用户名: 密码: 验证码:
压缩作用下岩体裂纹起裂扩展规律及失稳特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受压条件下岩体裂纹的扩展问题是岩石断裂力学研究的重点课题之一。众多的试验表明:在单轴或低围压作用下岩体裂纹破坏几乎都是由于翼型裂纹(初始裂纹的Ⅰ型扩展)的扩展失稳造成的;对多裂纹体而言,翼型裂纹也是多裂纹相互贯通和岩桥破坏的重要原因,因此研究翼型裂纹的扩展规律对研究节理岩体的破坏模式和破坏机制具有重要的意义。本文采用理论、试验和数值模拟的方法对压应力作用下岩体中两种初始裂纹-张开裂纹和闭合裂纹的Ⅰ型扩展规律进行了详细的研究,同时研究了压缩作用下张开型裂纹闭合规律及其对起裂的影响,具体内容如下:
     (一)张开型裂纹的闭合、起裂规律研究
     1.应用复变函数和保角变换的方法,研究了张开型裂纹在压缩作用下裂纹面的变形规律,给出了准静态加载条件下变形后裂纹面构型的参数方程,并给出了未知参数的表达式,用于分析加载过程中张开型裂纹面形状的变化。
     2.在研究裂纹面变形的基础上,建立了张开型裂纹面闭合的几何模型,把裂纹面的临界闭合载荷归结于一个一元二次方程的解,并分析了方程解的条件。结果表明:裂纹在压缩作用下,或者全部闭合,或者全不闭合,不存在着中间状态,且若不考虑裂纹面的起裂破坏问题,总能找到一个应力值,使得张开型裂纹发生闭合。由于该闭合条件建立在几何模型的基础上,依据是裂纹面的构型方程,不直接涉及到加载过程,而以往的准则往往只能计算等比加载条件下的张开型裂纹的临界闭合载荷大小,所以该准则使用范围更广。
     3.在假设裂纹长度远大于裂纹宽度的基础上,对以上的闭合准则进行了进一步的简化,建立了简化闭合准则,并分析了简化闭合准则计算张开型裂纹临界闭合载荷的误差,结果表明简化准则可以有效地计算张开型裂纹的临界闭合载荷值。相比于简化前的准则,简化准则能直接体现临界闭合应力与裂纹几何特征和加载特征的关系,且计算更加简单。
     4.采用有限元(ABAQUS)的方法对裂纹面的闭合过程进行了数值模拟,并采用数值方法计算了裂纹面的闭合载荷,数值结果表明,裂纹面在一定的载荷下,或者完全闭合或者完全不闭合,验证了以上的闭合规律,同时提出了采用数值方法求解裂纹闭合载荷的方法,并采用数值方法计算出的闭合载荷大小和理论计算结果进行了比较,两者吻合的很好,验证了以上理论推导的正确性。
     5.基于以上结论,进一步研究了裂纹面的闭合变形对张开型裂纹起裂规律的影响。在起裂判断中,首先要分析裂纹在起裂前是否发生闭合,为此引入了一个新的参数—闭合系数,并应用这个系数建立了一个准则,用于判断张开型裂纹起裂时是否已经发生了闭合。对没有闭合的裂纹,采用张开型裂纹进行起裂分析,不考虑裂纹面的相互作用力,对发生闭合的裂纹,采用闭合裂纹进行起裂分析,这时要考虑裂纹面的相互作用力。同时考虑到张开型裂纹的变形和闭合对裂纹尖端应力分布的影响,对张开型裂纹的传统应力强度因子进行修正,以反映其闭合变形特征对张开型裂纹起裂的影响。
     6.考虑到裂纹几何形状对裂纹起裂规律的影响,文中应用了陈篪提出的真实裂纹模型对张开型裂纹进行断裂分析。首先采用复变函数和保角变换的方法求出了裂纹面的周边应力分布,以此为依据得出了裂纹的应力强度因子,对张开型裂纹进行了起裂分析。结合试验采用陈篪裂纹模型和椭圆型裂纹模型对张开型裂纹进起裂分析,发现陈篪裂纹模型的分析结果更符合试验结果,为张开型裂纹的起裂分析提供了一个新的思路。
     (二)张开型初始裂纹的翼型裂纹扩展和失稳研究
     1.采用PYTHON语言对ABAQUS进行了二次开发,实现了有限元模拟裂纹扩展过程中网格的重新剖分功能,采用最大拉应力准则计算了翼型裂纹的扩展角,并编写了复合应力强度因子计算的子程序,在整个数值模拟过程中,计算了翼型裂纹路径上各点的Ⅰ/Ⅱ型应力强度因子、扩展角、复合应力强度因子等,并将翼型裂纹的这些参量写入指定的数据文件。成功地模拟了压缩作用下翼型裂纹的扩展过程。
     2.采用数值和试验相结合的方法研究了翼型裂纹的渐近扩展过程,发现翼型裂纹的扩展路径有明显的渐近性质,其渐近线为过初始裂纹中心点、平行于最大压主应力的一条直线。基于翼型裂纹路径的这个特点,采用双曲线参数方程近似表示翼型裂纹路径,该双曲线方程的未知参数为初始裂纹的起裂角、初始裂纹加载角、初始裂纹长度,参数物理意义明确,便于应用,并采用了数值和试验的方法对文中提出的双曲线路径进行了验证。
     3.根据翼型裂纹的渐近特点,建立了“张开型—曲线翼型裂纹模型”,用于分析受压条件下张开型初始裂纹的翼型裂纹扩展失稳规律。由于该模型的翼型裂纹扩展路径预知,不需要对有限元网格进行重新划分,可以采用有限元直接计算路径上的应力强度因子,即采用少数的几个点能得出裂纹的扩展载荷与翼型裂纹长度的对应关系,简化了有限元计算。最后采用该模型对翼型裂纹的扩展和失稳进行了分析,将模型的计算结果和数值及试验结果对比,发现三者吻合的很好,这表明了双曲线翼型裂纹模型的有效性。
     4.裂纹体失稳载荷边界效应的分析,总体而言边界尺寸对翼型裂纹的扩展路径影响较小,而对翼型裂纹的扩展载荷(或应力强度因子)影响较大。对单轴作用下有限板而言,由于边界效应的影响,其应力强度因子趋近于一个正值,而无限大板的应力强度因子则逐渐趋向于0。所以对翼型裂纹扩展分析时,要注意边界效应的影响。
     (三)闭合型初始裂纹的翼型裂纹的扩展、失稳分析
     1.采用ABAQUS二次开发对翼型裂纹的扩展过程进行了数值模拟,同样发现翼型裂纹的扩展路径具有的渐近性质:其渐近线为平行于最大压主应力的某条直线。与张开型初始裂纹的翼型裂纹路径的渐近线不同,闭合型初始裂纹的翼型裂纹路径的渐近线不一定过初始裂纹的中心点,其渐近线的位置和裂纹面的摩擦系数相关,当摩擦系数为0时,渐近线过初始裂纹的中心点,当摩擦系数不为0时,其渐近线不过初始裂纹的中心线。并通过理论推导得出了闭合型初始裂纹的翼型裂纹路径的渐近线方程。
     2.基于翼型裂纹路径的这个特点,仍采用双曲线参数方程近似表示了翼型裂纹路径,其未知参数为初始裂纹长度、初始裂纹角、初始裂纹面摩擦系数等,便于求解,并采用数值模拟的方法验证了所得双曲线方程表示翼型裂纹路径的可行性,在此基础上提出了“闭合型一曲线翼型裂纹模型”,用于分析闭合型初始裂纹的扩展和失稳特性,并采用试验和数值模拟的方法对该模型进行了验证。
     3.采用双曲线翼型裂纹模型和传统的直线型翼型裂纹模型分别对试验中的翼型裂纹扩展进行了分析,发现两者计算结果有较大的差别,并和试验结果及数值模拟的结果进行了对比分析,发现文中的曲线翼型裂纹模型和试验吻合的更好,而传统的直线型翼型裂纹模型和试验相差较大,这表明了双曲线裂纹模型的有效性。
     4.简要地分析了文中所提出的“张开型—翼型裂纹模型”和“闭合型—翼型裂纹模型”的差别,结果显示张开型初始裂纹的翼型裂纹扩展路径和相同条件下闭合型初始裂纹的翼型裂纹扩展路径及扩展过程中翼型裂纹应力强度因子差别较大,所以在研究裂纹的起裂扩展时,要分析初始裂纹起裂扩张过程中存在的状态(即判断是张开型初始裂纹还是闭合型初始裂纹),以确定采用哪一种翼型裂纹模型分析,同时也说明了对张开型裂纹闭合准则研究的必要性。
It is an important subject of rock fracture mechanics to study the law of the flaw initiation, propagation and failure in rock masses under compression. Numerous studies indicate that growth of wing cracks(I mode crack) is main reason for rock masses with the single crack or multiple cracks under uniaxial compression or under biaxial compression with low confining pressure. So laws of the wing crack initiation, propagation and failure have important significance for the study on the failure mode and failure mechanism of the rock masses with crack under compression. In this paper, the theoretical method, numerical methods and testing methods are combined to study the initiation, propagation and failure laws of the wing cracks for both open cracks and closing cracks under compression, besides the closing law for open crack and the effect of crack closing in the open crack initiation are also included. And the detail researches are explained as followings:
     (I)Study on the closing law and initiation characteristics of open crack under compression.
     1. The law of the deformation of the open crack surface under compression is studied. In the paper the methods of complex function and conformal transformation are combined to construct the parameter function, and the parameters of the function are solved. Through the parameter function, the geometry shapes of the deforming crack surface under compression can be described easily.
     2. Based on the study about deformation of the open crack surface under compression, the geometric model for analysis of the open crack closure is established. Through the geometric model, two conclusions are drawn as follows: First the closing law of the open crack is obtained which agrees with the general viewpoints of rock mechanics - an open crack exists either completely closed or completely open under compressive loading in rock masses. Next the criterion for a crack closure is defined which is expressed by the deformation parameters. By use of this criterion the critical closing stress of an open crack can be determined by a simple quadratic equation easily. Besides this criterion doesn't deal with the assumption of the load pattern, so it can be applied under any compressive loads, which extends the applied range of the traditional closing criterions of the open crack. At the same time, it is very convenient to be applied because of its simple mathematical form and definite physical meanings of its unknown parameters.
     3. Based on the simplified hypotheses that the thickness of open cracks is far smaller than their length, a simplified formula is established to determine closing stress of an open crack. Comparisons between the results calculated by the simplified formula and original theory are made. It shows that only small error happens by using the simplified formula, consequently, the simplified formula is feasible.
     4. Referring to the experiments data, the finite element method (ABAQUS) is used to simulate the closing process of the open crack under compression. It reveals that the numerical results support the theoretical viewpoints: an open crack exists only in the state of completely closed or completely open under compressive loading. Through the analysis on the displacement curves of the nodes of the finite element model, a new numerical method is presented to determine the closing stress of an open crack. Finally, the closing stresses solved separately by the numerical method, the previous theoretical formula and the simplified formula are compared, showing that the results obtained by three methods are identical, which approve the validity of the proposed conclusion in the paper.
     5. Base on the closing law of open crack under compression, the further study on the effect of the open crack closure in the initiation characters of the open crack. Before the analysis of the initiation of the open crack under compression, it is pre-requisite to ensure if the open crack is closed before its initiation. Therefore, a closure criterion of an open crack is established to determine existence state of crack before initiation. If the crack is closed before initiation, the closed crack model must be chosen and the interaction force along the crack surface should be considered for the fracture analysis. If the crack keeps open before initiation, the open model should be used, and deformation of the open crack should be considered. Based on the above study on the deformation and closing law of open crack, the traditional SIFs are modified in order to reflect the impact of the deformation or closure of the crack on the initiation characters of the open crack.
     6. Considering the effect of the open crack's geometric shape in the crack initiation, Chenchi crack model is used in the study of the crack fracture in the rock masses under compression. Then the methods of complex function and conformal transformation are combined to construct the stress distribution around crack surface. Based on the above conclusion the stress intensity factor of crack is calculated, and the fracture criterion of the crack model is built to analyze the initiation compression stress and angle of crack which agree with the experiments. The Further comparison between the results of the ellipse model and the Chenchi model is done, and the results show the Chenchi model can reflect the initiation property of the crack open more accurately.
     (II)Study on growth and failure characters of the wing cracks from open crack
     1. The second development of ABAQUS is implemented to automaticly remesh the finite element meshes. Besides the maximum circumferential stress fracture criterion is used for the second development of ABAQUS to determine the cracking directions of wing cracks. Then the wing crack growth is simulated by the finite element method, by which the propagation paths and the mixed-mode stress-intensity factors of wing cracks were also obtained.
     2. The asymptotic failure characteristics of the wing cracks are studied by the combination of the testing method and the numerical simulation method, it is found that under compression, the wing cracks of the open main flaws start from the tip of the main crack and grow along the curve path. With the length increasing, the wing crack gradually approximate to the line which passes the middle point of the main crack and is parallel to the direction of maximum main stress. It is the important geometric feature of the wing crack paths. According to the geometric characteristics of the wing crack paths, a hyperbolic equation is set up to describe the curve paths of wing cracks approximately. In the equation, the unknown parameters are determined by the crack initial angle, the crack length and the angle between the direction of the maximum main stress and the crack surface. This equation of wing cracks is simple and its physical meaning is clear which is convenient for application.
     3. According to Geometric Characteristics of the wing crack paths, the cure wing crack model- hyperbolic-wing crack model is built to analyze the extension and failure laws of wing crack from the open crack under compression. In the paper, the comparative analysis on the paths by the hyperbolic equation, numerical simulation and the experiments is made, and the results show the paths by the hyperbolic equation are in concordance with those by experiments, which prove that the hyperbolic equation in the paper can be used to describe the propagation paths of wing cracks under compression. Furthermore, the stress intensity factors along the hyperbolic path are calculated by ABAQUS, and the extending loads of the wing cracks are analyzed. Through comparing with the experiment results and numerical simulation results, it is found that the extending loads by the hyperbolic wing cracks in the paper fit better with by the experiments and numerical simulation, which shows validity of the results in the paper.
     4. The effect of the boundary size on the extending characteristics of wing cracks under uniaxial compression. In general, the boundary size of the infinite plate has little effect on the wing crack paths, but has great impact on the extension loads (SIFs) along the wing crack path. For a crack in a finite plate, its SIFs along the wing crack path tend to a fixed positive value which depends on the size of the infinite plate. But for a crack in an infinite plate, its SIFs along the wing crack path will tend to zero value. That's to say, for a crack in an infinite plate, its wing crack will extend stably for ever with the load increase. However for a crack in a finite plate, its wing crack will extend unstably and the crack will burst when the load arrives at a certain value which can be observed in testing. So for the wing cracking in an infinite plate, it is notable that the boundary effect should be considered for the mixed-mode stress-intensity factors of the wing cracks.
     (III)Study on growth and failure characters of the wing cracks from closing crack
     1. The numerical simulation is implemented to study laws of the wing crack extension from the closing crack by the second development of ABAQUS. The asymptotic behaviors of the wing crack paths of the closing cracks are also found: the wing cracks of the open main flaws start from the tip of the main crack and grow along the curve path. With the length increasing, the wing crack gradually approximate to the line which passes a certain point of the main crack and is parallel to the direction of maximum main stress. The asymptotic lines of cure wing cracks of the closing crack are determined by theoretical analysis method. Compared with the wing crack of the open crack, the asymptotic lines of the wing crack of the closing crack don't always pass through the center point of the main crack.
     2. According to the geometric characteristics of the wing crack paths, a hyperbolic equation is set up to describe the curve paths of wing cracks approximately. In the equation, the unknown parameters are determined by the initial crack angle, the initial crack length, the friction coefficient of the initial crack surfaces, and the angle between the direction of the maximum main stress and the crack surface. This equation of wing cracks is simple and its physical meaning is clear which is convenient for application. According to Geometric Characteristics of the wing crack paths, the cure wing crack model- hyperbolic-wing crack model is built to analyze the extension and failure laws of wing crack from the closing crack under compression. In the paper, the stress intensity factors along the hyperbolic path are calculated by ABAQUS, and the extending loads of the wing cracks are analyzed. Through comparing with the experiment results and numerical simulation results, it is found that the extending loads by the hyperbolic wing cracks in the paper fit better with by the experiments and numerical simulation, which shows validity of the results in the paper.
     3. In order to show validity of the cure wing crack model in the paper, a comparative Analysis of the cure wing crack model and the traditional linear wing crack model is made. First the analysis of the extension loads of the wing crack in the testing is done respectively by the above two models. Then analysis results respectively by the above two models are compared with the testing result and the numerical computation results, and the comparison results show: the extension loads determined by the curve wing crack model coincide well with the results from the testing and numerical computation, but the extension loads determined by the traditional linear wing crack model have larger difference from the ones by the testing and numerical computation. The above comparative analysis results support the validity of the curve wing crack model proposed by the paper.
     4. In order to show the difference between the 'initial open flaw-curve wing crack model' and the 'initial closing flaw-curve wing crack model' proposed in the paper, a comparative Analysis of the two models is made. According to the initial open flaw and the initial closing flaw, though they have the same flaw angle, the same flaw length and the same friction coefficients, the paths of their wing cracks make a great difference, so do the extending loads for their wing cracks. Therefore, before the study of the extending law of the initial flaw under compression, it is needed to distinguish the initial closing flaw and the initial open flaw by use of the closing law proposed in the paper, which shows the necessity of the closing law for the open crack.
引文
[1]Inglis C E.Stress in a plane due to the presence of cracks and sharp corners[J].Transactions of the Institution of Naval Architects,1913,55:219-230.
    [2]Griffith A A.The phenomena of rupture and flow in solids[J].Philosophical Transactions of the Royal Society of London,Series A,1920,221:163-198.
    [3]Irwin G R.Fracture dynamics[A].Fracturing of metals seminar[C],Chicago:American Society for Metals,1947:147-166.
    [4]Orowan E.Fracture and strength of solids[R].Reports on Progress in Physics,London,1949,185-232.
    [5]Begley J A,Lands J D.Serendipity and the J-integral[J].International Journal of Fracture,1976,12:764.
    [6]Dugdele D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100.
    [7]Knott,J.F.Fundamentals of fracture mechanics[M].London:Butterworth,1973
    [8]LawnB R,Wilshaw T R.Fracture of brittle solids[M].Cambridge:Cambridge University Press,1975
    [9]Liebowitz H.Fracture:An advanced treatise[M].New York:Academic Press,1963
    [10]Price N J.Fault and joint development in brittle and semi-brittle rock[M].Pergaman:0 xford,1966
    [11]Das S,Scholz C H.Theory of Time-Dependent Rupture in the Earth[J].Journal of Geophysical Research,1981,86:6039-6051.
    [12]J W Rudnicki.Fracture Mechanics Applied to the Earth's Crust[J].Annual Review of Earth and Planetary Science,1980,8:489-525.
    [13]Rice J R.The mechanics of earthquake rupture[A].Physics of the Earth's Interior[C],Bologna:Italian Physical Society,1980:555-649.
    [14]Rice J R.Theory of Precursory Processes in the Inception of Earthquake Rupture[J].Gerlands Beitr.Geophysik,1979,88:91-127.
    [15]Crampin S,Evans R,Atkinson B K.Changes in shear wave splitting at Anza near the time of the North Palm Springs earth quake[J].Geophysical Journal of the Royal Astronomical Society,1984,76:147-156.
    [16]Li Y C,Rice J R.Preseismic Rupture Progression and Great Earthquake Instabilities at.Plate Boundaries[J].Journal of Geophysical Research,1983,88:4231-4246.
    [17]Anderson 0 L,and Grew P C.Stress corrosion theory of crack propagation with applications to geophysics[J].Reviews of Geophysics and Space Physics,1977,15:77-104.
    [18]Bruner W M.Crack growth during unroofing of crustal rocks:effects on thermoelastic behavior and near-surface stresses[J].Journal of Geophysical Research,1984,89:4167-4184.
    [19]Abou-Sayed A S,Brechtel C E,Clifton R J.In situ stress determination by hydrofracturing:a fracture mechanics approach[J].Journal of Geophysical Research,1978,83:2851-2862.
    [20]Demarest H H.Application of stress corrosion to geothermal reservoirs[R].Report La-6148-Ms,New Mexico,1976,
    [21]Liu H W,Miller K J.Fracture Toughness of Fresh-Water Ice[A].Proceedings of IUTAM Symposium on the Physics and Mechanics of Ice[C],Copenhagen:Springer-Verlag,1979.
    [22]邱祥波,李术才,陈卫忠等.大型复杂洞室稳定性三维弹塑性有限元分析[J].岩石力学与工程学报,2002,2l(增):2065-2068.
    [23]朱维申,王可钧,朱家桥等.二滩电站坝肩厂房三维有限元分析及围岩变形观测反分析[J].岩土力学,1988,9(3):11-21.
    [24]李银平.岩石类材料损伤断裂机理分析[D](博士学位论文).武汉:华中科技大学,2003.
    [25]路见可.弹性力学复变方法[u).武汉:武汉大学出版社,1986:1-220.
    [26]闻国椿.共形映照与边值问题[[M].北京:高等教育出版社,1985:1-180。
    [27]Muskelishvili Ni.Some basic problems of mathematical theory of elasticity[M].Holland:Noordhoff,1953
    [28]穆斯海里什维里Η Ν.数学弹性力学中的几个基本问题[M].北京:北京科学出版社,1958:1-368.
    [29]Westergaard H M.Bearing pressure and cracks[J].Journal of Applied Mechanics,1939,6:49-53.
    [30]Williams M L.On the stress distribution at the base of a stationary crack[J].Journal of Applied Mechanics,1957,24:109-114.
    [31]Snedden I N.Fourior transform[M].New York:McGrawHill,1951:1-500.
    [32]路见可.解析函数边值问题[M].上海:上海科学技术出版社,1987:1-460.
    [33]穆斯海里什维里Η Ν.奇异积分方程[M].上海:上海科学技术出版社,1966:40-380.
    [34]范天佑.断裂力学基础[M].南京:江苏科学技术出版社,1978:15-350.
    [35]杨晓春.保形映照法与断裂问题的解析解(Ⅰ)[J].宁夏大学学报(自然科学版),2000,21(1):60-65.
    [36]杨晓春.保形映照法与断裂问题的解析解(Ⅱ)[J].宁夏大学学报(自然科学版),2000,21(2):93-67.
    [37]Bueckner H F.Anovel principle for the computation of stress intensity factor[J].Zeitschrift fur angewandte Mathematik und Mechanik,1970,50:529-546.
    [38]Liu C T,Zhang D Z.Semi-weight function method in fracture mechanics[J].International Journal of fracture,1991,48:R3-R8.
    [39]陈枫,孙宗颀,徐纪成。单轴压缩下中心裂纹巴西试样的权函数分析[J].岩石力学与工程学报,2000,19(5):599-603.
    [40]马开平,柳春图.计算平面Ⅰ/Ⅱ型复合应力强度因子的半权函数法[J].机械强度,2003,25(5):576-579.
    [41]吴学仁.有限板孔边裂纹的权函数的解法[J].航空学报,1989,12:646-650。
    [42]周小平,张永兴,哈秋聆.裂隙岩体加载和卸荷条件下应力强度因子[J].地下空间,2003,23(3):277-280.
    [43]Erdogan F,Sih G C.On the crack extension in plates under plane loading and transverse shear[J].Journal of Basic Engineering,1963,85(4):519-527.
    [44]Jun Chang,Jin-quan Xu,Yoshiharu Mutoh.A general mixed-mode brittle fracture criterion for cracked materials[J].Engineering Fracture Mechanics,2006,73:1249-1263.
    [45]M R Ayatollahi,M R M Aliha.Cracked Brazilian disc specimen subjected to mode Ⅱdeformation[J].Engineering Fracture Mechanics,2005,72:493-503.
    [46]Murrell S A F.The theory of the propagation of elliptical cracks under various conditions of plane strain or plane stress,Part Ⅰ[J].British Journal of Applied Physics,1964,15:1195-1220.
    [47]Murrell S A F.the theory of the propagation of elliptical Griffith cracks under various conditions of plane strain or plane stress:Parts Ⅱ and Ⅲ[J].British Journal of Applied Physics,1964,15:1211-1223.
    [48]Rao Q H,Sun Z Q.Stephansson O.Shear fracture(Mode Ⅱ) of brittle rock[J].International Journal of Rock Mechanics and Mining Science,2003,40(3):355-375.
    [49]Shen B,Stephansson O.Modification of the G criterion for crack propagation subjected to compression[J3.Engineering Fracture Mechanics,1994,47(2):177-189.
    [50]Sih G C.Strain-energy-density factor applied to mixed mode crack problem[J].International Journal of Fracture,1974,10(3):305-321.
    [51]Sun Zongqi.Is crack branching under shear loading caused by shear fracture.-A critical reciew on maximum circumferential stress theory[J].Transactions of Nonferrous Metals Society of China,2001,11(2):287-292.
    [52]Tade H,Paris P C,Irwin G R.The crack stress analysis of cracks handbook[M].Pennsylvania:Del Research Corporation,1973
    [53]Tade H,Paris P C,Irwin G R.The stress analysis of cracks handbook[M].St.Louis:Paris Productions,1985
    [54]范天佑.断裂理论基础[M].北京:科学出版社,2003:15-350.
    [55]郭少华,孔宗颀,谢晓晴.压缩条件下岩石断裂模式与断裂判据的研究[J].岩土工程学报,2002,24(3):304-308.
    [56]郭少华.岩石类材料的压缩断裂的实验与理论研究[D](博士学位论文).长沙:中南大学,2003.
    [57]李贺,尹光志.岩石断裂力学[M].重庆:重庆大学出版社,1988:119-122.
    [58]栾茂田,杨新辉,杨庆.考虑三向应力效应复合型最大Mises应力断裂判据[J].岩土力学,2006,27(6):1647-1652.
    [59]杨新辉,栾茂田,杨庆。基于简化裂尖断裂模型的脆性断裂机理及复合型断裂判据[J].大连理工大学学报,2005,45(5):712-716.
    [60]周群力.岩石压剪断裂判据及其应用[J].岩土工程学报,1987,9(3):33-37.
    [61]杨晓春,范天佑,李成岳.真实裂纹模型与非奇异断裂力学探索[A].第九届全国疲劳与断裂学术会议[C],1998:100-106.
    [62]Carter B J.Size and stress gradient effects on fracture around cavities[J].Rock mechanics and rock engineering,1992,25:167-186.
    [63]Hobbs D W.The tensile strength of rocks[J].International Journal of Rock Mechanics and Mining Science,1964,1:385-396.
    [64]Li J,Zhang X B.A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials[J].Engineering Fracture Mechanics,2006,?3:505-523.
    [65]Parvizi A,Garrett K W,Bailey J E.Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates[J].Journal of Materials Science,1978,9(13):195-201.
    [66]Sweryn A,Lukaszewicz A.Verification of brittle fracture criteria for elements with V-shaped notches[J].Engineering Fracture Mechanics,2002,69:1487-1510.
    [67]Bazant Z P,Li Z.Modulus of rupture:size effect due to fracture initiation in boundary layer[J].Journal of Structural Engineering,1995,121:739-746.
    [68]Berenbaum R,Brodie I.Measurement of the tensile strength of brittle materials[J].British Journal of Applied Physics,1959,10:281-287.
    [69]Bieniawski Z T,Hawkes I.Suggested methods for determining tensile strength of rock materials[J].International Journal of Rock Mechanics and Mining Science,1978,15:99-103.
    [70]Alberto Carpinteri,Simone Puzzi.A fractal approach to indentation size effect[J].Engineering Fracture Mechanics,2006,73:2110-2122.
    [71]Bazant Z P,Pijaudier-Cabot G.Non-local continuum damage,localization,instability and convergence[J].Journal of Applied Mechanics-T ASME,1988,55:287-293.
    [72]David Taylor,Pietro Cornetti,Nicola Pug,no.The fracture mechanics of finite crack extension[J].Engineering Fracture Mechanics,2005,72:1021-1038.
    [73]Gianluca Cusatis,Luigi Cedolin.Two-scale study of concrete fracturing behavior[J].Engineering Fracture Mechanics,2007,74:3-17.
    [74]Grenestedt J L,nallstrom S.Crack initiation from homogeneous and bimaterial corners[J].Journal of Applied Mechanics,1997,64:811-818.
    [75]Horst Fischer,Walter Rentzsch,Rudolf Marx.A modified size effect model for brittle nonmetallic materials[J].Engineering Fracture Mechanics,2002,69:781-791.
    [76]Kfouri A P.Characteristic crack-tip distances in fracture criteria:Is crack propagation discontinuous?[J].Engineering Fracture Mechanics,2007,doi:10.1016/j.engfracmech.2007.1001.1024.
    [77]L Susmel,D Taylor.The theory of critical distances to predict static strength of notched brittle components subjected to mixed-mode loading[J].Engineering Fracture Mechanics,2007,doi:10.1016/j,engfracmech.2007.1003.1035.
    [78]Leblond J B,Mouro P.Crack propagation from a pre-existing flaw at a notch root-Ⅰ:Introduction and general from of the stress intensity factors at the initial crack tip[J].International Journal of Fracture,2000,104:211-224.
    [79]Leblond J B,Mouro P.Crack propagation from a pre-existing flaw at a notch root-Ⅱ:Detailed form of the stress intensity factors at the initial crack tip and conclusions[J].International Journal of Fracture,2000,104:225-239.
    [80]Leguillon D.Strength or toughness? A criterion for crack onset at a notch[J].European Journal of Mechanics-A/Solids,2002,21:61-72.
    [81]Leguillon D,Quesada D,Putot C,Martin E.Prediction of crack initiation at blunt notches and cavities - size effects[]].Engineering Fracture Mechanics,2006,doi:10.1016/j.engfracmech.2006.1011.1008.
    [82]Moroz Z,seweryn A.Non-local failure and damage evolution rule:application to a dilatant crack model[J].Journal of Physics,1998,8:257-268.
    [83]Xiaozhi Hu,Kai Duan.Size effect:Influence of proximity of fracture process zone to specimen boundary[J].Engineering Fracture Mechanics,2007,74:1093-1100.
    [84]Dugdale D.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100-104.
    [85]Camacho G T,Ortiz M.Computational modelling of impact damage in brittle materials[]].International Journal of Solids and Structures,1996,33:2899-2938.
    [86]McClintock F A.Ductile fracture instability in shear[J].Journal of Applied Mechanics,1958,10:582-588.
    [87]Ritchie R,Knott 5,Rice 5.On the relation between critical tensile stress and fracture toughness in mildsteel[J].Journal of the Mechanics and Physics of Solids,1973,21:395-410.
    [88]Pietro Cornetti,Nicola Pugno,Alberto Carpinteri,David Taylor.Finite fracture mechanics:A coupled stress and energy failure criterion[J].Engineering Fracture Mechanics,2006,73:2021-2033.
    [89] Bobet A, Einstein H H.. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstract, 1998, 35(7):863-889.
    [90] Yin-Ping Li, Long-Zhu Chen, Yuan-Han Wang. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures, 2005, 42:2505-2516.
    [91] Lajtai E Z. Brittle fracture in compression [J]. International Journal of Fracture, 1974, 10(4):525-536.
    [92] Ingraffea A R, Heuze F E. Finite element models for rock fracture mechanics[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4:25-43.
    [93] Jiefan H, Ganglin C, Yonghong Z, Ren W. An experimental study of the strain field development prior to failure of a marble plate under compression [J]. Tectonophysics, 1990, 175:269-284.
    [94] Petit J P. Normal stress dependent rupture morphology in direct sheartest on sandstone with applications to some natural fault surface features[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstract, 1988, 25(6):411—419.
    [95] Petit J P, Barquins M. Can natural faults propagate under mode II conditions[J]. Tectonophysics, 1988, 7(6):1243-1256.
    [96] Chen G, Kemeny J, Harpalani S. Fracture propagation and coalescence in marble plates with pre-cut notches under compression [A]. Symposium on Fractured and Jointed Rock Mass[C], Lake Taho: California, 1992:443-448.
    
    [97] 李银平, 王元汉, 陈龙珠,余飞,李亮辉. 含预制裂纹大理岩的压剪试验分析[J].岩土工程学报, 2004, 1(1): 120-124.
    [98] Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression [J]. International Journal of Fracture, 1984, 26:276-294.
    [99] Brace W, Byerlee J. Recent experimental studies of brittle fracture rocks[A]. Fairhurst C (ed) Proceedings of the eighth symposium on rock mechanics[C], University of Minnesota: failure and breakage of rock, 1967:57-81.
    [100] Horii H, Nemat-Nasser S. Brittle failure in compression: Splitting, faulting and brittle-ductile transition[J]. Philosophical Transactions of the Royal Society of London, 1986, 319(1549):337-374.
    [101] Takeuchi K. Mixed-Mode Fracture Initiation in Granular Brittle Materials[D] (M. S. Thesis). Cambridge: Massachusetts Institute of Technology, 1991.
    [102] Bobet A. Fracture coalescence in rock materials: experimental observations and numerical predictions[D] (Sc. D. Thesis). Cambridge: Massachusetts Institute of Technology, 1997.
    [103]Broberg B K.On crack path[J].Engineering Fracture Mechanics,1987,28(5/6):663-679.
    [104]H J Rathbun,G R Odette,T Yamamoto,G E Lucas.Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition-A single variable experiment and database[J].Engineering Fracture Mechanics,2006,73:134-158.
    [105]M J Iqbal,B Mohanty.Experimental calibration of stress intensity factors of the ISRM suggested cracked chevron-notched Brazilian disc specimen used for determination of mode-I fracture toughness[J].International Journal of Rock Mechanics & Mining Sciences,2006,43:1270-1276.
    [106]M R Ayatollahi,M R M Aliha.Fracture toughness study for a brittle rock subjected to mixed mode Ⅰ/Ⅱ loading[J].International Journal of Rock Mechanics & Mining Sciences,2007,44:617-624.
    [107]Rao Q H,Li C,Stillborg B,Sun Z Q.Mode Ⅱ fracture toughness of rock[A].90th International Congress on Rock Mechanics[C],Paris,1999:731-734.
    [108]Rao Q H,Sun Z Q,Stephansson O.Shear fracture(Mode Ⅱ) of brittle rock[J].International Journal of Rock Mechanics and Mining Science,2003,40(3):355-375.
    [109]T Backers,G Dresen,E Rybacki,0 Stephansson.New data on mode Ⅱ fracture toughness of rock from the punch through shear test[J].International Journal of Rock Mechanics & Mining Sciences,2004,41(3):1-6.
    [110]王桂尧,孙宗颀,徐纪成.岩石压剪断裂机理及强度准则的探讨[J].岩土工程学报,1996,18(4):68-74.
    [111]王桂尧,孙宗颀。断裂力学在震源机制分析中几个问题的探讨[J].岩石力学与工程学报,1999,18(1):55-59.
    [112]Reyes O,Einstein H H.Failure mechanism of fractured rock - a fracture coalescence model[A].Proceedings 7th International Congress of Rock Mechanics[C],Germany:A A Balkema Publishers,1991:333-340.
    [113]Shen B,Stephansson O,Einstein H H,Ghahreman B.Coalescence of fractures under shear stress experiments[J].Journal of Geophysical Research,1995,100(6):5975-5990.
    [114]Sagong M,Bobet A.Coalescence of multiple flaws in a rock-model material in uniaxial compression[J].International Journal of Rock Mechanics & Mining Sciences,2002,39:229-241.
    [115]朱维申,陈卫忠,申晋.雁形裂纹扩展的模型实验及断裂力学机制研究[J].固体力学学报,1998,19(4):355-360.
    [116]黎立云,车法星,卢晋福,刘大安。单压下类岩材料有序多裂纹的宏观力学性能[J].北京科技大学学报,2001,23(3):199-203.
    [117]黎立云,刘大安,史孝群,车法星.多裂纹类岩体的双压实验与正交各向异性本构关系[J].中国有色金属学报,2002,12(1):165-170.
    [118]黄明利.岩石多裂纹相互作用破坏机制的研究[D](博士学位论文).沈阳:东北大学,1999.
    [119]Wong R H C,Chau K T.The coalescence of frictional cracks and the shear zone formation in brittle solids under compressive stresses[J].International Journal of rock mechanics and mining science,1997,34(335):3-4.
    [120]Wong R H C,Chau K T.Crack coalescence in a rock-like material containing two cracks[J].International Journal of Rock Mechanics,Mining Science and Geomechanics Abstract,1998,35(2):147-164.
    [121]Wong R H C,Chau K T,Tang C A,Lin P.Analysis of crack coalescence in rock-like materials containing three flaws.Part Ⅰ:experimental approach[J].International Journal of Rock Mechanics & Mining Sciences,2001,38(6):909-924.
    [122]Wong R H C,Huang M L,Jiao M R,Tang C A.Crack propagation from brittle solid containing surface fracture under uniaxial compression[J].International Journal of rock mechanics and mining science,2004,41(3):1-6.
    [123]Wong R H C,Tang C A,Chau K T,P Lin.Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression[J].Engineering Fracture Mechanics,2002,69(16):1853-1871.
    [124]Dyskin A V,Germanovich L N,Jewell R J,et al.Study of 3-d mechanisms of crack growth and interaction in uniaxial compression[J].ISRM News Journal,1994,1994(2):1.
    [125]Dyskin A V,Germanovich L N,Ustinov K B.A 3-D model of wing crack growth and interaction[J].Engineering Fracture Mechanics,1999,63:61-110.
    [126]Sahouryeh E,Dyskin A V.Experimental and theoretical analysis of wing initiation from 3-D cracks in unixial compression[A].Ninth International Conference on Fracture[C],Oxford,UK:Pergamon,1997,2:1193-1200.
    [127]Sahouryeh E,Dyskin A V.The mechanism of 3-D crack growth in uniaxial compression:The role of non-singular stresses[A].36th Rock Mechanics Symposium ISRM International Symposium Linking Science to Rock Engineering[C],US:Elsevier Science Ltd,1997,34:3-4.
    [128]Y Fujii,Y Ishijima.Consideration of fracture growth from an inclined slit and inclined initial fracture at the surface of rock and mortar in compression[J].International Journal of Rock Mechanics & Mining Sciences,2004,41:1035-1041.
    [129]Sanford R J,Dally J W.A general method for determining mixed-mode stress intensity factors from isochromatic fring patterns[J].Engineering Fracture Mechanics,1979,11:621-633.
    [130]马崇山,裴希贤.应力强度因子的光弹性测试研究[J].太原重型机械学院学报,1996,17(3):214-219.
    [131]蒋文珍,刘立钰.复合型应力强度因子KI,KII的确定[J].河海大学学报,1994,23(4):73-79.
    [132]唐晨,顾晓辉,云大真.确定应力强度因子的实验一计算混合法[J].大连理工学报,1996,36(2):152-155.
    [133]1ee S,Ravichandran G.Crack initiation in brittle solids under multiaxial compression[J].Engineering Fracture Mechanics,2003,70:t645-1658.
    [134]Mutlu O,Bobet A.Slip initiation on frictional fractures[J].Engineering Fracture Mechanics,2005,72:729-747.
    [135]Mutlu O,Bobet A.Slip propagation along frictional discontinuities[J].International Journal of Rock Mechanics & Mining Sciences,2006,43:860-876.
    [136]S H Changa,C I Lee.Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission[J].International Journal of Rock Mechanics & Mining Sciences,2004,41:1069-1086.
    [137]T Backers,S Stanchits,G Dresen.Tensile fracture propagation and acoustic emission activity in sandstone:The effect of loading rate[J].International Journal of Rock Mechanics & Mining Sciences,2005,42:1094-1101.
    [138]Z X Zhang,S Q Kou,L G Jiang,P A Lindqvist.Effects of loading rate on rock fracture:fracture characteristics and energy partitioning[J].International Journal of Rock Mechanics and Mining Sciences,2000,37:745-762.
    [139]B Baimson.Micromechanisms of borehole instability leading to breakouts in rocks[J].International Journal of Rock Mechanics & Mining Sciences,2007,44:57-173.
    [140]Yukiyasu Fujii,Takato Takemura,Manabu Takahashi,Weiren Lin.Surface features of uniaxial tensile fractures and their relation to rock anisotropy in Inada granite[J].International Journal of Rock Mechanics & Mining Sciences,2007,44:98-107.
    [141]Xia-Ting Feng,Sili Chen,Hui Zhou.Real-time computerized tomography(CT)experiments on sandstone damage evolution during triaxial compression with chemical corrosion[J].International Journal of Rock Mechanics & Mining Sciences,2004,41:181-192.
    [142]葛修润,任建喜,薄毅彬,马巍,孙红.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004
    [143]Bathe K J.Finite element procedures in engineering analysis[M].New Jersey:Prentice-Hall Inc,1982
    [144]Ingraffea R A,Manu C.Stress intensity factor computation in three dimensions with quarter point elements[J].International Journal of Numerical Methods in Engineering,1984,15:1427-1445.
    [145]杨庆生,杨卫.断裂过程中的有限元模拟[J].计算力学学报,1997,4:79-88.
    [146]J Alfaiate,G N Wells,L J Sluys.On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture[J].Engineering Fracture Mechanics,2002,69:661-686.
    [147]D Lebaillif,N Recho.Brittle and ductile crack propagation using automatic finite element crack box technique[J].Engineering Fracture Mechanics,2007,74:1810-1824.
    [148]Cruse T A.Numerical evaluation of elastic stress intensity factors by boundary integral equation method[A].Swedlow J LEd.Surface Cracks Physics Problems and Computational Solutions[C],New York:American Society Of Mechanical Engineers,1972:153-170.
    [149]Cruse T A.Two dimensional bie-fracture mechanics analysis[J].Applied Mathematical Modelling,1978,2(3):287-293.
    [150]Blandford G E,Ingraffea A R,Liggett J A.Two- dimensional stress intensity factor computations using the boundary element method[J].International Journal for Numerical Methods in Engineering,1981,17(4):387-404.
    [151]Crouch S L,Starfield A M.Boundary Element Method in Solid Mechanics[M].London:Geore Allon & Unwin,1983:79-109.
    [152]Portela A,Aliabadi M H,Rook D P.The dual boundary element method:effective implementation for crack problems[J].International Journal for Numerical Methods in Engineering,1992,33(12):1269-1287.
    [153]Mi Y,Aliabadi M H.Dual-boundary element method for three dimensional fracture mechanics analysis[J].Engineering Analysis With Boundary Elements,1992,10(2):161-171.
    [154]闫相桥.平面弹性裂纹分析的一种有效边界元方法[J].应用数学和力学,2005,26(6):749-756.
    [155]Shi G H.Manifold method of materials analysis[A].Transaction 9th Army Conference on Applied Mathematics and Computing[C],Minneasoda:Minneapolish,1991:51-76.
    [156]Shi G H.Manifold method[A].Proceedings of the First International Forum on Discontinuous Deformation Analysis(DDA) and Simulations of Discontinuous Media[C],USA:Berkeley,1996:52-204.
    [157]周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(3):193-200.
    [158]王水林,葛修润.流形方法在模拟裂纹扩展正的应用[J].岩石力学与工程学报,1997,16(5):405-410.
    [159]张大林,奕茂田,杨庆,田荣.基于流形方法的动态应力强度因子数值算法[J].大连理工学报,2002,42(5):590-593.
    [160]张大林.流形方法在岩体断裂特性与裂纹发展过程数值分析中的应用研究[D](博士学位论文).大连:大连理工大学,2003.
    [161]张大林,栾茂田,杨庆等.数值流形方法的网格自动剖分技术及其数值方法[J].岩石力学与土程学报,2004,23(11):1836-1840.
    [162]Lucy L B.A numerical approach to the testing of the fission hypothesis[J].The Astronomical Journal,1977,8(12):1013-1024.
    [163]Gingold R A,Monaghan J J.Smoothed particle hydrodynamics:theory and applications to non-spherical stars[J].Monthly Notices of the Royal Astronomical Society,1977,181:375-389.
    [164]刘更,刘天祥,谢琴.无网格法及其应用[u).西安:西北工业大学出版社,2005
    [165]张雄,刘岩.无网格法[u).北京:清华大学出版社,2004
    [166]叶详记.广义节点无网格法理论及其在岩土工程中的应用[D](博士学位论文).大连:大连理工大学,2006.
    [167]栾茂田,张大林,杨庆,田荣.有限覆盖无单元法在裂纹扩展数值分析问题中的应用[J].岩土工程学报,2003,25(5):527-531.
    [168]栾茂田,杨新辉,田荣,杨庆.有限覆盖无单元法在多裂纹岩体断裂特性数值分析中的应用[J].岩石力学与工程学报,2005,24(24):4402-4407.
    [169]田荣.连续与非连续变形分析的有限覆盖无单元方法及其应用研究[D](博士学位论文).大连:大连理工大学,2000.
    [170]杨新辉.脆韧性断裂机理及判据和裂尖变形理论及有限覆盖无单元法应用研究[D](博士学位论文).大连:大连理工大学,2005.
    [171]Kim Kunsoo,Yao Cunying.Effects of micromechanical property variation on fracture processes in simple tension[A].Proceedings of the 1st North American Rock Mechanics Symposium[C],Balkema:Rotterdam,1995:471-476.
    [172]Tan S C.A progtessive failure model for composit laminats containing openings[J].Journal of composite Materials,1991,25:556-577.
    [173]Tang C A.Numerical simulation of progressive rock failure and associated seismicity[J].International Journal of Rock Mechanics & Mining Sciences,1997,34(2):249-262.
    [174]Tang C A,Lin P,Wong R H C,Chau K T.Analysis of crack coalescence in rock-like materials containing three flaws-Part Ⅱ:numerical approach[J].Engineering Fracture Mechanics,2001,38:925-939.
    [175]Tang C A,Tham L G,Lee P K K,et al.Coupled analysis of flow,stress and damage(FSD)in rock failure[J].International Journal of Rock Mechanics & Mining Sciences,2002,39:477-489.
    [176]Tang C A,Wong R H C,Chau K T,Lin P.Modeling of compression-induced splitting failure in heterogeneous brittle porous solids[J].Engineering Fracture Mechanics,2005,72:597-615.
    [177]Zhang H Q,Zhao Z Y,Tang C A,Song L.Numerical study of shear behavior of intermittent rock joints with different geometrical parameters[J].International Journal of Rock Mechanics & Mining Sciences,2006,43:802-816.
    [178]陈忠辉,唐春安,傅宇方.岩石微破裂损伤演化诱致突变的数值模拟[J].岩土工程学报,1998,20(6):9-15.
    [179]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J].岩石力学与工程学报,1997,16(5):507-508.
    [180]唐春安.岩石破裂过程声发射的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-378.
    [181]Feng Xi-Qiao,Dietmar Gross.On the coalescence of collinear cracks in quasi-brittle materials[J].Engineering Fracture Mechanics,2000,65:511-524.
    [182]Kachanov M.A simple technique of stress analysis in elastic solids with many cracks[J].International Journal of Fracture,1985,28:R11-19.
    [183]Kachanov M.Elastic solids with many cracks:A simple method of analysis[J].International Journal of Solids and Structures,1987,23:23-45.
    [184]Kachanov M.Effective elastic properties of cracked solids:critical review of some basic concepts[J].Applied Mechanics Reviews,1992,45(8):305-336.
    [185]Kachanov M.Elastic Solids with Many Cracks and Related Problems[A].Advances in Applied Mechanics[C],New York:Academic Press,1994:256-426.
    [186]Kachanov M.On the problems of crack interactions and crack coalescence[J].International Journal of fracture,2003,120:537-543.
    [187]Kachanov M,Laures J.Three-dimensional problems of strongly interacting arbitrarily located pennyshaped cracks[J].International Journal of Fracture,1989,41:289-313.
    [188]Kachanov M,Montagut E.A simple analysis of intersecting cracks and cracks intersecting a hole[J].International Journal of Fracture,1989,40:R61-65.
    [189]Krstic Y D.Effect of microstructure on fracture of brittle materials:Unified approach[J].Theoretical and Applied Fracture Mechanics,2006,45:212-226.
    [190]Lin Ma,Xuyue Wang,Xi-Qiao Feng,Shou-Wen Yu.Numerical analysis of interaction and coalescence of numerous microcracks[J].Engineering Fracture Mechanics,2005,72:1841-1865.
    [191]Mauge C,Kachanov M.Anisotropic materials with interacting arbitrarily oriented cracks.Stress intensity factors and crack-microcrack interactions[J].International Journal of Fracture,1994a,65:115-139.
    [192]Mauge C,Kachanov M.Effective elastic properties of an anisotropic material with arbitrarily oriented interacting cracks[J].Journal of the Mechanicsand Physics of Solids,1994b,42:561-584.
    [193]Prudencio M,M Van Sint Jan.Strength and failure modes of rock mass models with non-persistent joints[J].International Journal of Rock Mechanics & Mining Sciences,2007,44:890-902.
    [194]TerMaath S C,Phoenix S L,Hui C Y.A technique for studying interacting cracks of complex geometry in 2D[J].Engineering Fracture Mechanics,2006,73:1086-II14.
    [195]Zhou X P.Microcrack interaction brittle rock subjected to uniaxial tensile loads[J].Theoretical and Applied Fracture Mechanics,2007,47:68-76.
    [196]李银平,王元汉,肖四喜.岩石类材料中的压剪裂纹的相互作用分析[J].岩石力学与工程学报,2003,22(4):552-555.
    [197]徐靖南,朱维申.压剪应力作用下共线裂纹的强度判定[J].岩石力学与工程学报,1995,14(4):306-311.
    [198]Tirosh J,Catz E.Mixed-mode fracture angle and fracture locus of materials subjected to compressive loading[J].Engineering Fracture Mechanics,1981,14(1):27-38.
    [199]Maji A K,Tasdemir M A,Shah S P.Mixed mode crack propagation in quasi-brittle materials[J].Engineering Fracture Mechanics,1991,38(2/3):129-145.
    [200]Vasarhelyi B,Robert A.Modeling of crack initiation,Propagation and coalescence in uniaxial compression[J].Rock mechanics and rock engineering,2000,33(2):119-139.
    [201]文丕华.岩石钝裂纹表面闭合与摩擦效应的研究[J].水利学报,1989,2:60-66.
    [202]Chen D L,Weiss B,Stickler R.A model for crack closure[J].Engineering Fracture Mechanics,1996,53(4):493-509.
    [203]Guo S H,Sun Z Q.Research on the closing law and stress intensity factor of an elliptical crack under compressive loading[J].Transactions of Nonferrous Metals Society of China,2002,5(12):966-969.
    [204]Mcclintock F A,Walsh J B.Friction on Griffith cracks in rocks under pressure[A].4th U.S.National Congress for Applied Mechanics[C],California:Berkeley,1962:1015-1021.
    [205]Kuang Zhenbang.The stress field near the blunt crack tip and the fracture criterion[J].Engineering Fracture Mechanics,1982,16:19-33.
    [206]Matthew Creager,Paul C Paris.Elastic field equations for blunt cracks whit reference to stress corrosion cracking[J].International Journal of Fracture,1967,3(4):247-252.
    [207]匡震邦,马法尚.裂纹端部场[M].西安:西安交通大学出版社,2002:36-42.
    [208]李银平,杨春和.裂纹几何特征对压剪复合断裂的影响分析[J].岩石力学与工程学报,2006,25(3):462-466.
    [209]陈卫忠,李术才,朱维申.岩石裂纹扩展的试验与数值分析研究[J].岩石力学与工程学报,2003,23(1):18-23.
    [210]刘东燕,朱可善.岩石压剪断裂及其强度特性分析[J].重庆建筑大学学报,1994,16(2):54-60.
    [211]Horii S,Nemat-Nasser S.Brittle failure in compression:Splitting,faulting and brittle-ductile transition[J].Philosophical Transactions of the Royal Society of London,1986,319(1549):337-374.
    [212]norii H,Nemat-Nasser S.Compression-induced microcrack growth in brittle solids:axial splitting and shear failure[J].Journal of Geophysical Research,1985,90:3105-3128.
    [213]Steif P S.Crack extension under compressive loading[J].Engineering Fracture Mechanics,1984,20:463-473.
    [214]Lehner F,Kachanov M.On modelling of winged cracks forming under compression.[J].International Journal of Fracture,1996,77:65-75.
    [215]Baud P,Reuschle T,Charlez P.An improved wing crack model for the deformation and failure of rock in compression[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1996,33(5):539-542.
    [216]Ashby M F,Hallam S D.The failure of brittle solids containing small cracks under compressive stress states[J].Acta Metal1,1986,34:497-510.
    [217]陈枫.岩石压剪断裂的理论与实验研究[D](博士学位论文).长沙:中南大学,2002.
    [218]王元汉,徐钺,谭国焕等.改进的翼形裂纹分析计算模型[J].岩土工程学报,2000,22(5):612-615.
    [219]李银平,伍佑伦,杨春和.岩石类材料滑动裂纹模型[J].岩石力学与工程学报,2007,26(2):278-284.
    [220]Matthew Tilbrook,Mark Hoffman.Approximation of curved cracks under mixed-mode loading[J].Engineering Fracture Mechanics,2007,74:1026-1040.
    [221]Sumi Y.Computational crack path prediction[J3.Theory and applied fracture mechanics,1985,(4):149-156.
    [222]Sumi Y,Nemat-Nasser S,Keer L M.On crack branching and curving in a finite body[J].International Journal of Fracture,1983,21:67-79.
    [223]Sumi Y,Nemat-Nasser S,Keer L M.On crack path stability in a finite body[J].Engineering Fracture Mechanics,1985,22:759-771.
    [224]J C耶格,N G W库克.岩石力学基础[M].北京:科学出版社,1981:326-340.
    [225]郭少华,孙宗颀.压应力下脆性椭圆型裂纹的断裂规律[J].中南工业大学学报,2001,32(5):457-460.
    [226]J C Jaeger,N G W Cook.Fundamentals of Rock Mechanics[M].London:Chapman and Hall,1979
    [227]Bobet A.The initiation of secondary cracks in compression[J].Engineering Fracture Mechanics,2000,66:187-219.
    [228]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8):1537-1543.
    [229]李海波,张天航,邵蔚等.三轴压缩情况下岩石变形特征的滑移型裂纹模拟[J].岩石力学与工程学报,2005,24(17):3119-3124.
    [230]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
    [231]Chen Chi.On the criterion for crack extension[J].Scientia sinica,1978,XXI(1):112-126.
    [232]陈篪.论裂纹扩展的判据[J].金属学报,1977,6(13):57-72.
    [233]邓枝生,陈篪.裂纹顶端应力与应变的研究[J].金属学报,1978,14(3):239-245.
    [234]Nemat-Nasser S,Horii H.Compression-induced nonplanar crack extension with application to splitting,exfoliation,and rockburst[J].Journal of Geophysical Research,1982,87(B8):6805-6821.
    [235]范景伟,何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199.
    [236]周维垣,杨延毅.节理岩体的损伤断裂力学模型及其在坝基稳定性分析中的应用[J].水利学报,1990,11:48-54.
    [237]白世伟,任伟中,丰定祥等.平面应力条件下闭合断续节理岩体破坏机理及强度特性[J].岩石力学与工程学报,1999,18(6):635-640.
    [238]Peng S D,Johnson A M.Crack growth and faulting in cylindrical specimens of Chelmsford granite[J].International Journal of Rock ~echanics and Mining Science & Geomechanics Abstract,1972,9:37-86.
    [239]钟同圣,卫丰,王鸷等.Python语言和ABAQUS前处理二次开发[J].郑州大学学报(理学版).2006,38(1):60-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700