用户名: 密码: 验证码:
高土石坝地震作用效应及坝坡抗震稳定分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部即将兴建的众多高土石坝大多位于强震区,确保其安全运行对国民经济的发展和人民生命财产安全具有重大意义。本文就高土石坝的地震作用效应以及坝坡抗震稳定分析开展了系列研究工作。文中分别采用二维与三维解析法和有限单元法分析了高土石坝沿坝高和坝顶河谷方向的地震加速度分布特征,最终提出了300m级高土石坝地震动态分布系数建议图。然后利用改进的极限平衡法和强度折减法分析了地震动态分布系数对高土石坝坝坡抗震安全系数和临界滑动面的影响。利用强度折减法进行坝坡稳定分析时,根据郑颖人院士总结得出的边坡失稳时,滑动面内单元应变的突变特征,提出了塑性贯通区内最大单元等效塑性应变陡增判断准则。考虑到在坝体失稳变形过程中会产生较大的位移和变形,最后将基于更新拉格朗日方法的大变形理论引入到坝坡抗震稳定分析中,并与利用传统小变形理论求得的结果相比较。论文的主要内容包括以下几个方面:
     1.分别利用:1)基于剪切梁理论的解析法,包括反应谱法、考虑动剪切模量G与动剪应变γ非线性关系的迭代法、考虑三维效应的简化分析法。2)有限单元法,包括基于E-B非线性弹性模型的静力有限元分析程序和基于等效线性黏-弹性模型的动力有限元分析程序,对六座不同高度模型大坝以及拟建的糯扎渡、双江口高土石坝进行了沿坝高和坝顶河谷方向地震加速度分布特征研究。同时讨论了河谷斜率、地震设计烈度、坝坡率、坝型、地震动输入和坝料参数对高土石坝地震加速度分布的影响,最终提出了300m级高土石坝地震动态分布系数建议图。
     2.利用强度折减法数值模拟一300m土石坝在失稳过程中,通过观测发现塑性贯通区内各单元等效塑性应变具有突变且发展程度不一的变化规律,提出了塑性贯通区内最大单元等效塑性应变陡增判断准则。
     3.分别利用:1)考虑堆石材料非线性强度准则和土料动强度准则的极限平衡法,2)对判断准则和折减过程加以改进的强度折减法,分析了地震动态分布系数和坝料强度准则对高土石坝坝坡安全系数和临界滑动面的影响。结果表明,在使用地震动态分布系数建议图计算地震力时,坝体所受的地震荷载有所减小,导致土体滑动力矩相应减小,安全系数有所增加。临界滑动面的位置主要取决于坝料强度准则,地震动态分布系数的影响不大。
     4.高土石坝在失稳过程中,坝坡会产生较大的位移和变形。因此,引入基于更新拉格朗日方法的大变形理论,采用反映岩土材料拉压不等性的修正Drucker-Prager本构模型,对高土石坝的抗震稳定问题进行了大变形有限元分析,并与采用传统小变形理论求得的结果相比较。得出的结论是,采用基于连续介质力学的大变形理论分析高土石坝坝坡稳定问题时,计算所得的坝坡安全系数略有提高,小变形理论求得的坝坡安全系数亦可满足工程应用的要求。最后讨论了修正Drucker-Prager本构模型中材料参数K、剪胀角ψ、黏聚力系数C和内摩擦角φ,以及弹性模量E和泊松比v对坝坡安全系数的影响。
Many high earth and rockfill dams to be constructed in the west of China are mostly located at strong earthquake zone. The assurance of their secure operation is very important to the development of national economy and the safety of People's life and properties. Series of research about the seismic effects and slope seismic stability of high earth and rockfill dams are discussed in the paper. The distribution characteristic of the seismic acceleration along dam bodies and dam top in the direction of canyon of high earth and rockfill dams are analyzed with analytical method and finite element method in two and three dimensional space. Suggested dynamic seismic coefficient figure of high earth and rockfill dams 300m level in height is put forward. Furthermore, with improved limit equilibrium method and strength reduction technique, the influence of dynamic seismic coefficient upon slope safety factor and critical slide surface of high earth and rockfill dams is analyzed. When shear strength reduction technique is applied to analyze the slope stability problem, according to sudden increase characteristic of element strain inside the slide surface zone put forward by Academician Zhen Ying-ren, slope stability criterion by the sudden increase of the maximum element equivalent plastic strain inside the plastic coalescence zone is put forward. Considering large displacement and deformation will occur when dam loses stability status, large deformation theory based on the updated Lagrangian method is introduced to analyze dam slope seismic stability, and the results calculated by large deformation theory are compared with those by small deformation theory. The main research and results involved in the paper includes the following parts:
     1. With 1) analytical method based on shear beam theory including response spectrum method, iterative method considering nonlinear relationship between dynamic shear modulus G and dynamic shear strainγ, and simplified analysis method considering 3-dimensional effect. 2) finite element method including static computation program based on E-B nonlinear elastic constitutive model, and dynamic computation program based on equivalent linear viscoelastic model, seismic acceleration distribution characteristic analysis along dam bodies and dam top in the direction of canyon of six model dams with different height and engineering example of NuoZhaDu and ShuangJiangKou high earth and rockfill dams to be constructed is made. Influence of grade of canyon, seismic design intensity, slope grade, dam style, seismic wave input, and dam material parameters upon the seismic acceleration distribution of high earth and rockfill dams are also considered. Suggested dynamic seismic coefficient figure of high earth and rockfill dams 300m level in height is put forward ultimately.
     2. When simulating the loss of stability of a 300-meter-high earth and rockfill dam with strength reduction technique, the characteristic of sudden increase and unbalanced development of the element equivalent plastic strain in the plastic coalescence zone, the criterion of sudden increase of the maximum element equivalent plastic strain inside the plastic coalescence zone is put forward.
     3. With 1) limit equilibrium method considering nonlinear strength criterion of rock and dynamic strength criterion of soil, 2) strength reduction technique with some improvement about instability criterion and reduction step, influence of dynamic seismic coefficient and dam material strength criterion on the safety factor and slide surface of high earth and rockfill dams is analyzed. The results indicate that when earthquake load is calculated with the use of suggested dynamic seismic coefficient figure, seismic force in the dam body decreases, which result in the reduction of slide moment of soil trips and the increase of dam slope safety factor. The position of the critical slide surface is mostly determined by strength criterion of dam material, and the influence of dynamic seismic coefficient can be neglected.
     4. When high earth and rockfill dams lose stability, large dam slope displacement and deformation will occur. Therefore, with large deformation theory based on the updated Lagrangian method applied, using Modified Drucker-Prager constitutive model which reflects nonequivalence of tension and compression characteristic of geomaterials, discussion about seismic stability of high earth and rockfill dams with large deformation finite element method is made. The conclusion is when large deformation theory based on Continuous Medium Mechanics is considered to analyze slope stability problem, the value of safety factor will arise slightly. Results based on small deformation theory are sufficient for engineering practice. Finally, for modified Drucker-Prager constitutive model, influence of parameter K、dilation angleψ、cohesion C and internal frictional angleφ, and elastic modulus E and Poisson's ratioυupon dam slope safety factor is discussed.
引文
[1]赵剑明,常亚屏,陈宁.加强高土石坝抗震研究的现实意义及工作展望.世界地震工程,2004,20(1):95-99.
    [2]赵剑明.高土石坝地震反应的三维非线性有效应力分析:(博士后论文).北京:中国水利水电科学研究院,1999.
    [3]汝乃华,牛运光.大坝事故与安全.北京:中国水利水电出版社,2001.
    [4]顾淦臣.土石坝地震工程.南京:河海大学出版社,1989.
    [5]倪汉根,金崇磐.大坝抗震特性与抗震计算.大连:大连理工大学出版社,1994.
    [6]柴贺军,刘汉超,张倬元等.天然土石坝稳定性初步研究.地质科技情报,2001,20(1):77-81.
    [7]Costa J E,Schuster R L.The formation and failure of natural dams.Geological Society of America Bulletin,1988,100(9):1054-1068.
    [8]汪闻韶.中国水利工程震害资料汇编1961-1985.中国水利水电科学研究院抗震防护研究所,1990.
    [9]吴钟瑚.中国能源工业可持续发展的政策框架.产业与环境,2003,40(S1):65-69.
    [10]王璋保.我国能源可持续发展战略—大力发展水电.Industrial Furnace,2004,26(3):11-14.
    [11]陈祖煜.土质边坡稳定分析—原理、方法、程序.北京:中国水利水电出版社,2003.
    [12]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980.
    [13]赵杰.边坡稳定有限元分析方法中若干应用问题研究:(博士学位论文).大连:大连理工大学,2007.
    [14]Mononobe H A.Seismic stability of the earth dam.Proceedings of 2nd Congress of Large Dams,Washington DC,1936.
    [15]田景元.土石坝多点输入地震反应分析及相关方法研究:(博士学位论文).南京:河海大学,2007.
    [16]李湛,栾茂田.土石坝地震响应的非线性剪切条模型与对比分析.地震工程与工程振动,2005,25(5):41-49.
    [17]栾茂田,李湛.堤坝非线性地震响应的离散型剪切条模型等价线性化方法.岩石力学与工程学报,2006,25(1):40-46.
    [18]张克绪.土坝等价地震系数和水平剪应力最大幅值简化计算.水利学报,1985,16(9):35-42.
    [19]李湛.土石坝地震永久变形及抗震稳定性数值分析方法研究:(博士学位论文).大连:大连理工大学,2005.
    [20]Gazetas G.A new dynamic model for earth dams evaluated through case histories.Soils and Foundations,1981,21(1):67-78.
    [21]Dakoulas P,Gazetas G.A class of inhomogeneous shear models for seismic response for dams and embankments.Soil Dynamics and Earthquake Engineering,1985,4(4):166-182.
    [22]Gazetas G.Seismic response of earth dams:some recent developments.Soil Dynamics and Earthquake Engineering,1987,6(1):2-47.
    [23]Gazetas G.Vertical oscillation of earth and rockfill dams:analysis and field observation.Soils and Foundations,1981,21(4):56-68.
    [24]Gazetas G.Longitudinal vibrations of embankment dams.Journal of the Geotechnical Engineering Division,ASCE,1981,107(1):21-40.
    [25]栾茂田,金崇磐,林皋.非均质堤坝振动特性简化分析.大连理工大学学报,1989,29(4):479-488.
    [26]Oner M.Shear vibration of inhomogeneous earth dams in rectangular canyons.Soil Dynamics and Earthquake Engineering,1984,3(1):19-26.
    [27]Dakoulas P,Gazetas G.Seismic shear vibration of embankment dams in semi-cylindrical valleys.Earthquake Engineering and Structural Dynamics,1986,14(1):19-40.
    [28]Dakoulas P,Hsu C.Lateral response of earth dams in semi-elliptical rigid canyons.Soil Dynamics and Earthquake Engineering,1993,12(8):497-507.
    [29]徐志英.V形河谷内土石坝横向振动分析简化法.河海大学学报,1994,22(5):82-86.
    [30]沈振中,徐志英.V形河谷中土石坝纵向地震反应的简化解析解.水电能源科学,1999,17(4):9-12.
    [31]沈振中,徐志英.V形河谷中土石坝垂直振动的近似解析.河海大学学报,2002,30(2):85-89.
    [32]沈振中,徐志英.V形河谷中非均匀土石坝振动的简化分析.水利学报,2002,33(3):74-79.
    [33]Dakoulas P,Hsu C.Response of Dams in Semi-elliptical canyons to Oblique SH Waves.Journal of Engineering Mechanics,121(3):379-391.
    [34]栾茂田,金崇磐,林皋.非均质土石坝及地基竖向地震反应简化分析.水力发电学报,1990,9(1):48-62.
    [35]孔宪京,韩国城,张天明.土石坝与地基地震反应分析的波动—剪切梁法.大连理工大学学报,1994,34(2):173-179.
    [36]Dakoulas P,Gazetas G.Nonlinear response of embankment dams.Proceedings of 2nd International Conference on Soil Dynamics and Earthquake Engineering,Springer-Verlag,1985,29-44.
    [37]Elgamal A W M,Abdel-Ghaffar A M,Prevost J H.Elasto-plastic earthquake shear response of one-dimensional earth dam models.Earthquake Engineeringand structural Dynamics,1985,13(5):617-633.
    [38]Elgamal A W M,Abdel-Ghaffar A M,Prevost J H.2-D Elasto-plastic seismic shear response of earth dams:theory.Journal of Engineering Mechanics,ASCE,1987,113(5):689-701.
    [39]孔宪京,刘君,韩国城等.混凝土面板堆石坝地震反应分析的剪切梁法.水利学报,2000,31(7):55-60.
    [40]Gazetas G,Debchaudhury A,Gasparini D A.Rand vibration analysis for the seismic response of earth dams.Geotechnique,1981,31(2):261-277.
    [41]Towhata I.Seismic wave propagation in elastic soil with continuous variation of shear modulus in the vertical direction.Soils and Foundations,1996,36(1):61-72.
    [42]栾茂田,金崇磐,林皋.非均质地基振动特性及地震反应分析.大连理工大学学报,1992,32(1):81-87.
    [43]楼梦麟.变参数土层的动力特性和地震反应分析.同济大学学报,1997,25(2):155-160.
    [44]栾茂田,刘占阁.成层场地振动特性及地震反应简化解析解的完整形式.岩土工程学报,2003,25(6):747-749.
    [45]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社,2000.
    [46]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述.地震工程与工程振动,2005,25(1):164-171.
    [47]谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2000.
    [48]Clough R W,Chopra A K.Earthquake stress analysis in earth dams.Journal of the Engineering Mechanics Division,ASCE,1966,92(2):197-212.
    [49]Seed H B,Lee K L,Idriss I M.Analysis of Sheffield Dam Fai]ure.ASCE,1969,95(SM6):1453-1490.
    [50]Idriss I M,Lysmer J,Huang R et al.QUAD-4:A computer program for evaluating the seismic response of soil structures by variable damping finite element procedures.Report No.EERC 73-16,College of Engineering University of California,Berkeley,California,1973.
    [51]Duncan J M,Chang C Y.Non-linear analysis of stress and strain in soils.ASCE,1970,96(SM5):1259-1301.
    [52]刘文廷.土石坝地基随机地震反应分析:(博士学位论文).大连:大连理工大学,1993.
    [53]Mejia L H,Seed H B.Three dimensional dynamic response analysis of earth dams.Report No.EERC 81-15,Earthquake Engineering Research Center,University of California,Berkeley,California,Berkeley,1981.
    [54]周健,徐志英.土(尾矿)坝三维有效应力动力反应分析.地震工程与工程振动,1984,4(3):60-70.
    [55]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程与工程振动,1985,5(4):57-72.
    [56]徐志英,周健.奥罗维尔土坝三维排水有效应力动力分析.水利学报,1991,22(6):19-27.
    [57]Angeliki P,Bielak J.Seismic elastic response of earth dams with canyon interaction.Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):446-453.
    [58]电力部中南勘测设计研究院主编.水工建筑物抗震设计规范(DL5073-2000).北京:中国电力出版社,2000.
    [59]年廷凯.桩_土_边坡相互作用数值分析及阻滑桩简化设计方法研究:(博士学位论文).大连:大连理工大学,2005.
    [60]刘开富.若干土工问题工程性状的大变形有限元分析:(博士学位论文).杭州:浙江大学,2006.
    [613 Fellinius W.Calculation of stability of earth dams.Proceedings of 2nd International Congress of Large Dams,1936:445.
    [62]Bishop A W.The use of the slip circle in the stability analysis of slopes.Geotechnique,1955,5(1):7-17.
    [63]Janbu K N.Application of composite slip surface for stability analysis.Proceedings of European Conference on Stability of Earth Slopes.Sweden,1954:43-49.
    [64]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980.
    [65]中华人民共和国国家标准编写组.建筑地基基础设计规范(GBJ7-89).北京:中国建筑工业出版社,1989.
    [663 Sarma S K.Stability analysis of embankments and slopes.Geotechnique,1973,23(3):423-433.
    [67]Sarma S K.Stability analysis of embankments and slopes.Journal of geotechnical engineering division,1979,105(12):1511-1524.
    [68]Janbu K N.Slope stability computations.In:Hirschfeld R C,Poulos S J.Embankment dam engineering.New York:Johnwiley,1973:47-86.
    [693 Spencer E.A method of analysis of the stability of embankments assuming parallel interslice forces.Geotechnique,1967,17(1):11-26.
    [70]Morgenstern N R,Price V E.The analysis of the stability of general slip surfaces.Geotechnique,1965,15(1):79-93.
    [71]Chen Z Y,Morgenstern N R.Extensions to the generalized method of slices for stability analysis.Canadian Geotechnical Journal,1983,20(1):104-119.
    [72]Fredlund D G,Krahn J.Comparison of slope stability analysis methods.Canadian Geotechnical Journal,1977,14:429-439.
    [73]Leshchinsky,Huang.Generalized slope stability analysis:interpretation and comparison.Journal of Geotechnical Engineering,ASCE,1992,118(10):1559-1576.
    [74]Duncan J M.State of the art:limit equilibriumand finite element analysis of slopes.Journal of Geotechnical and Geoenvironmental Engineering,1996,122(7):577-595.
    [75]Timothy D S,Hisham T.Performance of three-dimensional slope stability methods in practice.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1998,124(11):1049-1060.
    [76]Chen Z Y,Wang X G,Haberfield C et al.A three-dimensional slope stability analysis method using the upper bound theorem(Ⅰ):theory and methods.International Journal of Rock Mechanics & Mining Sciences,2001,38:369-378.
    [77]赵尚毅,时卫民,郑颖人等.边坡稳定性分析的有限元法.地下空间,2001,21(5):450-454.
    [78]杨明成,郑颖人.基于极限平衡理论析最小安全系数法.岩土工程学报,2002,24(3):600-604.
    [79]朱禄娟,谷兆棋,郑榕明等.二维边坡稳定方法的统一计算公式.水力发电学报,2002,21(3):21-29.
    [80]蒋斌松,康伟.边坡稳定性中Bishop法的解析计算.2006年三峡库区地质灾害与岩土环境学术研讨会,重庆,2006:212-217.
    [81]朱大勇,丁秀丽.三维边坡稳定准严格极限平衡解答.2006年三峡库区地质灾害与岩土环境学术研讨会,重庆,2006:166-177.
    [82]朱大勇.边坡临界滑动场及其数值模拟.岩土工程学报,1997,19(1):63-68.
    [83]李亮.智能优化算法在土坡稳定分析中的应用:(博士学位论文).大连:大连理工大学,2005.
    [84]孙涛,顾波.边坡稳定性分析评述.岩土工程界,2002,3(11):48-50.
    [85]左秀泓.对土石坝地震稳定分析方法的讨论.水力发电,1991,17(7):33-36.
    [86]郑颖人.岩土材料屈服与破坏及边(滑)坡稳定分析方法研讨.岩石力学与工程学报,2007,26(4):649-661.
    [87]邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用.计算力学学报,2001,18(1):81-87.
    [88]邵龙潭,韩国城.堆石坝边坡稳定分析的一种方法.大连理工大学学报,1994,34(3):365-369.
    [89]邵龙潭,韩国城.水流作用下堆石边坡的稳定分析方法.水利学报,1997,28(1):51-55.
    [90]邵龙潭,唐洪祥,孔宪京,韩国城.随机地震作用下土石坝边坡的稳定性分析.水利学报,1999,30(11):66-71.
    [91]Donald I B.Finite element assessment of slope stability.Department of Civil Engineering,Monash University,Melbourne,Australia,1993:D1-D18.
    [92]张雄.岩体稳定性的极限分析方法——刚体弹塑性夹层模型.岩土力学,1992,13(1):66-73.
    [93]张雄.边坡稳定性的刚性有限元评价.成都科技大学学报,1994,10(6):47-52.
    [94]赵杰,邵龙潭.有限元稳定分析法在确定土体结构极限承载力中的应用.水利学报,2006,37(6):668-673.
    [95]李育超,凌道盛,陈云敏等.蒙特卡洛法与有限元相结合分析边坡稳定性.岩石力学与工程学报,2005,24(11):1933-1941.
    [96]李世海,刘晓宇,刘维甫等.岩质边坡稳定性分析三种常用方法比较.2006年三峡库区地质灾害与岩土环境学术研讨会,重庆,2006:155.
    [97]Zienkiewicz O C,Humpheson C,Lewis R W.Associated and non-associated viscoplasticity and plasticity in soil mechanics.Geotechnique,1975,25(4):671-689.
    [98]Ugai Z.A method of calculation of total factor of safety of slope by elasto-plastic FEM.Soils and Foundations,1989,29(2):190-195.
    [99]Matsui T,Sank C.Finite element slope stability analysis by shear strength reduction technique.Soils and Foundations,1992,32(1):59-70.
    [100]Ugai K,Leshchinsky D.Three-dimensional limit equilibrium and finite element analysis.Soils and Foundations,1995,35(4):1-7.
    [101]Griffiths D V,Lane P A.Slope stability analysis by finite element method.Geotechnique,1999,49(3):387-403.
    [102]Dawson E M,Roth W H,Drescher A.Slope stability analysis by strength reduction.Geotechnique,1999,49(6):835-840.
    [103]Manzari M T,Nour M A.Significanique of soil dilatancy in slop stability ananlysis.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2000,126(1):75-80.
    [104]宋二祥.土工结构安全系数的有限元计算.岩土工程学报,1997,19(2):1-7.
    [105]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性.岩土工程学报,2001,23(4):407-411.
    [106]连镇营,韩国城,吕凯歌.土钉支护弹塑性数值分析及稳定性探讨.岩土力学,2002,23(1):85-89.
    [107]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求滑坡稳定安全系数.岩土工程学报,2002,24(3):343-346.
    [108]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析.中国工程科学,2002,4(10):57-61.
    [109]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究.水利学报,2003,34(1):21-26.
    [110]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析.岩石力学与工程学报,2003,22(2):254-260.
    [111]孙伟,龚晓南.弹塑性有限元法在土坡稳定分析中的应用.太原理工大学学报,2003,34(2):199-202.
    [112]张永生,梁立孚.水闸地基整体稳定性弹塑性有限元分析.长沙大学学报,2003,17(4):1-5.
    [113]年廷凯,栾茂田.阻滑桩加固土坡稳定性分析的上限解法.岩土力学,2004,25(S2):167-173.
    [114]关立军.基于强度折减的土坡稳定分析方法研究:(硕士学位论文).大连:大连理工大学,2003.
    [115]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性.岩土工程学报,2004,26(1):42-46.
    [116]张培文,陈祖煜.剪胀角对求解边坡稳定的安全系数的影响.岩土力学,2004,25(11):1757-1760.
    [117]吕擎峰.土坡稳定分析方法研究:(博士学位论文).南京:河海大学,2005.
    [118]徐卫亚,肖武.基于强度折减和重度增加的边坡破坏判据研究.岩土力学,2007,28(3):505-511.
    [119]Donald I B,Tan C P,Gho T C A.Stability of geomechanical structures assessed by finite element method.Proceedings of 2nd International Conference in Civil Engineering,Hangzhou,1985:845-856.
    [120]周翠英,刘祚秋,董立国等.边坡变形破坏过程的大变形有限元分析.岩土力学,2003,24(4):644-652.
    [121]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用.岩土力学,2003,23(3):1-8.
    [122]邓建辉,魏进兵,闵宏.基于强度折减概念的滑坡稳定性三维分析方法(Ⅰ):滑带土抗剪强度参数反演分析.岩土力学,2003,24(6):896-899.
    [123]邓建辉,张嘉翔,闵宏等.基于强度折减概念的滑坡稳定性三维分析方法(Ⅱ):加固安全系数计算.岩土力学,2004,25(6):871-875.
    [124]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用.岩石力学与工程学报,2004,23(19):3381-3388.
    [125]吴春秋,朱以文,蔡元奇.边坡稳定临界破坏状态的动力学评判方法.岩土力学,2005,26(5):784-788.
    [126]郑颖人,赵尚毅,孔位学等.极限分析有限元法讲座——Ⅰ岩土工程极限分析有限元法.岩土力学,2005,26(1):163-168.
    [127]郑宏,刘德富.弹塑性矩阵Dep的特性和有限元边坡稳定性分析中的极限状态标准.岩石力学与工程学报,2005,24(7):1099-1105.
    [128]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论.岩土力学,2005,26(8):1345-1348.
    [129]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用.土木工程学报,2005,38(1):91-98.
    [130]Hibbitt H D,marcal P V,Rice J R.A finite element formulation for problems of large strain and large displacement.International Journal of Solids and Structures,1970,6:1069-1086.
    [131]Memeeking R M,Rice J R.Finite element formulation for problems of large elastic and plastic deformation.International Journal of Solids and Structures,1975,11:601-616.
    [132]Osias J R,Swendlow J L.Finite elasto-plastic deformation-Ⅰ:theory and numerical examples.International Journal of Solids and Structures,1974,10:321-339.
    [133]Wiberg N E,Koponen M,Runesson K.Finite element analysis of progressive failure in long slopes.International Journal for Numerical and Analytical Methods in Geomechanics,1990,14:599-612.
    [134]Chai J C,Bergado D T.The analysis of grid reinforced embankment on soft clay.Computers and Geotechnics,1995,17(4):447-471.
    [135]Shibata T,Sekiguchi H.A method of predicting failure based on elasto-viscoplastic analysis.Proceedings of JSCE,1980,301:93-104.
    [136]Meroi F A,Schrefler B A,Zienkiewicz O C.Large strain static and dynamic semisaturated soil behavaiour.International Journal for Numerical and Analytical Methods in Geumechanics,1995,19:81-106.
    [137]张士兵,王练柱,张建.边坡稳定性弹塑性大变形有限元强度折减分析.岩石力学与工程学报,2004,23(Supp 1):4463-4467.
    [138]谭晓慧,王建国,张洪涛.边坡稳定的大变形有限元可靠度分析.岩石力学与工程学报,2005,23(Suppl):5308-5312.
    [139]谢永利.大变形固结理论及其有限元分析:(博士学位论文).杭州:浙江大学,1994.
    [140]丁洲祥,龚晓南,谢永利等.基于不同客观本构关系的路基大变形固结分析.岩土力学,2006,27(9):1485-1490.
    [141]Cristiano MELO,Sunil SHARMA.Seismic coefficients for pseudostatic slope analysis.13th World Conference on Earthquake Engineering,Vancouver,B.C.,Canada,August 1-6,2004,Paper NO.369.
    [142]Seed H B,Martin,G R.The seismic coefficient in earth dam design.Journal of the Soil Mechanics and Foundations Division,ASCE,1966,92(SM3):25-58.
    [143]林皋.土石坝抗震安全评价技术.见:曹楚生,谢世楞.新世纪水利工程科技前沿(院士)论坛.天津:天津大学出版社,2005:94-107.
    [144]心墙堆石坝动力反应分析计算理论及抗震措施研究.大连:大连理工大学项目报告,2006.
    [145]Zienkiewicz O C,Taylar R L.The finite element method.Oxford:Butterworth and Heineman,2000.
    [146]徐芝纶.弹性力学简明教程.北京:高等教育出版社,2000.
    [147]龚晓南.土塑性力学.杭州:浙江大学出版社,2001.
    [148]迟世春,顾淦臣.混凝土面板堆石坝的抗震稳定分析.东北水利水电,1995,13(11):3-5.
    [149]吕擎峰,殷宗泽.高土石坝坝坡稳定非线性分析.岩土力学,2004,25(5):793-797.
    [150]肖海斌.高土石坝坝料试验及结构分区智能优化优化研究:(博士学位论文).武汉:中国科学院武汉岩土力学研究所,2006.
    [151]孙德胜.高心墙堆石坝坝料分区优化研究:(硕士学位论文).大连:大连理工大学,2007.
    [152]孔宪京,娄树莲,邹德高等.筑坝堆石料的等效动剪切模量与等效阻尼比.水利学报,2001,32(8):20-25.
    [153]赵剑明,常亚屏,陈宁.高心墙堆石坝地震变形与稳定分析.岩土力学,2004,25(增2):423-428.
    [154]李广信.基坑支护结构上水土压力的分算与合算.岩土工程学报,2000,22(3):348-352.
    [155]毛昶熙,李吉庆,段祥宝.渗流作用下土坡圆弧滑动有限元计算.岩土工程学报,2001,23(6):746-752.
    [156]陈祖煜.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论之一.岩土工程学报,2002,24(3):394-396.
    [157]陈立宏,李广信.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论之二.岩土工程学报,2002,24(3):396-397.
    [158]葛孝椿.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论之三.岩土工程学报,2002,24(3):398-399.
    [159]四川省大渡河双江口水电站可行性研究报告.大连:大连理工大学项目报告,2007.
    [160]张文倬.土石坝若干问题刍议.四川水利,2003,No.2:15-19.
    [161]刘兴华,李峰,简新平等.有限元法与条分法相结合的土坝稳定分析.河北建筑科技学院学报,2005,22(4):51-53.
    [162]张生,孙跃选,陈秋然.有限元法与条分法相结合分析坝坡稳定.海河水利,2007,No.1:57-59.
    [163]吕擎峰,殷宗泽,王叔华等.拟静力法边坡稳定分析的改进.岩土力学,2005,26(Supp.):35-38.
    [164]Seed H B.Considerations in the earthquake-resistant design of earth and rockfill dams.Geotechnique,1979,29(3):215-263.
    [165]戴自航,沈蒲生.土坡稳定分析简化Bishop法的数值解.岩土力学,2002,23(6):760-764.
    [166]中华人民共和国水利部主编.碾压式土石坝设计规范(SL274-2001).北京:中国水利水电出版社,2002.
    [167]阮元成,陈宁,常亚屏.察汗乌苏水电站坝基覆盖层土料的动强度特性.水力发电,2004,30(1):21-24.
    [168]其宗水电站可行性研究报告.大连:大连理工大学项目报告,2007.
    [169]张培文,陈祖煜.糯扎渡大坝设计边坡稳定的有限元分析.中国水利水电科学研究院学报,2003,1(3):207-210.
    [170]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析.岩土工程学报,2002,24(4):487-490.
    [171]史恒通,王成华.土坡有限元稳定分析若干问题探讨.岩土力学,2000,21(2):152-155.
    [172]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展.后勤工程学院学报,2005,21(3):1-6.
    [173]庄茁.ABAQUS/Standard有限元软件入门指南.北京:清华大学出版社,1998.
    [174]陈守义.试论土的应力应变模式与滑坡发育过程的关系.岩土力学,1996,17(3):21-26.
    [175]Richard A Reguerio,Ronaldo I Borja.A finite element model of localized deformation in frictional materials taking a strong discontinuity approach.Finite Elements in Analysis and Design,1999,33:283-315.
    [176]Ronaldo I Borja,Richard A Reguerio.Strain localization in frictional materials exhibiting displacement jump.Computer Methods in Applied Mechanics and Engineering,2001,190:2555-2580.
    [177]迟世春,关立军.应用强度折减有限元法分析土坡稳定的适应性.哈尔滨工业大学学报,2005,37(9):1298-1302.
    [178]冯振兴.连续统力学及其数值模拟.武汉:武汉大学出版社,1996.
    [179]王焕定,王伟.有限单元法教程.哈尔滨:哈尔滨工业大学出版社,2003.
    [180]崔世杰,张清杰.应用塑性力学.郑州:河南科学技术出版社,1992.
    [181]王金昌,陈页开.ABAQUS在土木工程中的应用.杭州:浙江大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700