用户名: 密码: 验证码:
复杂应力条件下饱和重塑黏土动力特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海上能源的开发,海洋工程的数量和规模都在迅速发展,因此探索波浪荷载作用下海床的动力特性引起了研究者的极大兴趣。波浪荷载在海床中所产生的循环应力的主要特点之一是正应力偏差与剪应力所形成的循环偏应力的幅值不变而主应力轴方向发生了连续旋转。另外,海洋建筑物下地基内各个部位土单元的应力状态是各不相同的,沿着某一潜在滑动面,各点的初始主应力方向随其位置而改变。迄今,人们在研究海洋土体在主应力轴连续旋转条件下的变形与强度特性时,大多数都是采用的重塑砂土进行试验,成果也较多。然而在我国沿海地区海洋建筑物下覆地基表层土大都为数米厚的软黏土覆盖层,但饱和黏土在波浪作用下的动力特性及其强度的研究目前相对较少。作为海床与海洋建筑物地基稳定性评价中的一个基本而重要的问题,探讨复杂应力条件下饱和黏土的变形与强度特性,对于指导波浪荷载作用下饱和黏土海域海床稳定性分析,以及实际工程的设计和施工,具有重要的理论价值和实际工程意义。因此,为配合海洋工程设计与建设,必须进行黏土在复杂应力条件下的循环特性试验研究,发展海洋土动力学的实验技术与分析理论。
     国内外学者已对饱和黏土的动力特性进行了一定的研究,但由于试验条件的限制,一般采用常规动三轴试验仪和常规动扭剪仪进行试验,不能考虑主应力方向连续旋转的影响,无法很好地模拟波浪荷载作用下饱和黏土的复杂应力状态。基于对波浪荷载作用下饱和黏土动力特性研究的重要意义及其研究现状,本文利用土工静力—动力液压三轴—扭转多功能剪切仪,模拟海洋地基土单元的实际受力条件,对饱和重塑黏土的动模量与阻尼比,主应力轴连续旋转条件下的竖向—扭向循环耦合剪切特性进行了较为深入而系统的研究。全文主要包括以下几方面内容:
     (1)因现场取样费用高,地基土的空间变异度大,难以保证所获取土样的数量和均匀性,分析波浪、交通荷载等作用下土体参数的变化规律和系统探索土的基本规律性十分困难。因此在难以获得原状土样而又需要系统地探讨土样动力特性时,一定程度上是依靠室内制备重塑土来完成试验的。本文采用改进的真空抽吸法制备成批性质均一的黏土试样,作为土工试验所需的样品,这样既消除了土样的不均匀性,又保证了不同应力历史和不同类型试验之间的合理比较。改进的黏土制样方法具有操作简便、制样时间短,所制备试样成分均一、饱和度高,且易于切削制备圆柱或空心圆柱试样等优点。同时在较短时间内能以较低的成本获取大量试验土样,在室内对黏土进行试验特性的研究中可以采用。
     (2)采用单个试样在不同围压下多次固结(包括加卸压)的动扭剪方法来获取最大剪切模量和阻尼比等动力特性参数,并将这种方法获得的动剪切模量和阻尼比与采用多个试样的常规方法获得的试验结果进行了比较,探讨了两种试验方法获得的动剪切模量和阻尼比的主要差别,验证了这种简化方法的可靠性。单个试样的试验方法具有试验结果离散性较小,可以减小由于试验操作、试样均匀性等因素对试验结果分析的影响,节省取样数量并减少装样、拆样的工作量等优点。并且探讨了模拟波浪荷载等主应力轴连续旋转条件下饱和黏土的动模量和阻尼比的变化规律,建立了动模量和阻尼比的计算模式。
     (3)在实验室内模拟主应力轴连续旋转的重塑饱和黏土试验,对评价海床在波浪荷载作用下的稳定性,无疑具有重大的意义。因此针对饱和黏土开展了应力控制的双向耦合循环试验研究,详细研究了饱和黏土在主应力轴连续旋转条件下的动强度、孔压、变形、广义临界循环应力比、应力洛德参数等特性。基于试验结果探讨了不同剪应力幅值水平、振动波形、超固结比、振动频率等试验因素对土体性状的影响。评估黏土在波浪等主应力轴连续旋转条件下的动强度时,本文建议的综合应变式同时考虑了水平向剪切变形和轴向变形的共同效应,又反映了平均残余变形和循环变形的影响,可以作为主应力轴连续旋转的耦合循环剪切试验的破坏标准。由于黏性土在耦合循环荷载作用下孔隙水压力的量测存在着滞后现象,导致黏土土样的孔压在轴向和径向形成梯度,而且受到试验仪器本身的限制,孔压传感器安装在土样底部,测量到的孔压与土样中的实际孔压有一定的差距。为更好地反映轴向—扭转双向循环耦合作用下黏土的孔压,本文采用循环荷载停止后,将振动破坏的土样静置继续量测孔压,直到其达到一个稳定的最高值并记录下来,作为动载后黏土的孔隙水压力值。试验结果表明循环荷载停止后,试样的孔压在达到稳定前还会有较大的增加,采用循环荷载停止后静置继续采集孔压的方法可以更好的反映黏土的孔压发展规律。
     (4)针对饱和黏土在均等固结不排水条件下进行了应力控制的主应力方向交替变化和主应力方向连续旋转的不同应力模式下的循环剪切试验,通过对比探讨了模拟波浪荷载的不同应力模式对饱和黏土剪切特性的影响。研究表明:不同应力模式下的应力—应变关系曲线具有显著的不同,滞回曲线在循环初期均比较致密,随着循环次数的增加渐渐疏松,割线模量不断衰减:中主应力系数和应力洛德参数分别在主应力方向交替变化和主应力方向连续旋转变化的不同应力模式下变化规律也不同;主应力方向连续旋转的应力模式中,动剪切分量大的椭圆应力模式的动强度略小于动正向偏差分量大的椭圆应力模式的动强度。
     (5)针对饱和黏土进行了不同初始主应力方向角的单调扭剪试验,主要研究了不同初始主应力方向对单调剪切强度、轴向应变、剪切过程中主应力方向和孔隙水压力的影响。在三向非均等固结不排水条件下,进行了应力控制的不同初始主应力角的循环扭剪试验和主应力轴连续旋转的双向耦合循环剪切试验,通过对试验结果进行分析和探讨,考察了初始主应力角对重塑饱和黏土应变发展模式、动强度、孔隙水压力和广义临界循环应力等的影响。同时基于不同初始主应力角的循环扭剪试验和主应力轴连续旋转的耦合循环试验结果,建立了考虑初始主应力方向角的动强度经验关系式。
With the exploitation and utilization of marine energy resource, the quantity and scale of ocean engineering are booming fast. Therefore, it takes great interests to the investigators about discovering the dynamic property under wave loading. The cyclic stresses induced by wave loading are characterized by the fact that the amplitude of the cyclic deviatoric stress originated from the deviation of normal stresses and the shear stress keeps unchanged but the orientation of principal stress axe rotate progressively. Moreover, the stress states of soil elements located at different parts in the foundation of ocean structures are all different. The orientation of initial stresses of all the points along a potential sliding surface was strongly depended on the location of the point. So far, with many successes, most experiments have been taken on remolded sand or silty soil on the study of deformation and strength characteristics about ocean soil in condition of continuous rotation of principal stress directions. Only fewer researches on the dynamic property and strength of saturated clay in wave loading have been taken. However, the topsoil under the foundations of marine structure in coastland is mostly soft clay cover layer of several meters. Consequently, as a basic and important problem in the foundation stability estimate of seabed and marine structure, to discuss the deformation and strength characteristics of saturated clay in condition of complex stress have great importance on theoretical value and practice engineering to further develop and perfect the research on ocean clay property. It is also to guide stability analysis of saturated clay sea area or seabed and practice technical engineering and construction under wave loading. Since above, to assort the design and construction of ocean engineering, the experimental investigation should be taken on the cycle performance of clay in condition of complex stress to develop the experimental technique and analyzing theory of ocean soil dynamics.
     The scholars abroad and at home have been already proceeded some definite studies on dynamic property of saturated clay. Due to the limitation of testing condition, the conventional dynamic triaxial test apparatus and conventional dynamic torsion shear apparatus were employed without considering influence of consecutive rotation in principal stress direction. So that the state of stress of saturated clay under wave load was hardly simulated. According to the significance and research status about the dynamic property on saturated clay under complex loading, the geotechnical testing equipments including the advanced apparatus for static and dynamic universal triaxial and torsional shear soil testing are employed to perform monotonic triaxial tests and cyclic shear tests under consolidated-undrained condition. Through a series of tests on saturated clay, the dynamic behavior including dynamic shear modulus and damping ratio and shear characteristic under continuous rotation of principal stress directions condition on clay are synthetically examined and studied. The main investigative contents and achievements consist of the following parts.
     (1) Due to the much specimens of clay needed in this research, considering the difficulty and huge expense to get the original state clay specimens of high quality, it is unpractical to get undisturbed specimens. It increases the discreteness of test results and many disadvantages in analyzing the geotechnical testing results for adopting the non-uniform undisturbed specimens. So it is an approach to investigate the strength and deformation behavior of saturated clays by utilizing repeatable and uniform saturated clay samples prepared in the laboratory. The author employed advanced vacuum suction method to prepare mass of clay samples of homogeneous properties, as the specimen required in soil tests, which removes the non uniformity and ensure the reasonable comparison between tests of different stress histories and types as well. The improved method possesses the advantages of convenient operation and shorter time of preparing samples. The prepared clay samples have the homogeneous property and highly saturated degree, and were easy to cut for preparing the cylinder or hollow-cylinder testing samples, which supplies a feasible way to uneasily obtain undisturbed samples and systematically to discuss engineering characteristic problems in clay.
     (2) The author conducted cyclic torsional shear test on single hollow cylindrical specimen to measure dynamic shear modulus and damping ratio under different confining pressures (including imposed and reduced pressure) to replace the conventional dynamic characterizes method. Also the differences of both test results should be discussed as well. The conclusion is that the results from single specimen method agree with those from conventional method. Furthermore, this method mentioned above could save amount of sampling, solve the problems of soil uniformity and supply a lot of advantages on base of reliable experimental result. In order to improve the precision of experiment, both the untouched and touched sensor are used together. The dynamic property on clay with rotation of principal stress under coupling cyclic shear with tiny amplitude strain behavior was examined. In addition, the computation of dynamic modulus and damping ratio was established.
     (3) Cyclic rotation of principal stress direction with constant amplitude is the cyclic stress characteristics in seabed deposit induced by waves. The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic coupled vertical and torsional shear test under different amplitude of shear stress, waveforms of imitated wave, overconsolidated ratio and frequency. Through a series of tests on saturated clay, the dynamic strength, dynamic deformation behavior, pore water pressure, general critical cyclic stress ratio and Lode parameter of stress were systematically investigated. It was shown that a general strain fail criterion for clay was recommended for considering the integrative effects of torsional shear strain and normal deviatoric strain as well as cyclic strain and accumulative strain. Moreover, the general strain fail criterion was fit for the failure criterion of coupling cyclic test. The water pore pressure has hys-teretic phenomenon for clay as measured under cyclic loading, and it is believed that gradient of axial and radial of water pore pressure induced by it. However, the measurement of water pore pressure is proceeded at the bottom of the hollow specimen. Apparently, the measurement of water pore pressure can not reflect the truth increasing of water pore pressure completely under the cyclic loading. Thus, when coupling cyclic loading in cohesive soil is terminated at failure states, a continuous measurement of acquiring pore water pressure which was getting stable after ceasing coupling cyclic loading was adopt. The method of acquiring pore water pressure after ceasing coupling cyclic loading was able to better reflect the variation of water pore pressure.
     (4) The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic test to simulate wave loading by alternative change of principal stress direction mode and continually rotation of principal stress direction mode under isotropic consolidation condition is examined. It was found that stress-strain relationship of shear stress and normal stress had obvious affected by cyclic stress mode and had distinguishing between consolidated-undrained and unconsolidated-undrained test by comparing the experiment data. Meanwhile, it was observed that stress-strain relationship curve gradually loosen and the secant modulus decayed as the cyclic number increased. Moreover, it was found that the variation of the coefficient of intermediate principle stress and Lode parameter of stress distinguishing between the alternate changed of principal direction mode and rotation of principal stress axes mode by comparing the experiment data. It was revealed that the dynamic strength and critical cyclic stress of alternative change of principal stress direction mode was more than the continually rotation of principal stress direction mode. The more far away between the deviatoric normal stress and the shear stress, the critical cyclic stress more is..
     (5) The typical test results under different orientation of initial principal stress with monotonic torsional shear test shows obviously features as undrained shear strength, various orientation of principal stress as well as pore water pressure evolution. The effect of initial orientation on dynamic strength, pore water pressure and critical cyclic stress are examined on the triaxial-torsional coupling shear tests and the cyclic torsional shear tests. In the other hand, an empirical formulation which considering the initial angle of principal stress effects on dy- namic strength of saturated clay was deduced from the experimental result of triaxial-torsional coupling shear tests and the cyclic torsional shear tests.
引文
[1]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报.2000,40(6):631-637.
    [2]长江口航道建设有限公司、中交第四航务工程勘察设计院、中交第一航务工程勘察设计院等单位.长江口深水航道治理工程设计文件与研究报告(一套)[J].2001.
    [3]钱寿易,楼志刚,杜金声.海洋波浪作用下土动力特性的研究现状和发展[J].岩土工程学报.1982,4(1):16-23.
    [4]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报.2000,8(1):40-45.
    [5]Bjerrum L.Geotechnical problems involved in foundations of structures in the north sea[J].Geotechnique.1973,23(3):319-358.
    [6]吴建政.山东全新世滨海软土与工程地质灾害的研究[J].海洋地质与第四纪地质.1995,15(3):43-54.
    [7]Madsen O.Wave-induced pore pressures and effective stresses in a porous bed[J].Geotechnique.1978,28(4):377-393.
    [8]Ishihara K,Towhata I.Sand response to cyclic rotation of principal stress directions as induced by wave loads[J].Soils and Foundations.1983,23(4):11-26.
    [9]王栋,栾茂田,郭莹.波浪作用下弹性海床的动力反应及其影响因素分析[J].岩石力学与工程学报.2001,20(增刊A01):1132-1136.
    [10]栾茂田,张晨明,王栋,等.波浪作用下海床孔隙水压力发展过程与液化的数值分析[J].水利学报.2004(2):94-100.
    [11]Zen K,Yamazaki H.Mechanism of wave-induced liquefaction and densification in seabed[J].Soils and Foundations.1990,30(4):90-104.
    [12]Zen K,Yamazaki H.Oscillatory pore pressure and liquefaction in seabed induced by waves[J].Soils and Foundations.1990,30(4):147-161.
    [13]栾茂田,王栋,郭莹,等.海床与海洋地基的动力分析理论与设计方法研究进展评述[A].第三届全国土动力学学术会议讨论文集[C],北京,中国建筑工业出版社,2002:28-47.
    [14]钱寿易,杜金声,楼志刚,等.海洋土力学现状及发展[J].力学进展.1980(4):1-14.
    [15]黄文熙,土的工程性质[M].北京:水利电力出版社,1983.
    [16]高玉峰,黎冰.黏土与EPS颗粒混合轻质土的动强度特性试验研究[J].岩石力学与工程学报.2007,26(2):4276-4283.
    [17]邢书兰.粘性土振动蠕变的动单剪试验研究[J].工业建筑.1994,24(1):37-41.
    [18]黄炜.动扭剪仪探讨[J].大坝观测与土工测试.1992,16(6):42-44.
    [19]李作勤.扭转三轴试验综述[J].岩土力学.1994,15(1):80-93.
    [20]Borms B,Casbarian A.Effects of rotation of the principal stress axes and of the intermediate principal stresses on the shear strength[A].Proceeding 6th International Conference on Soil Mechanics and Foundation Engineering[C],1965:18-23.
    [21]Saada A.Testing of anisotropic clay soils[J].Journal of the Soil Mechanics and Foundations Division,ASCE.1970,96(SM5):1847-1852.
    [22]Saada A,Ou C.Strain-stress relationship and failure of anisotropic clay[J].Journal of the Soil Me- chanics and Foundations Division,ASCE.1973,99(SM12):1091-1111.
    [23]Hight D,Gens A,Symes M.The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J].Geotechnique.1983,33(4):355-384.
    [24]Nakata Y,Hyodo M,Murata H,et al.Flow deformation of sands subjected to principal stress rotation[J].Soils and Foundations.1998,38(2):115-128.
    [25]Ishihara K,Yamazaki A.Analysis of wave-induced liquefaction in seabed deposits of sand.[J].Soils and Foundations.1984,24(3):85-100.
    [26]Dakoulas P,Sun Y.Behavior of fine sand under cyclic rotation of principal using the hollow cylinder apparatus[A].Proceeding of 2th Int.Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics[C],St.Louis.Missouri,1991:535-542.
    [27]Vaid Y,Sayao A.Generalized stress-path-dependent soil behavior with a new hollow cylinder torsional apparatus[J].Canadian Geotechnical Journal.1990,27(5):601-616.
    [28]Sayao A,Vaid Y.critical assessment of stress nonuniformities in hollow cylinder test specimen[J].Soils and Foundations.1991,31(1):60-72.
    [29]李万明,周景星.扭剪与三轴试验中孔压不均匀性的研究[J].岩土力学.1991,12(4):33-40.
    [30]张国平,王洪瑾,周克骥.内外室压力不等的空心圆柱扭剪仪的研制[A].第七届土力学及基础工程学术会议论文集[C],北京,中国建筑工业出版社,1994:65-70.
    [31]姚仰平,谢定义.振动拉压扭剪三轴仪及其试验研究[J].西安建筑科技大学学报.1996,28(2):129-133.
    [32]刘汉龙,周云东,高玉峰.多功能静动三轴仪研制及在液化后大变形中的应用[J].大坝观测与土工测试,2001,25(2):48-51.
    [33]栾茂田,郭莹,李木国,等.土工静力—动力液压三轴—扭转多功能剪切仪研发及应用[J].大连理工大学学报.2003,43(5):670-675.
    [34]郭莹.复杂应力条件下饱和松砂的不排水动力特性试验研究[博士学位论文][D].大连:大连理工大学,2003.
    [35]徐亦敏,姜朴.在土工测试中共振柱的应用[J].河海大学学报:自然科学版.1991,19(6):36-41.
    [36]陈正发,于玉贞.水平黏性土地基动力离心模型试验[J].岩石力学与工程学报.2007,26(增刊A01):3283-3287.
    [37]魏德干,陈其禄.全液压静压沉拔钢模管干取土灌注桩的应用实践[J].安徽建筑.2001,8(4):76-76.
    [38]彭立奎.机械式底活塞取土器的试制与应用[J].探矿技术.1993(3):18-19.
    [39]Leroueil S,Samson L.Bozozuk M.Laboratory and field determination of preconsolidation pressures at Gloucester[J].Canadian Geotechnical Journal.1983,20(3):19-23.
    [40]Strachan P.Liquefaction prediction in the marine environment[A].In:Proceedings of IUTAM and IUGG[C],Edited by Denness B.Newcastle,Graham & Trotman Publication,1983:149-157.
    [41]Dyvik R,Andersen K,Hansen S.Field tests of anchors in clay.I:Description[J].Journal of Geotechnical Engineering,ASCE.119,119(10):1515-1531.
    [42]Bennett R.In-situ porosity and permeability of selected carbonate sediment:Great Bahama Band -part 1:measures;part 2:Microfabric[J].Marine Geotechnology.1990,20(3):19-23.
    [43]魏汝龙.软粘土的土样扰动及其影响[J].水利水运工程学报.1986(02):75-90.
    [44]魏汝龙.软粘土取样技术及其改进[J].岩土工程学报.1986(06):113-125.
    [45]王年香,魏汝龙.沿海软粘土取土质量的对比分析[J].工程地质学报.1994,2(2):66-75.
    [46]张荣堂,Tomlunne.土样扰动对低塑性软粘土影响的试验研究[J].岩石力学与工程学报.2002,21(A02):2350-2355.
    [47]Moran D.Exploration of Soil conditions and Sampling Operation[A].Proceed 21th ICSMFE[C],1986:24-29.
    [48]Rong-tang Zhang,T.Lunne.Deepwater sample disturbance due to stress relief[J].Chinese Journal of Geotechnical Engineering.2003,25(3):356-360.
    [49]徐杨青,郭见扬.海洋土特殊工程性质的成因分析[J].岩土力学.1989,10(4):67-74.
    [50]Esring M,Kirby R.Implications of gas content for predicting the stability of submarine slopes[J].Marine Geotechnology.1977,2:81-100.
    [51]Lu T,Bryant W,Slowey N.Regression analysis of physical and geotechnical properties of surface marine sediments[J].Marine Georesources and Geotechnology.1998,16(3):201-220.
    [52]Sills G,Gonzalez R.Consolidation of naturally gassy soft soil[J].Geotechnique.2001,51(2):629-639.
    [53]Sheeran D,Krizek R.Preparation on homogenous soil samples by slurry consolidation[J].Journal of Mater.1971,6(2):356-373.
    [54]Yasuhara K,Yamanouchi T,Hirao K.Cyclic strength and deformation of normally consolidated clay[J].Soils and Foundations.1982,22(3):77-91.
    [55]Yasuhara K,Murakami S,Song B,et al.Postcyclic degradation of strength and stiffness for low plasticity silt[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE.2003,129(8):756-769.
    [56]Hyde A,Ward S.A pore pressure and stability model for a silty clay under repeated loading[J].Geotechnique.1985,35(2):113-125.
    [57]Lin H,Penumadu D.Experimental investigation on principal stress rotation in Kaolin clay[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE.2005,131(5):633-642.
    [58]Sheahan T,Ladd C,Germaine J.Rate-dependent undrained shear behavior of saturated clay[J].Journal of Geotechnical Engineering,ASCE.1996,122(2):99-108.
    [59]纪玉诚,闫澍旺.室内真空预压制备土样的技术及应用[J].水运工程.1997(12):1-2.
    [60]闫澍旺,邱长林.波浪作用下海底软粘土力学性状的离心模型试验研究[J].水利学报.1998(9):66-70.
    [61]齐剑峰.饱和黏土循环剪切特性与软化变形的研究[博士学位论文][D].大连:大连理工大学,2007.
    [62]Talesnick M,Frydman S.The preparation of hollow cylinder specimens from undisturbed tube samples of soft clay[J].Geotechnical Testing Journal.1990,13(3):243-249.
    [63]Won Hong,Poul V.Lade.Elasto-plastic behavior of K0 consolidated clay in torsion shear tests[J].Soils and Foundations.1989,29(2):127-140.
    [64]冯秀丽,沈渭铨.海洋工程地质专论[M].青岛:中国海洋大学出版社,2006.
    [65]周健,白冰,徐建平.土动力学理论与计算[M].中国建筑工业出版社,2001.
    [66]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [67]Hardin B,Richart F.Elastic wave velocities in granular soils[J].Journal of the Soil Mechanics and Foundation Engineering Division,ASCE.1963,94(2):353-369.
    [68]Hardin B.O,Black W.L.Vibration modulus of normally consolidated clay[J].Journal of the soil Mechanics and Foundations,ASCE.1968,94(SM2):353-369.
    [69]Hardin B,Drnevich V.Shear modulus and damping in soils:measurement and parameter effects[J].Journal of the Soil Mechanics and Foundation Engineering Division,ASCE.1972,98(6):603-624.
    [70]陈国兴,刘雪珠.南京及邻近地区新近沉积土的动剪切模量和阻尼比的试验研究[J].岩石力学与工程学报.2004,23(8):1403-1410.
    [71]郭莹,栾茂田,董秀竹,等.不同应力条件下砂土动模量特性的试验对比研究[J].水利学报.2003(5):41-45.
    [72]张建民,王稳祥.振动频率对饱和砂土动力特性的影响[J].岩土工程学报.1990,12(1):89-97.
    [73]Kagawa T.Moduli and damping factors of soft marine clays[J].Journal of Geotechnical Engineering,ASCE.1992,118(9):1360-1375.
    [74]顾尧章.海底粘土的剪切模量[J].岩土工程学报.1995,17(2):29-35.
    [75]Seed H,Idriss I.Soil moduli and damping factors for dynamic response analyses[R].Earthquake Engineering Reserch Center:University of California,Berkeley,1970.
    [76]Haridin B.The nature of stress-strain behavior for soils[A].Proceeding of Specialty Conference on Earthquake Engineering and Soil Dynamic,ASCE[C],New York,1978:3-90.
    [77]石兆吉,丰万玲.土壤动压缩模量的共振柱法测定[J].岩土工程学报.1985,7(6):25-32.
    [78]郭中华,余湘娟,严蕴,等.循环荷载作用下软土计算模型初探[J].河海大学学报:自然科学版.2002,30(1):109-112.
    [79]张禾,杨建玲.黄泛平原饱和土动弹性模量和阻尼比特性的试验研究[J].山东水利.1999(6):89-91.
    [80]孔宪京,张涛,邹德高,等.中型动三轴仪研制及微小应变测试技术应用[J].大连理工大学学报.2005,45(1):79-84.
    [81]中华人民共和国行业标准编写组.GB/T 50269-97.地基动力特性测试规范[S].北京:中国计划出版社.1998.
    [82]何昌荣.动模量和阻尼的动三轴试验研究[J].岩土工程学报.1997,19(2):39-48.
    [83]王权民,李刚,陈正汉,等.厦门砂土的动力特性研究[J].岩土力学.2005,26(10):1628-1632.
    [84]郭莹,刘洋.确定动模量与阻尼比的试验技术研究[A].第七届全国土动力学学术会议论文集[C],北京,清华大学出版社,2006:266-269.
    [85]Yamamoto T,Koning H,Spellmeigher H.On the response of a poro-elastic bed to water waves[J].Journal of Fluid Mechanics.1978,78:193-206.
    [86]Towhata I,Ishihara K.Undrained strength of sand undergoing cyclic rotation of principal stress axes[J].Soils and Foundations.1985,25(2):135-147.
    [87]Ishihara K.Towhata I.Shear work and pore water pressure in undrained shear[J].Soils and Foundations.1985,25(2):135-147.
    [88]Yoshimine M,Ishihara K,Vargas W.Effects of Principal Stress Direction and Intermediate Princi- pal Stress on Undrained Shear Behavior of sand[J].Soil and Foundations.1998,38(3):179-188.
    [89]Sivathayalan S,Vaid Y.Influence of generalized initial state and principal stress roatation on the undrained response of sands[J].Canadian Geotechnical Journal.2002,39:63-76.
    [90]姚仰平.真三轴应力条件下砂土的非线性动力本构关系的新研究[博士学位论文][D].西安:西安理工大学,1995.
    [91]栾茂田,许成顺,郭莹,等.静力与动力组合应力条件下饱和松砂变形特性的试验研究[J].土木工程学报.2005,38(3):81-86.
    [92]栾茂田,许成顺,何杨,等.复杂应力条件下饱和松砂单调与循环剪切特性的比较研究[J].地震工程与工程振动.2006,26(1):181-187.
    [93]栾茂田,许成顺,何杨,等.主应力方向对饱和松砂不排水单调剪切特性影响的试验研究[J].岩土工程学报.2006,28(9):1085-1089.
    [94]许成顺.复杂应力条件下饱和砂土剪切特性及本构模型的试验研究[博士学位论文][D].大连:大连理工大学,2006.
    [95]沈扬.考虑主应力方向变化的原状软黏土试验研究[博士学位论文][D].杭州:浙江大学,2007.
    [96]刘元雪,郑颖人.含主应力轴旋转的土体平面应变问题弹塑性数值模拟[J].计算力学学报.2001,18(2):239-241.
    [97]Hight D.Symes M,Gens S.Undrained anisotropy and principal stress rotation[J].Geotechnique,ASCE.1984,34(1):11-27.
    [98]Sato K,Yashida N.Effect of principal stress direction on undrained cyclic shear behavior of dense sand[A].Proceedings of the 9th International Offshore and Polar Engineering Conference[C],1999:524-547.
    [99]王洪瑾,马奇国.土在复杂应力状态下的动力特性研究[J].水利学报.1996(4):57-64.
    [100]李万明,周景星.初始主应力偏转对粉土动力特性的影响[A].第四届全国土动力学学术会议论文集[C],杭州,1994:47-50.
    [101]付磊,王洪瑾.主应力偏转角对砂砾料动力特性影响的试验研究[J].岩土工程学报.2000,22(4):435-440.
    [102]郭莹,栾茂田,许成顺,等.主应力方向变化对松砂不排水动强度特性的影响[J].岩土工程学报,2003,25(6):666-670.
    [103]Leng Yi,Maotian Luan,Chengxun Xu.Experimental study on drained behavior of granular soils under monotonic shear loading[A].New Frontiers in Chinese and Janpanese Geotechniques[C],Chongqing,China Communications Press,2007:329-334.
    [104]李建国,汪稔,虞海珍,等.初始主应力方向对钙质砂动力特性影响的试验研究[J].岩土力学.2005,26(5):723-727.
    [105]虞海珍,汪稔.钙质砂动强度试验研究[J].岩土力学.1999,20(4):6-11
    [106]虞海珍,赵文光,汪稔,等.复杂应力状态下钙质砂的动强度[J].华中科技大学学报:城市科学版.2005,22(1):40-43.
    [107]王琦,朱而勤.海洋沉积学[M].北京:科学出版社,1989.
    [108]Boulos H.Marine Geotechnice[M].School of Civil and Mining Engineering University of Syd- ney,London Unwin Hyman:First Publish,1988.
    [109]Andersen K.H,Pool J,Brown S.Cyclic and static Laboratory test on drammen clay[J].Journal of Geotechnical Engineering,ASCE.1980,106(5):499-529.
    [110]Vucetic M,Dobry R.Degradation on marine clays under cyclic loading[J].Journal of Geotechnical engineering,ASCE.1988,114(2):133-149.
    [111]Matasovic N,Vucetic M.A pore pressure model for cyclic straining of clay[J].Soils and Foundations.1992,32(3):156-173.
    [112]Koutsoftas D.Effects of cyclic loads on undrained strength of two marine clays[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE.1978,104(5):609-620.
    [113]Azzour A.Cyclic behavior of clays in undrained simple shear[J].Journal of the Geotechnical Engineering Division,ASCE.1989,115(5):637-657.
    [114]Yasuhara K.Undrained shear behavior of quasi-over-consolidated clay induced by cyclic loading[A].Proceedings of the International Union of Theoretical and Applied Mechanics symposium[C],1983:17-24.
    [115]Yasuhara K.Postcyclic undrained strength for cohesive soils[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE.1994,120(11):1961-1979.
    [116]#12
    [117]#12
    [118]杜金声.渤海海底重塑土的强度性质[J].岩土工程学报,1985,7(1):61-67.
    [119]王淑云,楼志刚.原状和重塑海洋粘土经历动载后的静强度衰减[J].岩土力学,2000,21(1):20-23.
    [120]王淑云,楼志刚.海洋粉质粘土在波浪荷载作用后的不排水抗剪强度衰化特性[J].海洋工程.2000,18(1):38-43.
    [121]刘胜群,吴建奇.循环荷载作用下饱和软粘土孔隙水压力变化规律的试验研究[J].铁道建筑.2007(1):68-70.
    [122]姚海林,马时冬.正常固结土与超固结土的一些特性及其应力历史的确定[J].岩土力学.1994,15(3):38-45.
    [123]Masayoshi S.Effect of overconsolidation on dilatancy of cohesive soil[J].Soils and Foundations.1982,22(4):121-135.
    [124]Fujiwara H,Ue S.Effect of preloading on post-construction consolidation settlement of soft clay subjected to repeated loading[J].Soils and Foundations.1990,30(1):76-86.
    [125]吴世明,陈龙珠,杨丹.周期荷载作用下饱和粘土的一维固结[J].浙江大学学报(工学版).1988,5(22):60-70.
    [126]蒋军,陈龙珠.长期循环荷载作用下粘土的一维沉降[J].岩土工程学报.2001,23(3):366-369.
    [127]张启辉,孙红,王挥,等.上海软土的动三轴试验和非线性损伤模型[J].土工基础.2007,21(4):54-57.
    [128]Tae-Min Kim.New Estimation of caisson sliding distance for improvement of breakwater reliability design[M].Japan:2004.
    [129]Yoshimi Y,Ohoka H.Influence of degree of shear stress reversal on the liquefaction potential of saturated sand[J].Soils and Foundations.1975,15(3):27-40.
    [130]白冰,周健.周期荷载作用下粘性土变形及强度特性述评[J].岩土力学.1999,20(3):84-90.
    [131]Matsui T,Ohara H,Ito T.Cyclic stress-strain history and shear characteristic of clay[J].Journal of Geotechnical and Geoenviromental Engineering,ASCE.1980,10(8):1101-1119.
    [132]周建,李剑强.循环荷载作用下饱和软粘土特性试验研究[J].工业建筑.2000,30(11):43-47.
    [133]Hirao K.Hyde A,Yasuhara K.Stability criteria for marine clay under one-way cyclic loading[J].Journal of Geotechnical and Geoenviromental Engineering,ASCE.1993,119(11):1771-1789.
    [134]张茹,涂扬举,费文平,等.振动频率对饱和黏性土动力特性的影响[J].岩土力学.2006,27(5):699-704.
    [135]王栋.波浪荷载作用下海床动力响应与液化的数值分析[博士学位论文][D].大连:大连理工大学,2002.
    [136]马时冬.平台地基在波浪荷载下的循环位移和固结沉降估算[J].岩土力学.1991,12(4):1-10.
    [137]Shibuya S.AA servo system for hollow cylinder testing of soils[J].Geotechnical Testing Journal.1988,11(2):109-118.
    [138]郭莹,何杨,栾茂田,等.初始主应力方向对饱和松砂孔隙水压力特性影响的试验研究[A].第九届土力学及岩土工程学术会议[C],北京,清华大学出版社,2003:1065-1068.
    [139]徐杨青,郭见扬.波浪荷载下海洋土孔隙水压力内时模型的研究[J].岩土力学.1991,12(3):43-52.
    [140]殷宗泽.土力学学科发展的现状与展望[J].河海大学学报:自然科学版.1999,27(1):1-5.
    [141]谢定义.21世纪土力学的思考[J].岩土工程学报.1997,19(4):111-114.
    [142]马德翠,单红仙,周其健.黄河三角洲粉质土的动模量和阻尼比试验研究[J].工程地质学报.2005,13(3):353-360.
    [143]中华人民共和国行业标准编写组.GB/SL237-1999.土工试验规程[S].北京,中国水利水电出版社,1999.
    [144]沈瑞福,王洪瑾.动主应力旋转下砂土孔隙水压力发展及海床稳定性判断[J].岩土工程学报.1994,16(3):70-78.
    [145]王平安,于澍.主应力轴旋转下饱和砂土振动孔隙水压力发展和变化的研究[J].西安建筑科技大学学报.1996,28(4):433-437.
    [146]何杨.复杂应力条件下饱和砂土孔隙水压力及体变特性试验研究[博士学位论文][D].大连:大连理工大学,2006.
    [147]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1999.
    [148]龚晓南.地基处理技术发展与展望[M].北京:中国水利水电出版社,2004.
    [149]刘汉龙,扈胜霞,Ali Hassan,等.真空-堆载预压作用下软土蠕变特性试验研究[J].岩土力学.2008,29(1):6-12.
    [150]刘汉龙,李豪,彭劼,等.真空-堆载联合预压加固软基室内试验研究[J].岩土工程学报.2004,26(1):145-149.
    [151]阎澎旺.往复荷载作用下重塑软粘土的变形特性[J].岩土工程学报.1991,13(1):48-53.
    [152]齐剑峰,聂影,赵维.室内黏土试样制备技术的改进及应用[A].第24届全国土工测试学术研讨会论文集[C],郑州,黄河水利出版社,2005:123-126.
    [153]郭莹,张小玲,栾茂田,等.初始中主应力系数对中密粉煤灰动模量阻尼比影响的试验研究[J].岩土力学.2008,29(3):591-595.
    [154]郭莹,栾茂田,史旦达,等.初始应力条件对松砂动力变形特性影响的试验研究[J].岩土力学.2005,26(8):1195-1200.
    [155]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989.
    [156]孙静,袁晓铭.土的动模量和阻尼比研究述评[J].世界地震工程.2003,19(1):88-95.
    [157]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报.1998,20(3):125-131.
    [158]孔宪京,龙冈文夫等.砾静的ぱよび动的变形特性の实验的研究[R].日本东京大学生产技术研究所土质工学研究室报告,1989,5.
    [159]陈国兴,谢君斐.土的动模量和阻尼比的经验估计[J].地震工程与工程振动.1995,15(1):73-84.
    [160]吴世明.土动力学[M].北京:中国建筑工业出版社,1996.
    [161]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2000.
    [162]陈国兴,刘雪珠,朱定华.南京新近沉积土动剪切模量比与阻尼比的试验研究[J].岩土工程学报,2006,28(8):1023-1027.
    [163]L.Ambe W.Soil mechanics[M].New York:John Wiley and Sons,1969.
    [164]汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1997.
    [165]Andersen K.H,Kleven A,Heien D.Cyclic soil data for design of gravity structure[J].Journal of Geotechnical Engineering,ASCE.1988,114(5):517-539.
    [166]沈瑞福,王洪瑾.动主应力轴连续旋转下砂土的动强度[J].水利学报.1996(1):27-33.
    [167]刘立,周克骥.YCW-A微型脉动压力传感器在土动力实验中的应用[J].水电自动化与大坝监测,1987,3:39-45.
    [168]吴明战,周洪波.循环加载后饱和软粘土退化性状的试验研究[J].同济大学学报:自然科学版.1998,26(3):274-278.
    [169]杨顺安.软土理论与工程[M].武汉:地质出版社,1994.
    [170]要明伦,王建华.动荷载作用下饱和软粘土的孔压发展与动强度[J].天津大学学报,1991,S2:86-90.
    [171]Ohara S,Matsuda H.Settlement of Saturated Clay Layer Induced by Cyclic shear[A].Proceeding 9th Southeast Asian Geotechnical Conference[C],Bangkok,Thailand,1987:7-13.
    [172]Sangrey D,Henkel D,Esring M.The effective stress response of a saturated clay soil to repeated loading[J].Canadian Geotechnical Journal.1969,6(3):241-252.
    [173]祝龙根,吴晓峰.低幅应变条件下砂土动力特性的研究[A].全国土工建筑物及地基抗震学术讨论会论文汇编[C],陕西,1986:247-253.
    [174]Ishihara K,Okada S.Effect of stress history on cyclic behavior of sand[J].Soils and Foundations.1978,18(4):29-45.
    [175]冯秀丽,刘晓瑜,董立峰.波浪作用下埕岛海域海底土液化分区[J].中国海洋大学学报(自然科学版).2007,37(5):815-818.
    [176]冯秀丽,戚洪帅,王腾.黄河三角洲埕岛海域地貌演化及其地质灾害分析[J].岩土力学.2004,25(增刊):17-20.
    [177]丰土根,刘汉龙,相树珍,周云东,高玉峰.不同围压下饱和砂土不排水循环扭剪试验研究[J].岩土力学.2005,26(增刊):73-76.
    [178]Larew H.G,Leonards G.A.A repeat load strength Criterion[A].Proceed,41th.Highway Research Board[C],Board,1962:529-556.
    [179]Sangrey D.A.Cyclic Loading of sand,Silts and Clays[A].Proc.Specialty Conf.on Earthquake energy and Soil Dynamics[C],California,American Society of Civil Engineering,Pasadena,1978.
    [180]Tsien S I(钱寿易),Lou Z G,Lu Y P.Strength of silt subjected to cyclic loading[A].Proceeding of 9th ARCSMFE[C],Bangkok,1991:391-398.
    [181]Hyde A.F.Cyclic triaxial tests on remolded clays[J].Journal of Geotechnical Engineering,ASCE.1987,113(6):665-669.
    [182]Mitachi T,Kitago S.Change in undrained shear strength characteristics of saturated remouded clay due to swelling[J].Soil and Foundation,1976,16(1):45-48.
    [183]黎冰,高玉峰,刘汉龙,等.几个影响室内土动力试验的重要试验参数[J].防灾减灾工程学报.2005,25(4):446-450.
    [184]Matasovic N.Generalized cyclic degradation pore pressure generation model for clays[J].Journal of Geotechnical Engineering,ASCE.1995,121(1):33-41.
    [185]栾茂田,齐剑峰,聂影,等.循环应力下饱和黏土剪切变形特性试验研究[J].海洋工程.2007,25(1):43-49.
    [186]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社.2004.
    [187]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社.1989.
    [188]Wood D.Explorations of principal stress with Kaolin in true tdaxial apparatus[J].Geotechnique,ASCE.1975,25(4).
    [189]Lade P.V,Musante H.M.Three-dimensional behavior of remolded clay[J].Journal of the Geotechnical Engineering Division,ASCE.1978,104(2):193-209.
    [190]Kirkgard M.M,Lade P.V.Anisotropic three-dimensional behavior of a normally consolidated clay[J].Canadian Geotechnical Journal.1993,30(5):848-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700