用户名: 密码: 验证码:
基于频响函数的网架结构损伤诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,网架结构作为大跨度建筑结构常用的一种结构形式已经被广泛的应用于工业和民用建筑中,由于受外部载荷、环境作用、灾害、人为等因素的影响,网架结构在服役期间会出现损伤,结构性能下降,其安全性已经引起人们的高度重视。如何去诊断网架结构的损伤,对其健康状况进行诊断和监测,已成为当今亟待解决的一个重要课题,重大建筑物健康监测与损伤诊断也被列为国家科技支撑计划的一个重点科研项目。
     相对结构的静力反应来说,结构的动力反应能够更加全面的反映结构的力学物理特性,因而基于振动的损伤诊断方法已成为许多学者的研究热点,并提出了许多损伤诊断方法。然而,这些方法中大部分都需基于模态分析,以模态参数作为损伤识别的基础。由于受到噪声、结构自身特性及人为因素等的影响,用从网架上实测得到的频响函数进行模态拟合时会产生较大的误差,且目前的动测手段只能测得网架的前几阶模态,模态数据不完整,这使得基于模态参数的损伤识别方法应用于网架的损伤识别时无法达到预期的效果。相对模态参数来说,频响函数更直接,误差小,含有更丰富的原始数据信息,且能包含所有的模态参数信息,为此,本文以频响函数作为网架损伤识别的特征参数,应用多元统计分析中的一些基本理论,建立了基于频响函数的网架结构损伤诊断方法,并通过实验室足尺模型网架的动测试验,对提出的方法进行了验证分析,证明了所提出方法的可行性及可靠性。概况起来,本文主要取得的研究成果和得出的结论如下:
     (1)通过对频响函数基本概念和物理意义的分析,建立了以频响函数数据为基础,能够包含网架全部模态参数信息的原始数据矩阵,进而构建了损伤识别矩阵,它被作为网架损伤识别的基础。
     (2)由于实测频响函数的数据量巨大,所构成的损伤识别矩阵为高维矩阵,因而本文把多元统计分析中主元(主成分)分析和多元控制理论应用于网架的损伤识别中,建立了网架结构的损伤定位方法。首先,运用主元分析方法计算损伤识别矩阵的各阶主元,根据各阶主元的贡献率,找到能包含损伤识别矩阵绝大部分信息的前几阶主元,实现对损伤识别矩阵的降维压缩。然后,运用多元控制图对降维后的矩阵元素进行分析,分离异常数据,提取网架的损伤信息,从而实现对网架结构的损伤定位。
     (3)运用多元统计分析中主元分析和马氏(Mahalanobis)距离的基本原理建立了基于频响函数的网架结构损伤程度的评估方法。用网架损伤前后的频响函数建立原始数据矩阵,通过主元分析对原始数据矩阵进行降维、压缩,计算网架损伤前后主元数据间的损伤距离,用网架的整体损伤距离对网架损伤程度进行评估。该方法还解决了本文所提出的网架损伤定位方法对多杆损伤不敏感的问题,弥补了损伤定位方法的不足。
     利用无损网架两次实测的频响函数数据,可计算得到网架的最小损伤距离。最小损伤距离是网架出现损伤的最小界限距离,可用于快速的判断网架是否出现了损伤,在网架的在线健康监测中,用于快速的发现损伤,发出预警。另外,最小损伤距离还被作为对网架损伤程度进行评估的基本量值单位。
     (4)从实际网架动测中得到的信号都受到噪声的污染,在役网架由于有着复杂的边界条件,质量、阻尼较大,激励响应不够充分等,降低了动测信号质量,为此本文在前人研究成果的基础上,研究了基于主元分析的网架实测频响函数的降噪、消噪方法。通过对网架实测频响函数所构成的原始数据矩阵进行主元分析,利用能包含原始数据主要信息的前几阶主元,重构原始数据矩阵,实现对原始数据的降噪、消噪,为网架的损伤识别提供了可靠的数据保证。
     (5)为了验证所提出的损伤识别方法,在实验室完成了足尺模型网架在20种不同损伤工况下的动测试验,通过试验结果分析,证明了所提出的损伤识别方法是可行性、可靠的。同时,对采用力锤激励单输入单输出(SISO)的动测方法及动测中测点布置、激励信号的控制、响应信号的采集、处理、信号的质量评价等进行了较全面的研究、探索,并总结出了一套用冲击力锤人工激励方式进行网架动测的基本方法、步骤。
     本文提出的网架损伤诊断方法可直接利用实测频响函数进行损伤识别,不需要模态参数,不要求有完整的模态测试数据,因而避开了实际动测时一些模态参数的测不准及实测模态不完整问题。损伤识别过程是通过分析实测频响函数的数据特征、数据结构来完成,不需建立网架的力学模型,因而对网架的结构形式、约束方式及边界条件均没有特殊的要求,采用力锤人工激励及SISO的动测方法,激励设备简单,操作方便。因而本文提出的损伤诊断方法对于在役网架的健康监测和损伤诊断具有较高的理论价值和实用价值。
In the past several decades, the truss structure has been widely used as an important structure form for large span building. The truss structure of long-term using may be damaged by load effect, ambient factors, natural calamities and incidents, its loading capability will decrease gradually, and its security has attracted people attention. Therefore, it is an imperative problem to detect truss damages so that its security can be evaluated and monitored nowadays. As a results, the health monitoring and damage diagnosis for large structure have been regarded as a key science and technology project for China.
     Compared with the response of structure static force, the response of structure dynamic force contains more structure dynamic character, so the damage diagnosis methods based on vibration have become a research focus for many scientists, and many methods have been proposed by them in the past years. However, the most of these methods are based on the modal analysis, and modal parameters are regarded as the basic variables of damage detection. Since the effect of the noise, structural non-linear and artificial factors, etc, some errors will arise from modal analysis when modals are fitted using measured frequency response functions (FRF). Moreover, since we can only obtained partial data of whole modal using current test method, testing data are not integrated, therefore it is difficult for truss damage diagnosis using the method based on modal analysis. Considering the reason given above, a damage diagnosis method based on measured FRF and principal component analysis (PCA) is brought forward in the paper. By means of theory analysis and deduction, the basic theory and method for truss damage diagnosis are formed, and by dynamic experiment of a whole size truss in the laboratory, the proposed method is validated. The experimental result shows that the proposed method is feasible and reliable for truss damage identification. In brief, main research achievements and conclusions in the paper are as follow:
     (1) By means of basic concept and practical meaning of FRF, original data matrix, which contains the most of truss modal information, is formed based on measured FRF. Thus, using original data matrix we can constitute the damage identification matrix, which is the basis for truss damage identification.
     (2) Since measured FRFs contain large numbers of data, and damage identification matrix has numerous dimensions, a damage orientation method, based on PCA and multivariate control theory, is proposed for truss damage identification. With PCA technology, each principal component of damage identification matrix can be obtained. Then the first several order principal components, which contain the almost all information of damage identification matrix, can be obtained by means of the contribution ratio of each principal component, and the data of damage identification matrix can be reduced. Thus, by analyzing the data character of first several principal components, separating singular data and extracting truss damage information, truss damage elements can be oriented successfully.
     (3) Using the Mahalanobis Distance theory of Multivariate Statistical Analysis, an evaluation method for truss damage extent is proposed based on the damage distance. Original data matrix is formed using measured FRFs of undamaged and damaged truss, and its dimensions are reduced with PCA technology. By constituting observation sample using principal component data, calculating the distance between damaged samples and undamaged samples, truss damage extent can be evaluated successfully. At the same time, some problems, which can not be solved very well only using the damage orientation method, also be solved using the damage distance mothed, so damage distance method is a very good supplement for truss damage orientation method.
     Using twice measured data of the FRFs from undamaged truss, the minimal damage distance can be obtained. The minimal damage distance is a index for quickly judging truss damage in truss on-line health monitoring. In the other hand, the minimal damage distance can be used as a quantity unit for truss damage extent evaluation.
     (4) The dynamic test signals obtained from practical truss have been contaminated by the noise, and existing truss has complicated boundary condition, big mass and damp, so the reliability of dynamic test signal noise is reduced. Therefore, a method for reducing or eliminating FRFs noise is proposed based on the PCA in the paper. By analyzing the PCA of original data matrix, we can reconstruct original data matrix using first several principal components, which generally contain all most information of original data. Thus, the original data noise can be reduced or eliminated, which is the basis for next damage identifications.
     (5) In order to validate the reliability of the method, a whole size truss was tested with 20 kinds of damage case. The experimental result shows that the proposed method is feasible and reliable for truss damage identification. At the same time, the measurement points selection, exciting signal control and response signal collection, are also searched for the SISO dynamic test method, as well as testing process and result evaluation. In the last, the basic dynamic test methods and process with manual exciting manner are suggested and summarized in the paper.
     The damage diagnosis method proposed in the paper directly uses FRFs for truss damage identification, does not need any modal parameters and integral modal data, so damage diagnosis results are not affected by modal errors and incomplete data. Since the damage diagnosis, which is performed by analyzing FRF data character, does not need truss mechanics mode, so it has not any special requirement for truss structure types, restricting manner and boundary condition. And the dynamic test method using manual excitation and SISO is simple and convenient. Therefore, the damage diagnosis method proposed in the paper has very important theoretical and practical value for health monitoring and damage diagnosis of existing truss.
引文
[1]卢谦,遇平静等.在役建筑物安全性鉴定制度的研究.第八届全国建筑物鉴定与加固改造学术会议.哈尔滨,2006:12-19.
    [2]邸小坛,周燕.旧有建筑物的检测加固与维修.北京:地震出版社,1991.
    [3]张富春.建筑物鉴定修复和改造之十五-建筑物鉴定技术的现状和展望.北京:冶金部建筑研究总院技术情报室,1990.
    [4]周智.欧讲萍.土木工程智能健康监测与诊断系统.传感器技术.2001,20(11):1-4.
    [5]马宏伟,杨桂通.结构损伤探测的基本方法和研究进展.力学进展.1999,20(4):513-527.
    [6]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展.土木工程学报.2002,36(5):105-110.
    [7]郭健.基于小波分析的结构损伤识别方法研究:(博士学位论文).杭州:浙江大学,2004.
    [8]范立础.桥梁抗震.上海:同济大学出版社,1997.
    [9]孙鸿敏,李宏男.土木工程结构健康监测研究进展.防灾减灾工程学报.2003,23(3):92-98.
    [10]孙宗光.大跨度斜拉桥结构的动力损伤检测:(博士学位论文).杭州:浙江大学,2001.
    [11]王茂龙.结构损伤识别与模型更新方法研究:(博士学位论文).南京:东南大学,2003.
    [12]陈长征等.结构损伤检测与智能诊断.北京:科学出版社,2001.
    [13]冯新.土木工程中结构识别方法的研究:(博士学位论文).大连:大连理工大学,2002.
    [14]Wang X.Structural Damage Identification Using Static Test Data and Changes in Frequencies.Engineering Structures.2001,23(6):610-621.
    [15]Teughels A,Maeck J.Damage assessment by FE model updating using damage functions.Computers and Structures.2002,80:1869-1879
    [16]董聪.现代结构系统可靠性理论及其应用.北京:科学出版社.2001.
    [17]吴金志.基于动力检测的网格结构损伤识别研究:(博士学位论文).北京:北京工业大学.2005.
    [18]Vandiver J K.Detection of Structural Faille on Fixed Platforms by Measurement of Dynamic Response.Proceeding of The 7th Annual Offshore Technology Conference.1975:243-252
    [19]Yah Y 5,Cheng L,Wua Z Y.Development in vibration-based structural damage detection technique.Mechanical Systems and Signal Processing.2007,21:2198-2211.
    [20]Cawley P.The location of defects in structures from measurements of natural frequencies.Journal AtTain Analysis.1979,14(2):62-71.
    [21]Cawley P.A vibration technique for nondestructive testing of fiber composite structures.Journal of Composite Materials.1979,13(9):46-55.
    [22]Salawu O S.Detection of Structural Damage Through Changes in Frequency:A Review.Engineering Structures.1997,19(9):718-723.
    [23]Messina A,Jones L A and Williams E J.Damage detection and localization Using frequency changes,Identification in Engineering Systems:Proceedings of the International Conference.Swansea,U.K.,1996:pp67-76.
    [24]Doebling S W.A summary review of vibration based damage identification methods.The Shock and Vibration Digest.1998,43(8):92-105.
    [25]刘济科,汤凯.基于振动特性的损伤识别方法的研究进展.中山大学学报.2004,43(6):57-61.
    [26]Huynh D,He J,Tran D.Damage location vector:A non-destructive structural damage detection technique.Computers and Structures 2005,83:2353-2367.
    [27]Farrar C R.Variability of modal parameters measured on the Alamos Canyon Bridge,Proceedings of the 15th IMAC.Orlando,2001:257-263.
    [28]Doebling S W.Effects of measurement statistics on the detection of damage in the Alamos Cany on Bridge.Proceedings of the 15th IMAC.Orlando,2001:919-929.
    [29]Salawu O S.Detection of structural damage through changes in frequency" A review.Eng.Struct.1997,19(9):718-723.
    [30]Pandey A K Damage detection in structures using changes in flexibility.Journal of Sound and Vibration.1994,169(1):3-17.
    [31]Ju F D.Modal frequency method in diagnosis of fracture Damage in structure.Proceedings of the 4th IMAC.Los Angeles,1986:1168-1174.
    [32]Huynh D,He J,rran D.Damage location vector:A non-destructive structural damage detection technique.Computers and Structures 2005,83:2353-2367.
    [33]Gomes A M A.On the use of modal analysis for crack identification.Proceedings of the 8th IMAC.Florida,1990:1108-1115.
    [34]West W.M.,Illustration of the use of modalassurance criterion to detect structural changes in an orbiter test specimen.Proceedings of the 4th International Modal Analysis Conference.1989,1(1):pp1-6.
    [35]Gentile C,Saisi A.Ambient vibration testing of historic masonry towers for structural identification and damage assessment.Construction and Building Materials.2007,21:1311-1321
    [36]Kim,J M,Jeon H S,and Lee C W.Application of the modal assurance criteria for detecting structural faults.Proceedings of the 10th International Modal Analysis Conference.Las Vegas,Nevada.1992,(1):536-540.
    [37]Pandey A K,Biswas M and Samman M M.Damage detection from changes in curvature mode shapes.Journal of Sound and Vibration.1991,145(1):pp321-332.
    [38]Wollf T.Fault detection in structures from changes in their modal parameters.Proceedings of 7th IMAC.1989:87-94.
    [39]张德文.模型修正与破损诊断.北京:科学出版社1999.
    [40]Pandey A K.Damage detection in structures using changes in flexibility.Journal of Sound and Vibration.1994,169(1):3-7.
    [41]Pandev A K.Experimental verification of flexibility difference method for locating damage in structure.Journal of Sound and Vibration.1995,184(2):311-328.
    [42]Pandev A.K.Damage diagnosis of truss structures by estimation of flexibility change.Modal Analysis.1995,10(2):104-107.
    [43]Qin Q.Damage detection of suspension bridges.Proceedings of 16th IMAC.1998:945-951.
    [44]Aktan A.E.Modal testing for structural identification and condition assessment of constructed facilities.Proceedings of 12th IMAC.1994,462-468.
    [45]Toksoy T.Bridge Condition assessment by modal flexibility.Exp.Mech.1994:271-278.
    [46]Yah Y J,Yam L H,Cheng L.FEM modeling method of damage structures for structural damage detection.Composite Structures.2006,72:193-199.
    [47]Zhann Z.The damage indices for constructed facilities.Proceedings of 13th IMAC.1995,1520-1529.
    [48]He J.Analytical stiffness matrix correction using measured vibration modes.Nodal Analysis.1986,1(3):9-14.
    [49]周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究.湖南大学学报.1997,24(5):69-74.
    [50]董聪.基于动力特性的结构损伤定位方法.力学与实践.1999,21(3):62-64.
    [51]郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势.振动与冲击.2002,21(2):1-6.
    [52]Ceasar J C.Damage location in a space truss model using modal strain energy.Proceedings of 15th IMAC.Florida:1997,1786-1792.
    [53]Phillip C.Application of the strain enemy damage detection method to plate like structure PS.Proceedings of 15th IMAC.Florida:1997,1312-1318.
    [54]Yoo S II.Detection and location on a crack in a plate using modal analysis,Proceedings of 17th IMAC.Florida:1999,1902-1908.
    [55]Osegueda R A.A modal strain enemy distribution method to localize and quantify damage.Proceedings of 15th IMAC.Florida,1997:1298-1304.
    [56]史治宁.基于动态实验数据的结构破损诊断研究:[博士学位论文].南京:南京航空航天大学,1996.
    [57]李华军,方辉等.工程结构损伤定位方法的研究.中国海洋大学学报.2005,35(4):641-648.
    [58]Liann Z.An detection of damage location of bridges.Proceedings of 14th IMAC.1996:308-312.
    [59]Samer H.Damage detection using vibration measurements.Proceedings of 15th IMAC,Florida,1997:113-111.
    [60]Lee U,Shin J.A frequency response function-based structural damage identification method.Computers and Structures,2002,80(2):117-132.
    [61]MAIA N M,SILVA J M M.Damage detection in structures:from mode shape to frequency response function methods.Mechanical Systems and Signal Processing.2003 17(3):489-498.
    [62]Park N G,Park Y S.Damage detection using spatially incomplete frequency response functions.Mechanical Systems and Signal Processing.2003,17(3):519-532.
    [63]Sampato R P C,MaiaN M M.Damage detection using the frequency-response-function curvature method.Journal of Sound and Vibration.1999,226,1029-1042.
    [64]郑明刚,刘天雄等.基于频响函数的结构损伤检测.机械科学与技术.2001,20(3):479-482.
    [65]Mohammad R B,Yousef M.Detection and assessment of damage in 2D structures using measured modal response.Journal of Sound and Vibration.2007,306:803-817.
    [66]李学平,余志武.基于频响函数的结构损伤识别.中外公路.2005,26(1):83-85.
    [67]邹大力,屈福政,孙铁兵.基于压缩频响函数的结构损伤识别.机械科学与技术.2005,24(5):572-615.
    [68]Joyner M L.Comparison of Two Techniques for Implementing the Proper Orthogonal Decomposition Method in Damage Detection Problems.Mathematical and Computer Modeling.2004,40:553-571.
    [69]Hwang H Y.,Kim C.Damage detection in structures using a few frequency response measurements.Journal of Sound and Vibration.2004,270:1-14.
    [70]Usik L,Sunghwan K.Identification of multiple directional damages in a thin cylindrical shell.International Journal of Solids and Structures.2006,43:2723-2743.
    [71]Kim H Y.Vibration-based damage identification using reconstructed FRFS in composite structures.Journal of Sound and Vibration.2003,259(5):1131-1146.
    [72]Jiann S L.Using transfer function parameter changes for damage detection of structures,AIAA Journal.1995,33(11):2189-2193.
    [73]Maia N M M.Location of damage using curvature of the frequency response functions.Proceedings of 15th IMAC.Florida,1997:942-941.
    [74]Mark J S.Detecting structural damage using transmittance function,Proceedings of 15th IMAC.Florida,1997:638-644.
    [75]刘丰年,李宏男.一种有效的结构动态参数识别方法,地震工程与工程振动.1998,18(1):30-34.
    [76]孙增寿,韩建刚,任伟新.基于小波分析的结构损伤检测研究进展.地震工程与工程振动。2005,25(2):93-99.
    [77]Riou I Q,Vetterli M W.Wavelets and signal processing.IEEE SP Mag.1991,IQ:14-38.
    [78]Al-khalidy A,Noori M.A study of health monitoring systems of linear structures using wavelet analysis.ASME PVP.1997,347:49-58.
    [79]Robertson A N,Park K C,Alvin K F.Extraction of impulse response data via wavelet transforms for structural identifications.J.Vibr A coust.1998,120:252-260.
    [80]Robertson A N,Park K C,Alvin K F.Identification of structural dynamics models using wavelet-generated impulse response data.J.Vibr Acoust.1998,120:261-266.
    [81]Kitada Y.Identification of nonlinear structural dynamic systems using wavelets.J.Engng Mech.1998,124(lO):1059-1066.
    [82]李宏男,孙鸿敏.基于小波分析和神经网络的框架结构损伤诊断方法.地震工程与工程振动.2003,23(5):141-148.
    [83]Huang N E.The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis.Proc.R.Soc.London,1998,454:903-995.
    [84]Rucka M,Wilde K.Application of continuous wavelet transform in vibration based damage detection method for beams and plates.Journal of Sound and Vibration.2006,297:536-550.
    [85]Yang J N,Lei Y,Lin S.Hilbert-Huang based approach for structural damage detection.Journal of Engineering Mechanics.2004,130(1):85-95.
    [86]任宜春,易伟建.基于小波分析的梁裂缝识别研究.计算力学学报.2005,22(4):399-404.
    [87]Amizic B,Amaravadi V K.Two-Dimensional Wavelet MaDDing Techniques for Damage Detection in Structural Systems.Signal Processing and Control.2002,SPIE Vol.4693.
    [88]姜绍飞.基于神经网络的结构优化与损伤检测.北京:科学出版社,2002.
    [89]Specht D F.Probabilistic neural networks.Neural Networks.1990,36(3):109-118.
    [90]王柏生,倪一清等.用概率神经网络进行结构损伤位置识别.振动工程学报.2001,14(1):60-64.
    [91]姜绍飞,刘奎浩,廖石等.基于概率神经网络的悬索桥损伤定位研究.东北大学学报.2002,23(5):480-483.
    [92]朱宏平,千力.利用振动模态测量值和神经网络方法的结构损伤识别研究.计算力学学报.2005,22(2):193-196.
    [93]陈禄如,刘万忠.中国钢结构行业现状和发展趋势.钢结构.2004,19(2):31-35.
    [94]徐寅.中国高层和大跨度建筑钢结构用高性能钢板的开发和应用.第二届中日建筑钢结构技术论坛论文集,北京,2004.
    [95]蓝大,刘枫.中国空间结构的20年.第十届空间结构学术会议论文集.北京:中国建材工业出版社,2002.
    [96]雷宏刚.钢结构事故分析与处理.北京:中国建材工业出版社.2003:2-4.
    [97]江见鲸等.建筑工程事故分析与处理.北京:中国建筑工业出版社.2003.
    [98]Driemeier L,Proenca S P B,Alves M.A contribution to the numerical nonlinear analysis of three-dimensional truss systems considering large strains,damage and plasticity.Communications in Nonlinear Scienceand Numerical Simulation.2005,10:515-535.
    [99]Stubbs N,Park S.A global non-destructive damage assessment methodology for civil engineering structures.International Journal of Systems Science.2000,31(11):1361-1373.
    [100]Kim H M,Bartkowicz T J.An Experimental study for damage detection using a hexagonal truss.Computers and Structures.2001,79:173-182.
    [101]Mehrjoo M,Khaji N.Damage detection of truss bridge joints using Artificial Neural Networks.Expert Systems with Applications.2007,08:001-010.
    [102]丁阳,张玉缝,李忠献.大宽度空间结构的损伤定位.建筑结构学报.2006,27(1):16-24.
    [103]瞿伟廉,滕军,项海帆.风力作用下深圳市民中心屋顶网架结构的智能健康监测.建筑结构学报.2006,27(1):1-8.
    [104]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社,2001.
    [105]沃特·海伦,斯蒂芬·拉门兹等.模态分析理论与实践.北京:北京工业大学出版社,2000.
    [106]李德葆,陆秋海.工程振动试验分析.北京:清华大学出版社,2004.
    [107]李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社,2002.
    [108]张令弥.振动测试与动态分析.北京:航空工业出版社,1992.
    [109]曹树谦,张文德,萧龙翔.振动结构模态分析.天津:天津大学出版社,2001.
    [110]于秀林,任雪松.多元统计分析.北京:中国统计出版社,1999.
    [111]Zang C,Imergun M.Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection.Journal of Sound and vibration.2001,242(5):813-827.
    [112]Yan A M,KERSCHEN G.Structural damage diagnosis under varying environmental conditions-Part Ⅰ:A linear analysis.Mechanical Systems and Signal Processing.2005,19:847-864.
    [113]Yan A M,Kerschen G,Deboe P.Structural damage diagnosis under varying environmental conditions-Part Ⅱ:A linear analysis.Mechanical Systems and Signal Processing.2005,19:865-880.
    [114]冯俊婷,王桂增.基于主元分析的核电站主冷却剂泵故障诊断.原子能科学技术.2003,37(5):395-399.
    [115]钟珞,宋华珠.基于PCA与ICA的结构损伤识别.武汉理工大学报.2006,28(7):93-96.
    [116]王丽舫,朱群雄.基于小波理论的主元分析在故障诊断中的研究与应用.化工自动化及仪表.2004,31(6):25-27.
    [117]Zang C,Imregun M.Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection.Journal of Sound and vibration.2001,242(5):813-827.
    [118]王琦,秦泗钊.基于重构法实现故障监控.吉林大学学报.2004,22(4):401-405.
    [119]王海清,蒋宁.主元空间中的故障重构方法研究.化工学报,2004,55(8):1291-1295.
    [120]Yan A M,Golinval J C.Null subspace-based damage detection of structures using vibration measurements.Mechanical Systems and Signal Processing.2006,20:611-626.
    [121]钱仲候,王成斌,孟玉珂.多元质量控制.北京:中国铁道出版社,1995.
    [122]邱洪兴 蒋永生.古塔结构损伤的系统识别Ⅰ:理论.东南大学学报,2001,31(2)81-85.
    [123]Johnson R A,Wichern D w.实用多元统计分析.北京:清华大学出版社,2001.
    [124]蓝天,张毅刚.大跨度屋盖结构抗震设计.北京:中国建筑工业出版社,2000.
    [125]唐友刚.高等结构动力学.天津:天津大学出版社,2002.
    [126]R.W.克拉夫,J.彭津.结构动力学,北京:科学出版社,1985.
    [127]梁冰.网架损伤识别的动测研究:(硕士学位论文).大连:大连理工大学,2005.
    [128]应怀樵,刘进明等.DASP大容量数据自动采集和信号处理系统.北京:东方振动和噪声技术研究所,2001.
    [129]应怀樵.现代振动噪声技术.北京:航空工业出版社,2000.
    [130]张志涌,徐彦琴.MATLAB教程.北京:北京航空航天大学出版社,2001.
    [131]SAMPAIO R P C,MAIA N M M.Damage detection using the frequency- response-function curvature method.Journal of Sound and Vibration.1999,226:1029-1042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700