用户名: 密码: 验证码:
高拱坝地震损伤开裂的大型数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围绕西部大开发的战略决策,实施西电东送,多座高坝大库在西南地区进行建设。其中拱坝坝型得到广泛采用。鉴于西部强震区拱坝抗震安全的重要性,本文依托国家自然科学基金重点项目(50139010)和(90510018),针对强震区高拱坝抗震安全的大规模数值模拟进行了深入的研究。
     1.高拱坝在强震作用下可能出现损伤、产生裂缝,对高拱坝进行全面的抗震安全评价应考虑这种非线性行为。混凝土在细观尺度上是非均匀的,细观非均匀性已成为研究混凝土结构损伤开裂的一个突破口。对高拱坝来说,无法也无必要精确界定这种非均匀性。在将拱坝有限元网格足够细分的前提下,近似认为单元内部为均匀材料,细观不均匀性的影响通过单元的材料属性随机分布来表征。同时,单元尺寸足够小时,塑性和各向异性等被弱化,采用弹性损伤本构关系和带拉伸截断的摩尔-库仑准则来模拟混凝土的非线性行为。对大岗山拱坝的地震损伤破坏模拟获得了和振动台模型试验吻合的结果,证明了该数值模型的有效性。同时,这种模型实施方便、计算效率高,便于大规模计算,而且可模拟拱坝从出现微裂缝到出现宏观裂缝的过程。在此基础上,研究了拱坝横缝以及无限地基辐射阻尼对拱坝损伤破坏的影响。
     2.目前可用于三维高拱坝大规模高效数值模拟的拱坝-地基相互作用方法少见。Wolf和Song提出的阻尼溶剂抽取法通过在近场地基有限域内施加人工阻尼再移频抽取的方法,模拟无限地基辐射效应。该方法避免了卷积,具有应用于大规模计算的潜力。然而,目前该方法在相互作用中的应用仅限于二维问题,且计算效率低、计算容量小。本文将该方法推广至三维,并在算法和矩阵存储格式方面进行了专门研究,建立了针对大规模计算的高拱坝-无限地基动力相互作用时域模型。对该模型进行了算例验证并建议了参数取值:dl/b=1~1.5及l=2~3b。其中b为基础特征尺寸,l为地基模拟范围,d为施加的无量纲人工阻尼。该模型在高拱坝地震损伤破坏模拟中的应用表明,考虑无限地基辐射阻尼后,拱坝损伤破坏情况明显减轻。
     3.有限元大规模分析中,若计算能力有限,可根据计算要求在有限元模型内布置疏密不等的网格,并采用特定的网格过渡技术来保证交界面处的协调性。本文提出了三种疏密网格过渡的方法。弹簧节理单元为在界面过渡单元的基础上,引入虚拟节点和子单元,在子单元中应用节理单元思想,并将虚拟节点凝聚掉,可保证界面两侧的位移和应变协调。主从自由度法是通过将界面非协调节点的位移表示成协调节点位移的函数,从而将非协调节点凝聚掉,可保证界面两侧的位移协调和刚度匹配。新型十三节点单元通过将母单元积分域分成四个子域,构造线性插值函数,然后分别在四个子域中进行数值积分,完全消除了普通变节点单元界面位移不协调的缺陷。三种模型的精度及实用性均经过验证,其中新型十三节点单元还应用于考虑无限地基辐射阻尼的高拱坝地震损伤破坏分析。
     4.大型工程项目如高拱坝的快速精细大规模数值模拟对计算能力和速度提出了越来越高的要求,另一方面物理光速的限制以及Von Neuman体系本身的瓶颈使得串行计算机的发展不能满足需求。采用高性能并行计算是解决这一矛盾的根本途径。本文采用4台普通微机和高速网络,搭建了PC集群作为并行计算平台。并针对高拱坝的地震损伤破坏模拟,在Linux系统下研制开发了基于区域分解法和消息传递MPI库的并行计算程序PDPAD。该程序在测试中表现出了良好的可扩展性和加速比,具有高效求解大规模问题的能力。目前在4节点PC集群上已达到百万自由度的计算能力,而且在实际高拱坝的地震损伤破坏数值模拟中表现良好。
As an important part of the Western Development Strategy, West-East Power Transmission program promoted the construction of quite a few high dams, in which concrete arch dams have been widely employed. As we all know, the aseismic safety is crucial to high arch dams in southwest China. With the support from National Nature Science Foundation of China under Grants 50139010 and 90510018, in-depth research was conducted regarding the large-scale numerical simulation of high arch dams in strong earthquakes.
     1. High arch dams may get fractured or damaged in strong earthquakes, which should be considered in its aseismic safety evaluation. As is known that concrete is inhomogeneous on the mesoscopic level, and taking advantage of this fact could better simulate the fracture process of concrete structures. However, as far as high concrete dams are concerned, it would be impossible and unnecessary to precisely simulate this inhomogeneity. If the arch dam is modeled with meshes fine enough, every mesh can be regarded as homogeneous, while the mesoscopic inhomogeneity is taken into account via random distribution of material properties of the element. In the meantime, the plasticity and anisotropism of every single element can be neglected. In the presented model for damage analysis of arch dams, elastic damage constitutive equations together with simple failure criterions, i.e., Mohr-Coulomb Principle with tension cut-off, are employed to simulate the nonlinearity of concrete. Taking the Dagangshan Arch Dam as an example, numerical result accords with results of shaking table test, which verifies the validity of the presented model. An important feature of this model is simplicity, which avails its application to large-scale computation. Last but not least important, the conversion from continuity to discontinuity can be simulated with this single model. On this basis, certain factors that affect the damage status of arch dams such as joints and radiation damping of the unbounded media are further investigated.
     2. Much research work has been conducted in the field of structure-foundation interaction, but these work seldom focused on the large scale analysis of massive structures such as high arch dams. The Damping Solvent Extraction Method (DSEM) as proposed by Wolf and Song simulate radiation damping in a novel way. Artificial damping is introduced into the near field adjacent to the structure, and is extracted afterwards. Then the stiffness matrix of the unbounded media can be obtained by applying an assumption. DSEM avoided the convolution integral generally obssessing other methods and possesses the potential for application to large scale computation. However, DSEM is now only employed in 2D SSI problems, and pitifully with low computation efficiency and small capacity. By extending this model into 3D problems, together with in-depth research on the algorithm and matrix storage styles, a DSEM-based interaction model in the time domain for large scale computation of high arch dams is presented. Based on parametric study, relevant parameters are suggested:dl/b=1~1.5 and l=2~3b . Here d refers to the undimensional artificial damping, 1 is the size of the near field while b is the characteristic length of the foundation. The presented model is employed in the damage simulation of Dagangshan Arch Dam subjected to strong earthquakes. And it's observed that the damage of arch dam is greatly alleviated with the radiation damping considered.
     3. With limited computational capacity for large scale finite element analysis, meshes of different sizes may be employed according to the significance of different parts of the system considered. Then techniques for transition between coarse and fine elements should be introduced. Three methods for transition are proposed, viz. the Springed Joint Method, the Master DOF (Degree of Freedom) Method and the 13-node element. The former is based on Qiang Tianchi's interface coupled method which was founded according to the least potential energy method. As in the Joint Element Method, with fictitious nodes and sub elements technique employed, the integral in Qiang Tianchi's version is simplified and transition between two sets of coordination which requires high precision is avoided. The Master DOF Method utilizes displacement constraint and needs only simple matrix operation in application. While in the 13-node element, the integration region is divided into four sub-regions, each with linear interpolating functions. All the three methods guarantee the displacement coordination between coarse elements and fine elements. Their accuracy and feasibility were verified, and the 13-node element has been employed in the damage simulation of high arch dams subjected to strong earthquakes.
     4. The aseismic evaluation of high arch dams calls for large-scale and efficient numerical simulation. Personal computer, despite its rapid development, can hardly meet the needs. High performance parallel computing is the ultimate solution to this problem. A PC cluster was setup with 4 personal computers and high-speed network to be the parallel computation platform. And a parallel program PDPAD was developed for numerical simulation of damage process of high arch dams in strong earthquakes. Based on Domain Decomposition Method, the proposed damage simulation model as detailed in Chapter 2 is programmed to parallel finite element codes with MPI (Message Passing Interface) in FORTRAN 9.0 on Linux Redhat 9.0. PDPAD exhibits high scalability and speedup ratio and has the ability for large scale computation. It is employed in the damage process simulation of Dagangshan Arch Dam and can handle more than one million DOFs on the 4-node platform.
引文
[1]林皋.混凝土大坝抗震安全评价的发展趋向.防灾减灾工程学报,2006,26(1):1-12.
    [2]李瓒,陈兴华,郑建波,王光纶.混凝土拱坝设计.北京:中国电力出版社,2000.
    [3]祁庆和.水工建筑物.北京:中国水利水电出版社,1996.
    [4]Hall J F.The dynamic and earthquake behavior of concrete dams:review of experimental behavior and observational evidence.Soil Dynamics and Earthquake Engineering,1988,7(2):58-121.
    [5]朱伯芳.1999年台湾921集集大地震中的水利水电工程.水力发电学报,2003(1):21-33.
    [6]Reissner E.Stationare,axialsymmetrische durch eine schuttelnde masse erregte schwingungen eines homogenen elastischen halbraumes.Ingenieur-Arch,1936,7(6):381-396.
    [7]Sung T Y.Vibration in semi-infinite solids due to periodic loading.1953.
    [8]Arnod R N E A.Forced vibrations of body on an infinite elastic solid.Journal of Applied Mechanics,ASCE,1955,77:319-401.
    [9]Bycroft G N.Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum.Philosophical Transactions of the Royal Society,1956,248:327-368.
    [10]Parmelee R A.Building-foundation interaction effects.Journal of the Engineering Mechanics Division,ASCE,1967,93(EM2):131-152.
    [11]Luco J E.Vibrations of a rigid disc on a layered viscoelastic media.Nuclear Engineering and Design,1976,36(3):325-340.
    [12]Lysmer J,Kuhlemeyer R L.Finite dynamic model for infinite media.Journal of Engineering Mechanics,ASCE,1969,95(1):759-877.
    [13]Smith W D.A nonreflecting plane boundary for wave propagation problems.Journal of Computational Physics,1974,15(3):492-503.
    [14]Clayton R,Engquist B.Absorbing boundary conditions for acoustic and elastic wave equations.Bulletin of the Seismological Society of America,1977,67(6):1529-1540.
    [15]廖振鹏,黄孔亮,杨柏坡.暂态波分析的透射边界条件.中国科学(A辑),1984,26(6):556-564.
    [16]Dominguez J.Dynamic stiffness of rectangular foundation,Cambridge Mass:Dept.of civil eng.MIT,1978.
    [17]Wolf J P,Somaini D R.Approximate dynamic model of embedded foundation in time domain.Earthquake Engineering and Structural Dynamics,1986,14:683-703.
    [18]De Barros F C P,Luco J E.Discrete model for vertical vibrations of surface and embedded foundation.Earthquake Engineering and Structural Dynamics,1990,19:289-303.
    [19]Jean W Y,Ling T W,Penzien J.System parameter of soil foundation for time domain dynamic analysis.Earthquake Engineering and Structural Dynamics,1990,19:541-553.
    [20]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型.大连理工大学学报,1996,36(4):477-481.
    [21]Liao Z P,Liu J B.Numerical instabilities of a local transmitting boundary.Earthquake Engineering and Structural Dynamics,1992,21(1):65-77.
    [22]廖振鹏.法向透射边界条件.中国科学(E辑),1996,26(2):185-192.
    [23]Liao Z P,Yang G.Multi directional transmitting boundaries for steady-state SH waves.Earthquake Engineering and Structural Dynamics,1995,24(3):361-371.
    [24]Wolf J P,Song C.Doubly asymptotic multi-directional transmitting boundary for dynamic unbounded medium structure interaction analysis.Earthquake Engineering and Structural Dynamics,1995,24(2):175-188.
    [25]Abscal R,Dominguez J.Vibration of footings on viscoelastic soil.Journal of Engineering Mechanics,ASCE,1985,111(2):123-141.
    [26]Maeso O,Dominguez J.Earthquake analysis of arch dam l.Dam-foundation interaction.Journal of Engineering Mechanics,ASCE,1993,119(3):496-512.
    [27]金峰,张楚汉,王光纶.结构地基相互作用的FE-BE-IBE耦合模型.清华大学学报,1993,33(2):17-24.
    [28]吴健,金峰,张楚汉.无限地基阻尼辐射对溪洛波拱坝地震响应的影响.岩土工程学报,2002,24(6):716-719.
    [29]Zhang C H,Jin F,Pekau O A.Time domain procedure of FE-BE-IBE coupling for seismic interaction of arch dams and canyons.Earthquake Engineering and Structural Dynamics,1995,24:1651-1666.
    [30]Genes M C,Kocak S.Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model.International Journal for Numerical Methods in Engineering,2005,62(6):798-823.
    [31]Yan J Y,Zhang C H,Jin F.A coupling procedure of FE and SBFE for soil-structure interaction in the time domain.International Journal for Numerical Methods in Engineering,2004,59:1453-1471.
    [32]Alterman Z S,Karal F C J.Propagation of elastic waves in layered media by finite-difference methods.Bulletin of the Seismological Society of American,1968,58:367-398.
    [33]Song C,Wolf J P.Dynamic stiffness of unbounded medium based on damping solvent extraction.Earthquake Engineering and Structural Dynamics,1994,23:169-181.
    [34]WolfJ P,SongC.Finite-Element Modeling of Unbounded Media.New York:Wiley,1996.
    [35]Song C,Wolf J P.The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics.Computer Methods in Applied Mechanics and Engineering,1997,147(3-4):329-355.
    [36]Doherty J P,Decks A J.Application of the scaled boundary finite-element method to offshore foundation systems.Kitakyusha:2002.
    [37]WolfJ P.The Scaled Boundary Finite Element Method.Wiley,2003.
    [38]Song C,Wolf J P.Semi-analytical representation of stress singularities as occurring in cracks in multi-materials with the scaled boundary finite-element method.Computers and Structures,2002,80(2):183-197.
    [39]杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析.大连:大连理工大学,2007.
    [40]Proulx J,Darbre G R,Kamileris N.Analytical and experimental investigation of damping in arch dams based on recorded earthquakes.Vancouver,Canada:2004.
    [41]Ariga Y,Gao Z,Watanabe H.Development of 3-D dynamic analysis method for coupled Dam-Joints-Foundation-Reservoir system.Vancouver,Canada:2004.
    [42]Toyoda Y,Shiojiri H,Ueda M,Tsunekawa K.Dynamic analysis of an existing arch dam including joint Non-linearity and Dam-Water-Foundation rock interaction.Vancouver,Canada:2004.
    [43]朱彤.结构动力模型相似问题及结构动力试验技术研究.大连:大连理工大学,2004.
    [44]吕西林,陈跃庆,陈波.结构-地基动力相互作用体系振动台模型试验研究.地震工程与工程振动,2000,20(4):20-29.
    [45]李德玉,王海波,涂劲.拱坝坝体-地基动力相互作用的振动台动力模型试验研究.水利学报,2003(7):30-35.
    [46]唐胡乐.地基-基础-上部结构耦合系统动力相互作用分析.上海:同济大学,2002.
    [47]Lysmer J,Kuhlemeyer R L.Finite dynamic model for infinite media.Journal of Engineering Mechanics,ASCE,1969,95(1):759-877.
    [48]Wolf J P,Darbe G R.Dynamic stiffness matrix of soil by the boundary element method:embedded foundation.Earthquake Engineering and Structural Dynamics,1984,12:401-441.
    [49]杜修力,熊建国.波动问题的级数解边界元法.地震工程与工程振动,1988,8(1):39-49.
    [50]Ungless R F.An Infinite Element.Columbia:University of British Columbia,1973.
    [51]Zhang C H,Song C M,Wang G L.3-D infinite boundary elements and simulation of monolithic dam foundations.Communications in Applied Numerical Methods,1989(5):389-400.
    [52]Song C M,Wolf J P.Dynamic stiffness of unbounded medium based on damping solvent extraction.Earthquake Engineering and Structural Dynamics,1994,23(2):169-181.
    [53]Deeks A J,Randolph M F.Axisymmetric time-domain transmitting boundaries.Journal of Engineering Mechanics,ASCE,1994,120(1):25-42.
    [54]Keys R G.Absorbing boundary conditions for acoustic media.Geophysics,1985,50(6):892-902.
    [55]Wolf J P,Song C M.Doubly asymptotic multi-directional transmitting boundary for dynamic unbounded medium-structure-interaction analysis.Earthquake Engineering and Structural Dynamics,1995,24:175-188.
    [56]闫俊义.结构-地基相互作用的FE-SBFE时域耦合方法及工程应用.北京:清华大学,2004.
    [57]杜修力,陈厚群,候顺载.拱坝系统三维非线性地震波动分析.地震工程与工程振动,1996,16(3):40-47.
    [58]杜建国,林皋.地基刚度和不均匀性对混凝土大坝地震响应的影响.岩土工程学报,2005,27(7):819-823.
    [59]李建波,陈健云,林皋.无限地基-结构动力相互作用分析的分区递归时域算法研究.工程力学,2005,22(5):88-96.
    [60]李建波.结构-地基动力相互作用的时域数值分析方法研究.大连:大连理工大学,2005.
    [61]中国水利水电科学研究院.水工建筑物抗震设计规范DL5073-2000.北京:中国电力出版社,2001
    [62]徐芝纶.弹性力学.北京:人民教育出版社,1979.
    [63]ASCE.State-of-the-art report on finite element analysis of reinforced concrete.New York,1982.
    [64]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995.
    [65]Bazant Z P,Bhat P D.Endochronic Theory of Inelasticity and Failure of Concrete.Joumal of Engineering.Mechanics Division,1976,102(EM4).
    [66]宋玉普,赵国藩.混凝土内时损伤本构模型.大连理工大学学报,1990,30(005):577-583.
    [67]潘家铮.断裂力学在水工结构设计中的应用.水利学报,1980,1:45-59.
    [68]Cox H L.A general introduction to fracture mechanics.London:Mechanical Engineering Publications Limited,1978.
    [69]Kaplan M F.Crack propagation and the fracture of concrete.American Concrete Institute Journal,1961(58):591-610.
    [70]Hillerborg A,Modeer M,Peterson P E.Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements.Cement and Concrete Research,1976,6(6):773-782.
    [71]Skrikerud P E,Bachmann H.Discrete crack modeling for dynamically loaded,unreinforced concrete structure.Earthquake Engineering and Structural Dynamics,1986,142(2):297-315.
    [72]Ayari L M,Saouma V E.A fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks.Engineering Fracture Mechanics,1990,35(1-3).
    [73]Rashid T R.Analysis of prestressed concrete pressure vessels.Nuclear Engineering and Design,1968,7(4):334-344.
    [74]Bazant Z P,Cedolin L.Finite element modeling of crack band propagation.Journal of Engineering Mechanics,ASCE,1983,109:69-93.
    [75]Bazant Z P,Oh B H.Crack band theory for fracture of concrete.Materials and Structures,1983,16(93):155-177.
    [76]Bahaa E A,Hall J F.Non-linear earthquake response of concrete gravity dams,part 1:modeling.Earthquake Engineering and Structural Dynamics,1989(18):837-851.
    [77]Bahaa E A,Hall J F.Non-linear earthquake response of concrete gravity dams,part 2:behavior.Earthquake Engineering and Structural Dynamics,1989(18):852-865.
    [78]Vargas-loli L,Fenves G L.Effect of concrete cracking on the earthquake response of gravity dams.Earthquake Engineering and Structural Dynamics,1989(18):575-592.
    [79]Bhattacharjee S S,Leger P.Seismic cracking and energy dissipation in concrete gravity dams.Earthquake Engineering and Structural Dynamics,1993,22(11):991-1007.
    [80]Wang G L,Pekau O A,Zhang C H,Wang S M.Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics.Engineering Fracture Mechanics,2000,65(1):67-87.
    [81]Hall J F.Efficient non-linear seismic analysis of arch dams.Earthquake Engineering and Structural Dynamics,1998(27):1425-1444.
    [82]Mirzabozorg H,Ghaeniam M.Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach.Earthquake Engineering and Structural Dynamics,2005,34(3):247-269.
    [83]Lotfi V,Espandar R.Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique.Engineering Structures,2004(26):27-37.
    [84]Espandar R,Lotfi V.Comparison of non-orthogonal smeared crack and plasticity models for.dynamic analysis of concrete arch dams.Computers and Structures,2003(81):1461-1474.
    [85]周元德.混凝土非线性断裂模型与高拱坝开裂分析研究.清华大学,2004.
    [86]Kachanov L M.TVZA kad.Nank.S.S.R.Otd.Tech.Nuak.1958,8.
    [87]Rabonov Y N.Creep rupture.Springer Berlin,1969.
    [88]Lemaitre J.Application of damage concepts to predict creep-fatigue failure.Journal Engineering Materials and Technology,ASME,1979,101(1):202-209.
    [89]Kajcionovic D.Continuum damage theory of brittle materials.Journal of Applied Mechanics,1981:809-824.
    [90]SidoroffF.Description ofanisotropic damage application to elasticity.1981.
    [91]Mazars J.Application de la mecanigue de I,endommagement au eomportement non lineaire eta la rupture du beton de structure.Etat.Univ.parisⅥ,1984.
    [92]Dougili J W,Lau J C,Burt N J.Toward a theoretical model for progressive failure and softening in rock,concrete and similar materials.Journal of Engineering Mechanics,ASCE-EMD,1976:335-355.
    [93]Cervera M,Oliver J,Faria R.Seismic evaluation of concrete dams via continuum damage models.Earthquake Engineering and Structural Dynamics,1995(24):1225-1245.
    [94]Valliappan S,Yazdchi M,Khalili N.Seismic analysis of arch dams a continuum damage mechanics approach.International Journal for Numerical Methods in Engineering,1999(45):1695-1724.
    [95]Faria R,Oliver J,Cervera M.A strain-based plastic viscous-damage model for massive concrete structures.International Journal of Solids Structures,1998,35(14):1533-1558.
    [96]Faria R,Oliver J,Cervera M.Modeling material failure in concrete under cyclic actions.Journal of Structural Engineering,2004,130(12):1997-2005.
    [97]陈健云,林皋,胡志强.考虑混凝土应变率变化的高拱坝非线性动力响应研究.计算力学学报,2004,2l(1):45-49
    [98]陈厚群.高拱坝抗震分析和坝肩动力稳定性研究.水利发电,2001(8):51-53.
    [99]陈在铁,任青文.当前混凝土高拱坝抗震研究中的几个问题.水利水电科技进展,2005,25(6):98-101.
    [100]杜荣强.混凝土静动弹塑性损伤模型及在大坝分析中的应用.大连理工大学,2006.
    [101]唐春安,朱万成.混凝土损伤与断裂—数值试验.科学出版社,2003.
    [102]陈厚群.高拱坝抗震设计研究进展.中国水利,2000(9):62-68.
    [103]刘耀儒.三维有限元并行计算及其在水利工程中的应用.清华大学,2003.
    [104]www.top500.org
    [105]Romero M L,Miguel P F,Cano J J.A parallel procedure for nonlinear analysis of reinforced concrete three-dimensional frames.Computers and Structures,2002,80:1337-1350.
    [106]李根国,蔡贵新,李渊印.商业性有限元分析软件在神威超级计算机上的并行开发.结构工程师,2003,66:318-323.
    [107]吕涛,石济民,林振宝.区域分解算法—偏微分方程数值解新技术.北京:科学出版社,1991.
    [108]安翔,吕志清.有限周期电磁结构的区域分解快速算法.计算物理,2007(4):65-70.
    [109]Abd-el-raoufH E,R M,F M J.A new domain decomposition finite-difference time domain for solving large electromagnetic problems.Microwave and Optical Technology Letters,2006,48(12):2399-2405.
    [110]张卫民,朱小谦,赵军.气象资料三维变分同化阶段区域分解并行实现.计算机研究与发展,2005,42(6):1059-1064.
    [111]郭毅之,金先龙,丁峻宏,李根国.并行数值仿真技术在盾构隧道地震响应分析中的应用.应用基础与工程科学学报,2005,13(1):43-50.
    [112]Gravouil A,A C.Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics.International Journal for Numerical Methods in Engineering,2003,58(10):1545-1569.
    [113]李志辉,张涵信.基于Boltzmann模型方程不同流区复杂三维绕流HPF并行计算.航空学报,2006,27(2):175-181.
    [114]唐维军,赵宁,李晓林.随机扰动下三维流体界面不稳定性的并行计算.计算物理,2001,18(6):539-543.
    [115]Benocci C,Giammanco R,Manna M,Simons E.Large eddy simulation of turbulent flows via domain decomposition techniques.Part 2:applications.International Journal for Numerical Methods in Fluids,2005,48(4):397-422.
    [116]Winger J M,Hughes T J R.Element-by-element iterative strategies.Computer Methods in Applied Mechanics and Engineering,1985,52:711-815.
    [117]Hughes T J R,Itzhak L W J.An Element- By-Element solution algorithm for problems of structural and solid mechanics.Computer Methods In Applied Mechanics and Engineering,1983,36:241-254.
    [118]周树荃,梁维秦.有限元结构分析并行计算.北京:科学出版社,1997.
    [119]张汝清.概说并行计算结构力学.计算结构力学及其应用,1995,12(4):477-484.
    [120]Khan A I,Topping B H V.Parallel finite element analysis using Jacobi-conditioned conjugate gradient algorithm.Advances in Engineering Software,1996,25:309-319.
    [121]Gullerud A S,H D J R.MPl-based implementation of a PCG solver using an EBE architecture and preconditioner for implicit 3-D finite element analysis.Computer and Structures,2001,79:553-575.
    [122]张磊,姜弘道,张健飞.基于校园网格的数值计算.微电子学与计算机,2007,24(9):42-44.
    [123]刘耀儒,周维垣,刘福深,强天驰.拱坝一地基系统的三维有限元并行计算.清华大学学报(自然科学版),2005,45(6):772-775.
    [124]李敏.基于EBE技术的有限元并行算法的研究与实现.大连:大连理工大学,2007.
    [125]王勖成,邵敏.有限元法基本原理与数值方法.北京:清华大学出版社,1997.
    [126]王爱民,王勖成.有限元计算中疏密网格间过渡单元的构造.清华大学学报(自然科学版),1999,39(8):100-103.
    [127]孙志刚,宋迎东,上官莉英,高德平.无虚拟节点的有限元界面协调技术.计算力学学报,2005,22(3):374-378.
    [128]强天驰,寇晓东,周维垣.三维有限元网格加密界面协调方法及在大坝开裂分析中的应用.岩石力学与工程学报,2000,19(5):562-566.6
    [129]Chen H Q,Ma H F,Tu J.Parallel computation of seismic analysis of high arch dam.Earthquake Engineering and Engineering Vibration,2008,DOI:10.1007/s11803-008-0733-y.
    [130]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999.
    [131]肖诗云.混凝土率型本构模型及其在拱坝动力分析中的应用.大连理工大学,2002.
    [132]LU P Y,Li Q B,Song Y P.Damage constitutive of concrete under uniaxial alternate tension-compression fatigue loading based on double bounding surfaces.International Journal of Solids and Structures,2004,41:3153-3166.
    [133]Lee J,Fenves G L.A Plastic-Damage Concrete Model for Earthquake Analysis of Dams.Earthquake Engineering and Structural Dynamics,1998,27(4):937-956.
    [134]Ghrib F,Tinawi R.An application of damage mechanics for seismic analysis of concrete gravity dams.Earthquake Engineering and Structural Dynamics,1995(24):157-173.
    [135]Valliappan S,Yazdchi M,Khalili N.Earthquake analysis of gravity dams based on damage mechanics concept.International Journal for Numerical Methods in Geomechanics,1996(20):725-751.
    [136]Valliappan S,Yazdchi M,Khalili N.Seismic analysis of arch dams-a continuum damage mechanics approach.International Journal for Numerical Methods in Engineering,1999(45):1695-1724.
    [137]陈健云,林皋,胡志强.考虑混凝土应变率变化的高拱坝非线性动力响应研究.计算力学学报,2004,21(1):45-49.
    [138]陈健云,李静,林皋.基于速率相关混凝土损伤模型的高拱坝地震响应分析.土木工程学报,2003,36(10):46-50.
    [139]杜荣强,林皋.混凝土弹塑性多轴损伤模型及其应用.大连理工大学学报,2007(4):567-572.
    [140]崔玉柱,张楚汉,徐艳杰.用刚体弹簧元研究梅花坝的破坏机理.清华大学学报,2002,42(S1):88-92.
    [141]潘坚文,龙渝川,张楚汉.高拱坝强震开裂与配筋效果研究.水利学报,2007(8).
    [142]梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究.沈阳:东北大学,2005.
    [143]Fu Y F.Thermfl stress and associated damage in eoncrete at elevmed temperature.香港:香港理工大学,2004.
    [144]刘凯欣,高凌天,郑文刚.混凝土动态破坏过程的数值模拟.工程力学(增刊),2000,470-474.
    [145]孟茁超,蔡松柏.用新离散单元法分析混凝土重力坝的地震响应.水利与建筑工程学报,2006,4(3):39-42
    [146]候艳丽,张冲,张楚汉等.拱坝沿建基面上滑溃决的可变形离散元仿真.岩土工程学报,2005,27(6):657-661.
    [147]张冲,候艳丽,金峰等.拱坝一坝肩三维可变形离散元整体稳定分析.岩石力学与工程学报,2006,25(6):1226-1232.
    [148]Shi G H,Goodman R E.Two-dimensional discontinuousdeformation analysis.International Journal for Numerical andAnalytical Methods in Geomechanics,1985,9(6):541-556.
    [149]王建全.二维块体系统接触检索算法与非连续变形分析.大连:大连理工火学,2007
    [150]张国新,金峰.重力坝抗滑稳定分析中DDA与有限元方法的比较.水力发电学报,2004,(1):10-14.
    [151]刘君,陈健云,孔宪京,林皋.基于DDA和FEM耦合方法的碾压混凝土坝抗震安全性分析.大连理工大学学报,2003,(06):793-798.
    [152]Amitrano D.Brittle-ductile transition and associated seismicity:experimental and numerical studies and relationship with the b value.Journal of Geophysical Research,2003(108):No.B1,2044.
    [153]李灏.损伤力学基础.济南:山东科学技术出版社,1992.
    [154]余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社,1993.
    [155]李兆霞.损伤力学及其应用.北京:科学出版社,2002.
    [156]杜荣强,林皋,冷飞.混凝土动力本构模型的基础理论与建模应用综述.世界地震工程,2007(02):7-13.
    [157]Kachanov L M.Time of the Rupture Process UnderCreep Condition.TVZ Akad.Nauk.S.S.R.Otd.Tech.Nauk,1958,8.
    [158]Loland K E.Continuous Damage Model for Load - response Estimation of Concrete.Cement and Concrete Research.Pergamon Press,Ltd,1980,10:395-402.
    [159]Mazars J.Continuous Damage Theory - Application to Concrete.Journal of Engineering Mechanics,1980,115(2):345-365.
    [160]余天庆.混凝土的分段线性损伤模型.岩石、混凝土断裂与强度,1985(2):14-16.
    [161]钱济成,周建方.混凝土的两种损伤模型及其应用.河海大学学报,1989(3):40-47.
    [162]Supartono F,SidoroffF.Anisotropic Damage modeling for Brittle elastic materials.1984.
    [163]Krajcinovic D,Fonseka G U.The Continuous Damage Theory of Brittle Materials.Journal of Applied Mechanics,ASME,1981,48:809-815.
    [164]闫晓荣.正交各向异性损伤模型在混凝土坝抗震安全评价中的应用.大连理工大学,2005.
    [165]Lemaitre J.Coupled elasto-plasticity and damage constitutive equations.Computers Methods in Applied Mechanics and Engineering,1985,51:31-49.
    [166]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的试验研究及其本构模型.水利学报,1997(7):72-77.
    [167]Van Mier J G M.Fracture Processes of Concrete-Assessment of Material Parameters for Fracture Models.CRCPress,1997.
    [168]Schlangen E,Van Mier J G M.Lattice model for numerical simulation of concrete fracture.Denver,Colorado,USA:1991.
    [169]杨强,张浩,周维恒.基于格构模型的岩石类材料破坏过程的数值模拟.水利学报,2002,4:46-50.
    [170]Bazant Z P,Tabbara M R.Random particle models for fracture of aggregate or fiber composites.Journal of Engineering Mechanics.ASCE,1990,116(8):1686-1705.
    [171]Zhong X X,Chang C S.Micromechanical modeling for behavior of cementitious granular materials.Journal of Engineering Mechanics,ASCE,1999,125(11):1280-1288.
    [172]Gazetas G,Mohamed A R,Hansen W.Micromechanical modeling of concrete response under static loading-Partl:Model development and validation.ACI Materials Journal,1999,96(2):196-203.
    [173]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报(自然科学版),1996,36(1):84-89.
    [174]宋玉普.多种混凝土材料的本构关系和破坏准则.北京:中国水利水电出版社,2002.
    [175]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟.水利学报,2004(10):29-37.
    [176]刘光廷,高政国.三维凸型混凝土骨料随机投放算法.清华大学学报(自然科学版),2003,43(8):1120-1123.
    [177]唐春安,王述红,傅宇方.岩石破裂过程数值试验.北京:科学出版社,2003.
    [178]闫东明.混凝土动态力学性能试验与理论研究.大连理工大学,2006.
    [179]钟红,林皋,李红军.单向恒定侧压下混凝士抗压特性数值模拟.2007.
    [180]Hilber H M,Hughes T J R,Taylor R L.Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics.Earthquake Engineering and Structural Dynamics,1977(5):283-292.
    [181]Miranda I,Ferencz R M,Hughes T J R.An improved implicit-explicit time integration method for structural dynamics.Earthquake Engineering and Structural Dynamics,1989(18):643-653.
    [182]大连理工大学,成都勘测设计研究院.大岗山水电站双曲拱坝非线性动力分析与抗震安全评价,2005.
    [183]周晶,林皋,王承伦.双曲拱坝的地震破坏模型试验.大连理工大学学报,1992,32(2):218-223.
    [184]王建涌.大岗山拱坝动力模型破坏试验研究.大连理工大学,2008.
    [185]李建波,陈健云,林皋.求解非均匀无限地基相互作用力的有限元时域阻尼抽取法.岩土工程学报,2004,26(2):264-267.
    [186]古泉,王光纶,徐艳杰.强震作用下高拱坝横缝张开非线性反应的研究.水利水电技术,2001,32(9):1-4.
    [187]水工混凝土结构规范SL/T191-96.
    [188]Goodman R E,Taylor R L,Brekke T.A model for the mechanics of jointed rock.Journal of the Soil Mechanics and Foundations Division,ASCE,1968,94(3):637-659.
    [189]Ghaboussi J,Wilson E L,Isenberg J.Finite element for rock joints and interfaces.Journal of the Soil Mechanics and Foundations Division,ASCE,1973,99(10):833-848.
    [190]Zienkiwicz O C,Best B,Dullage C,et al.Analysis of nonlinear problems in rock mechanics with particular reference tojointed rock systems.Proceedings of the 2nd International Congress on Rock mechanics.Belgrade,1970,8-14.
    [191]Desai C S,Drumm E C,Zaman M M.Cyclic testing and modeling of interfaces.Journal of Geotechnical Engineering,1985,111(6):793-815.
    [192]Desai C S,Drumm E C.Determination of parameters for a model for the cyclic behavior of interfaces.Earthquake Engineering and Structural Dynamics,1986,14(1):1-18.
    [193]Desai C S,Nagaraj B K.Modeling for cyclic normal and shear behavior of interfaces.Journal of Engineering Mechanics,ASCE,1988,114(7):1198-1217.
    [194]Katona M G.A simple contact-friction interface element with application to buried culverts.International Journal for Numerical and Analytical Methods in Geomechanics,1983,7(3):371-384.
    [195]Tan H,Chopra A K.Earthquake Analysis of Arch Dams Including Dam-Water-Foundation Rock Interaction.Earthquake Engineering and Structural Dynamics,1995,24(11):1453-1474.
    [196]Tan H,Chopra A K.Dam-foundation rock interaction effects in frequency-response functions of arch dams.Earthquake Engineering and Structural Dynamics,1995,24:1475-1489.
    [197]Du X,Zhang Y,Zhang B.Nonlinear Seismic Response Analysis of Arch Dam-Foundation Systems.U.K.:Taylor & Francis Group pic,2004.
    [198]Basu U,Chopra A K.Numerical evaluation of the damping-solvent extraction method in the frequency domain.Earthquake Engineering & Structural Dynamics,2002,31(6):1231-1250.
    [199]林绍忠.对称逐步超松弛预处理共轭梯度法的改进迭代格式.数值计算与计算机应用,1997,(4):266-270.
    [200]钟红,林皋,李建波.空间结构-地基动力相互作用数值分析时域算法研究.大连理工大学学报,2007,47(1):78-84.
    [201]Zhong H,Lin G,Li J B,Chen J Y.An efficient time-domain damping solvent extraction algorithm and its application to arch dam-foundation interaction analysis.Communications in Numerical Methods in Engineering,2007,DOI:10.1002/cnm.984.
    [202]Hughes T J R,Liu W K.Implicit-explicit finite elements in transient analysis:stability theory.Journal of Applied Mechanics,1978,45(6):371-374.
    [203]Hughes T J R,Liu W K.Implicit-explicit finite elements in transient analysis:Implementation and Numerical Examples.Journal of Applied Mechanics,1978,45(6):375-378.
    [204]Wolf J P,Song C.Finite-Element Modeling of Unbounded Media.New York:John Wiley &Sons,1997.
    [205]Wong H L,Luco J E.Dynamic response of rigid foundations of arbitrary shape.Earthquake Engineering and Structural Dynamics,1976,4:579-587.
    [206]Hall J F,Chopra A K.Dynamic analysis of arch dam including hydrodynamic effects.Journal of Engineering Mechanics,ASCE,1983,109(1):149-163.
    [207]Proulx J,Darbre G R,Kamileris N.Analytical and experimental investigation of damping in arch dams based on recorded earthquakes.Vancouver,Canada:2004.
    [208]Hwang K.高性能计算机系统结构—并行性、可扩展性、可编程性.王鼎兴,译.北京:清华大学出版社,1997.
    [209]尹辉俊,梁双翼,邵桂平.基于PC机群的有限元并行计算平台的搭建.中国科技信息,2006(20):113-115.
    [210]陈国良,安虹.并行算法实践.北京:高等教育出版社,2004.
    [211]李海江.基于MPI的并行有限元计算集群的构建.数值计算与计算机应用,2004,9(3):198-206.
    [212]张林波,迟学斌,莫则尧.并行计算导论.北京:清华大学出版社,2006.
    [213]都志辉.高性能计算之并行编程技术—MPI并行程序设计.北京:清华大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700