张保会.基于暂态量的EHV/UHV输电线路超高速保护研究现状与展望[J].电网技术,2006,30(22):3241.
    [105]Chamia M,Liberman S.Ultra high speed relay for EHV/UHV transmission lines-development,design and application[J].IEEE Trans on Power Apparatus and Systems,1978,97(6):2104-2116.
    [106]董杏丽,葛耀中,董新洲.行波保护中合闸到故障线路的检测方法[J].中国电机工程学报,2002,22(10):77-80.
    [107]孙向飞,束洪春,司大军.输电线路不同期合闸操作的行波特征分析[J].中国电机工程学报,2006,26(24).31-36.
    [108]周庭阳,江维澄.电路原理(第二版)[M].杭州:浙江大学出版社,1994.
    [109]何奔腾.行波故障测距探测方法的研究fD].硕士论文,杭州:浙江大学,1985.
    [110]赵智大.高电压技术[M].北京:中国电力出版社,1999.
    [111]易大义,沈云宝,李有法.计算方法[M].杭州:浙江大学出版社,1989.
    [112]雷莉,曾祥君,刘建华,等.考虑输电线路阻抗频率特性的高精度行波定位方法[J].长沙理工大学学报(自然科学版),2007,4(1):48-52.
    [113]黄瀛.电力系统继电保护快速滤波算法研究[D].博士论文,杭州:浙江大学,2004.
    [114]梅德冬,王文雄,何奔腾,等.电容式电压互感器暂态噪声的研究[J].继电器,2003,31(6):19-22.
    [115]何奔腾,胡为进.同杆并架双回线路模变换分析[J].电网技术,1998,22(1):25-27,30.
    [116]刘东超,李永丽,曾治安.带并联电抗器的双回线故障测距算法研究[J].电力系统及其自动化学报,2006,18(2):5-9,17.
    [117]李杨,李永丽.750kV及特高压输电线路的暂态电流研究[J].电力系统及其自动化学报,2006,18(3):18-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700