用户名: 密码: 验证码:
简支转连续体系自应力法加固旧桥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪50~90年代我国修建了大量的装配式简支梁桥。随着运营年限的增加及我国经济建设的高速发展,行车数量、载重量和车速的不断提高,大量此类桥梁面临承载能力下降、设计荷载不足的窘境。为了提高此类桥梁的承载能力和安全性能,进行简支转连续的体系转换加固方法是一种比较有效的方法,即针对需加固的简支梁旧桥,将多跨简支梁的梁端连接起来变为多跨连续梁,以达到改善结构受力状况、提高桥梁承载能力、延长桥梁剩余使用寿命、节省资金的目的。随之而来的问题是连接段处于负弯矩区,承受很大的负弯矩作用,一旦开裂,裂缝又出现在桥面,雨水、除冰盐等极易进入结构层使钢筋锈蚀,对于加固后桥梁的耐久性和适用性造成巨大危害。寻找合适的负弯矩区加固材料和提出针对该种材料的合理的加固计算方法,是研究的重点。
     钢筋钢纤维自应力混凝土是一种新型纤维增强复合材料,由于混凝土基体的自膨胀作用受到钢筋和钢纤维的共同限制从而产生化学预应力,极大地提高混凝土基体的抗拉性能。钢筋、钢纤维和自应力混凝土复合,可以充分发挥三者各自的优势,使复合材料的抗裂性能、抗拉性能、弯曲韧性性能、抗冲击性能和耐久性能明显改善,特别适合作为简支转连续体系加固旧桥负弯矩区的加固材料。目前对钢筋钢纤维自应力混凝土的研究仅限于膨胀增强机理方面和一些基本力学性能,对其结构性能及桥梁加固方面的研究几乎还是空白。
     本文结合辽宁省交通厅重点科研基金项目《钢筋混凝土简支梁桥转换成连续梁桥加固技术与施工工艺研究》(200514),主要进行了一下研究工作:
     1.通过研究钢纤维自应力混凝土、钢纤维混凝土、聚丙烯纤维混凝土、大直径合成纤维混凝土、混杂纤维混凝土的配合比、拌合物性能与养护方法、基本力学性能和耐久性能,认为钢纤维自应力混凝土适宜作为简支转连续非预应力法加固旧桥方法中纵向接缝区和负弯矩区后做连续顶板的加固材料,使其满足结构承载力、裂缝控制和耐久性的要求;
     2.对钢筋钢纤维自应力混凝土限制膨胀性能进行了系统研究,对钢筋和钢纤维对自应力混凝土长期膨胀变形的影响进行了长达9年的试验观测,研究了钢筋和钢纤维对于自应力混凝土的限制膨胀作用,绘制了钢筋钢纤维自应力混凝土的长期限制膨胀变形曲线,并给出了考虑长期变形的钢筋钢纤维自应力混凝土的自应力损失计算方法;
     3.结合9根叠合T型梁模型试验,主要针对纤维混凝土、自应力混凝土用于后连续体系负弯矩区的抗裂性能、自应力混凝土叠合层自应力的计算方法和负弯矩区混凝土的裂缝开展、截面应变、挠度变形、刚度等抗弯性能进行了研究;
     4.通过10根两跨后连续叠合T型梁模型试验,研究了简支转连续体系两跨连续T型梁在弯曲作用下的挠度变形、截面应变、裂缝开展和预损伤程度的影响情况、叠合层新老混凝土的粘结情况、加固后连续叠合T型梁负弯矩区混凝土的抗裂计算和极限状态下的抗弯承载力计算;
     5.通过计算机模拟研究了钢筋钢纤维自应力混凝土的限制应变对桥梁内力的影响,从而确定钢筋钢纤维自应力混凝土允许的限制应变范围、合理的使用位置以及使用效果,为工程应用提供依据。
Simply supported bridges are designed to function over long periods of time in China. The incidence of structural deterioration increases with bridge age due to traffic development, such as bearing capacity decreasing, and design capacity shortage. Transforming simply supported into continuous systerm is a feasible way to strengthen the old simply supported bridges in order to enhance the bearing capacity, extend the service life of the bridge and save the maintaining expense. But the concrete in the longitudinal joints and the negative bending moment areas is easy to crack due to the lardge negative bending moment. Once the rain water and Cl~- enter the bridge through the cracks, it's a hidden trouble to the durability and security of the continuous bridge. So there are an increasing need and a great challenge to search a feasible material and deduce a logical calculated method for old bridge strengthening with this material.
     Steel fiber reinforcement self-stressing concrete (SFRSSC) is a new type of fiber reinforced composite. The tensile strength of the concrete can be extremely improved by the chemical pre-stressing, which is caused by the restricted expansion of SFRSSC induced by steel bars and steel fibers. The combination of the steel bars, steel fibers and self-stressing concrete enhances the crack resistance, tensile performance, flexural toughness, impact resistance and durability of the composite, and make SFRSSC a wonderful strengthening material to the old bridge rehabilitation. The research on SFRSSC mainly concentrates on reinforced mechanism and mechanical properties. However, there is no literature on structural properties and bridge strengthening applications.
     Therefore, based on the Liaoning Province Communication Department Key Science Foundation Project (No.200514) Strengthened Technique and Construction Craft of the Continuous Beams after Continuing Simply Supported Beams by Exerting Prestressing Loads, this thesis will focus on the following aspects:
     1. Based on the experimental investigation of the strengthening materials containing SFRSSC, steel fiber reinforced concrete (SFRC), Polypropylene fiber reinforced concrete, large diameter synthetic fiber reinforced concrete and hybrid fiber reinforced concrete, the mix proportion, the working performance, the fundermental mechanical property and durability are evaluated. The experimental results show that SFRSSC is validated to be a promising material in the longitudinal joints and the negative bending moment areas, satisfying the engineering requirements of the bearing capacity, crack control and durability;
     2. Based on the experimental observation of SFRSSC during 9 years, the long-term restricted expansion performance is studied. The long-term restricted expansion curves and calculated method of self-stressing loss are given;
     3. Based on the model experiment of 9 composite concrete inverted T-beams, the crack resistance and flexural performance of SFRC and SFRSSC in negative bending moment areas are evaluated. With the experimental results, the formulas to calculate the self-stressing and crack resistance of the layers are deduced;
     4. Based on the model experiment of 10 continuous composite concrete T-beams, the deformation, cross-section strain, crack and new-existing concrete bonding are observed. The influence of pre-damage on continuous beams flexural performance is researched and a method to calculate the crack resistance and bearing capacity under ultimate phase of the continuous composite T-beams are carried out;
     5. Based on the computer analysis, the influence of SFRSSC on the internal force of continuous T-beams are studied. The restricted strain range and the appropriate position of SFRSSC in continuous bridge are deduced for references in bridge strengthening design.
引文
[1]蒙云,卢波.桥梁加固与改造.北京:人民交通出版社,2004.
    [2]黄承逵.纤维混凝土结构.北京:机械工业出版社,2004.
    [3]小林一辅著.蒋之峰译.钢纤维混凝土.北京:冶金部建筑研究总院技术情报室,1984.
    [4]赵国藩,彭少民,黄承逵.钢纤维混凝土结构.北京:中国建筑工业出版社,1999.
    [5]樊承谋,赵景海,程龙保.钢纤维混凝土应用技术.哈尔滨:黑龙江科学技术出版社,1986.
    [6]王漳水,陆惠棠.高强钢纤维混凝土的性能及应用.北京:空军设计研究局,1986.
    [7]杨萌.钢纤维高强混凝土增强增韧机理及基于韧性的设计方法研究:(博士学位论文).大连:大连理工大学,2006:2-3.
    [8]赵国藩,黄承逵.钢纤维混凝土增强机理及其结构设计理论研究课题总结.大连:大连理工大学土木系结构研究室,1993.
    [9]赵景海,程龙保.钢纤维混凝土设计与施工.哈尔滨:黑龙江科学技术出版社,1988.
    [10]中国工程建设标准化协会.钢纤维混凝土试验方法CECS 13:89.北京:中国建筑工业出版社,1989.
    [11]中国工程建设标准化协会.钢纤维混凝土结构设计与施工规程CECS 13:92.北京:中国建筑工业出版社,1992.
    [12]中国工程建设标准化协会.钢纤维混凝土JG/T3064-1999.北京:中国计划出版社,1999.
    [13]中国工程建设标准化协会.纤维混凝土结构技术规程CECS 38:2004.北京:中国计划出版社,2004.
    [14]中国工程建设标准化协会.纤维混凝土试验规程CECS 38:2008.北京:中国计划出版社,2008.
    [15]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料.北京:中国建筑工业出版社,2004:152-153.
    [16]吴中伟,张鸿直.膨胀混凝土.北京:中国铁道出版社,1990:1-3.
    [17]Nagataki S,Gomi H.Expansive Admixtures(Mainly Ettringite).Cement & Concrete Composite,v.20,Apr/Jun.1998:163-170.
    [18]Idon G.M.Expansive Mechanisms in Concrete.Cement and Concrete Research,v.22,Nov.1992:1039-1046.
    [19]Liu Zheng,Cui Xuehua,Tang Mingshu.MgO-type Delayed Expansive Cement.Cement and Concrete Research,v.21,Nov.1991:1049-1057.
    [20]Garboczi E.J.Stress,Displacement and Expansive Cracking Around a Single Spherical Aggregate under Different Expansive Conditions.Cement and Concrete Research,v.27,Apr.1997:495-500.
    [21]Lobo Colin,Cohen Menashi D.Pore Structure Development in Type K Expansive Cement Pastes.Cement and Concrete Research,v.21,Mar/May.1991:229-241.
    [22] Monteiro P. J. M, Mehta P. K. Transition Zone Between Aggregate and Type K Expansive Cement. Cement and Concrete Research, v.16, Jan. 1986: 111-114.
    [23] Lu Yonghua, Su Muzhen, Wang Yanmou. Micro-structural Study of the Interfacial Zone Between Expansive Sulphoaluminate Cement Pastes and Limestone Aggregates. Cement and Concrete Research, v.26, May. 1996: 805-812.
    [24] Liu Zheng, Cui Xuehua, Tang Mingshu. Hydration and Setting Time of MgO-type Expansive Cement. Cement and Concrete Research, v. 22, Jan. 1992: 1-5.
    [25] Lobo Colin, Cohen Menashi D. Hydration of Type K Expansive Cement Paste and the Effect of Silica Fume I. Expansion and Solid Phase Analysis. Cement and Concrete Research, v.22, Sep. 1992: 961-969.
    [26] Chartschenko I, Rudert V. Wihler H. D. Factors Affecting the Hydration Process and Properties of Expansive Cement. Part 1 Zement-Kalk-Gips International, v. 49, Aug. 1996: 432-443.
    [27] Lobo Colin, Cohen Menashi D. Hydration of Type K Expansive Cement Paste and the Effect of Silica Fume II. Pore Solution Analysis and Proposed Hydration Mechanism. Cement and Concrete Research, v. 23, Jan. 1993: 104-114.
    [28] Iding R, Bresler B. Analytical Studies of Expansive Solids in Concrete. Proceedings of the 4th Engineering Mechanics Division Specialty Conference: Recent Advances in Engineering Mechanics and Their Impact on Civil Engineering Practice, v. 2, 1983, Sponsored by ASCE, New York, USA, 229-241.
    [29] Togawa Kazuo, Nakamoto Junji. Effects of Concrete Materials on the Expansive and Shrinkage Characteristics of Expansive Concrete. Transactions of the Japan Society of Civil Engineers, v. 14, Mar. 1984: 396-397.
    [30] Saito Mitsuru, Kawamura Mitsunori, Arakawa Seiichi. Role of Aggregate in the Shrinkage of Ordinary Portland and Expansive Cement Concrete. Cement & Concrete Composites, v. 13, Jan. 1991: 115-121.
    [31] Panchenko A. I. Control of Expansion and Structure Formation of Expansive Cement. Cement and Concrete Research, v. 20, Jul. 1990: 602-609.
    [32] Cohen Menashi D, Olek Jan. Mather, Bryant, Silica Fume Improves Expansive Cement Concrete. Concrete International: Design and Construction, v. 13, Mar. 1991, 31-37.
    [33] Lobo Colin, Cohen Menashi D. Effects of Silica Fume on Expansion Characteristics of Expansive Cement Pastes. ACI Materials Journal, v.89, Sep/Oct. 1992: 481-491.
    [34] Tsuji Yukikazu, Kobayashi Shinichi. Expansion and Compressive Strength of Expansive Concrete Using Pulverizes Blast-Furnace Slag. Transactions of the Japan Society of Civil Engineers, v. 6, 1985: 231-238.
    [35] Maruyama Kyuichi, Takei Toshihiro, Tsuji Yukikazu. Compressive Strength of Self-stressing Concrete Restrained in Milti-Axial Directions. Transactions of the Japan Society of Civil Engineers, v. 6, 1985: 279-286.
    [36] Tsuji Yukikazu, Maruyama Kyuichi. Influence of Restraining Method in the Mechanical Behaviors of Expansive Concrete. Transactions of the Japan Society of Civil Engineers, v.6, 1985: 325-332.
    [37] Kokubu Katsuro. Fundamental Study on Freeze-Thaw Durability of Expansive Concrete. Transactions of the Japan Society of Civil Engineers, v.15, 1985: 502-503.
    [38] Maekawa Koichi, Suzuki Yasunori, Harada Shuhsuke, Tsuji Yukikazu. Thermal Stress Analysis of Mass Concrete Made of Expansive Concrete. Transactions of the Japan Society of Civil Engineers, v.6, 1985: 675-686.
    [39] Togawa Kazuo, Nakamoto Junji. Effects of Temperature on Constrained Expansion Characteristics in Expansive Concrete. Proceedings of the Japan Society of Civil Engineers, May. 1982: 177-187
    [40] Togawa Kazuo, Nakamoto Junji. Effects of Temperature on Expansion Characteristics in Expansive Concrete. Transactions of the Japan Society of Civil Engineers, v.14, Mar. 1984: 384-385.
    [41] Kobayashi, Kazusuke, Nogdchi, Tetsuo. Properties of Steel Fiber Reinforced Expansive Concrete. Transactions of the Japan Society of Civil Engineers, v. 15,1985.
    [42] Togawa Kazuo, Nakamoto Junji. Effects of Shape of Fiber on Toughness of Fiber Reinforced Expansive Concrete. Transactions of the Japan Society of Civil Engineers, v. 16, 1985.
    [43] Tsuji Yukikazu, Maruyama Kyuichi. Flexural Behavior of Chemically Pre-stressed Concrete Beam after Dying Shrinkage. Transactions of the Japan Society of Civil Engineers, v. 7, 1985: 241-248.
    [44] Kimachi Yutaka. Study on Initial Stress of Reinforce Polymer Impregnates Concrete Beams. Proceedings of the Japan Society of Civil Engineers, Nov. 1993: 21-30.
    [45] Kawakami M, Gamski K, Tokuda H, Kagaya M. Chemically Pre-stressed and Strengths of Reinforced Concrete Pipes Using Expansive Concrete. Materials and Structures, v. 22, Mar. 1989: 83-90.
    [46] Tsuji Y, Miyake N. Chemically Pre-stressed Precast Concrete Box Culverts. Concrete International: Design and Construction, v. 10, May. 1988: 76-82.
    [47] Takahashi Makoto, Yoshida Fusahito. Elasto-Plastic Behaviors of the Expansive Concrete Filled Steel Pipe Members under Axial Loadings. Journal of the Society of Materials Science, v. 31, Apr. 1982: 358-363.
    [48] Lees J. M, Gruffydd-Jones B, Burgoyne C. J. Expansive Cement Couplers a Means of Pre-tensioning Fiber Reinforced Plastic Tendons. Construction and Building Materials, v. 9, Dec. 1995.
    [49]Nanni A,Thomas J.Grouted Anchors for Carbon FRP Tendon.Proceedings of the Materials Engineering Conference Materials for the New Millennium,Proceedings of the 1996 4th Materials Engineeringconference,v.1,Nov.1996:527-534,Washington DC,USA,Sponsored by ASCE.
    [50]中国建筑材料科学研究院水泥研究所.明矾石膨胀水泥及其混凝土性能介绍.1985:1-3.
    [51]薛君矸,吴中伟.膨胀和自应力水泥及其应用.北京:中国建筑工业出版社,1985:204,314.
    [52]薛君矸.论水泥石的硫铝酸盐膨胀——兼论液相中CaO低饱和浓度的硫铝酸钙膨胀的特点.硅酸盐学报,1979,(1):58-74.
    [53]戴建国.配筋钢纤维自应力混凝土的变形及自应力计算理论:(博士学位论文).大连:大连理工大学,2000.
    [54]田稳苓.钢纤维膨胀混凝土增强机理及其应用研究:(博士学位论文).大连:大连理工大学,1998.
    [55]何化南.钢衬钢纤维自应力混凝土新型复合管道性能和计算理论研究:(博士学位论文).大连:大连理工大学,2002.
    [56]李世春.钢纤维膨胀混凝土阻裂效应及其力学特性的研究:(硕士学位论文).大连:大连理工大学,1998.
    [57]张明.钢纤维自应力/膨胀混凝土构件抗拉性能的试验研究:(硕士学位论文).大连:大连理工大学,2000.
    [58]秦杰.钢衬钢筋混凝土压力管道施工期、运行期性能及其改性研究:(博士学位论文).大连:大连理工大学,2002.
    [59]秦娟.钢纤维自应力混凝土变形性能及复合管道的有限元分析:(硕士学位论文).大连:大连理工大学,2004.
    [60]刘中林、张全.徐变及温度在先简支后连续结构上引起的次内力计算.公路,1996(2):26-28.
    [61]陈强,黄志义.先简支后连续结构体系的概念及发展.铁道建筑,2005(4):1-3.
    [62]陈强.先简支后连续结构体系分析:(博士学位论文).杭州:浙江大学,2002.
    [63]何林兴(编译).预应力混凝土构件由简支变连续的新技术.国外公路,1995(6):17-32.
    [64]Alan R.Phipps,Q.D Spruil Jr.Biloxi Interestate 110 Voaduct.PCI Joural,v.35.1990(1):120-132.
    [65]Maher K.Tadros,Joseth A.Ficenec.A new technique to continuity in pre-stressed concrete members.PCI Joural,v.38.1993(5):30-38.
    [66]Robert J.Peterman,Julio A.Ramirez.Restrained moments in bridges with full-span pre-stressed concrete form panels.PCI Joural,v.43.1998(1):54-73.
    [67]Robert J.Peterman,Julio A.Ramirez.Behavior and strength of bridges with full-span pre-stressed concrete form panels.PCI Joural,v.43.1993(3):80-91.
    [68]Kwak H G,Seo Y J.Shrinkage cracking at interior support of continuous pre-cast pre-stressed concrete girder bridge.Construction and Building Materials,v.41.2002(1):35-47.
    [69]Kwak H G,Seo Y J.Numerical analysis of time-dependent behavior of pre-cast pre-stressed concrete girder bridge.Construction and Building Materials,v.41.2002(1):49-63.
    [70]Issa M A,Yousif AA et al.Experimental behavior of full-depth pre-cast concrete panels for bridge rehabilitation.ACI Structural Journal,v.97.2000(3):397-407.
    [71]Lopes S M R,Harrop J.Flexural behavior of pre-stressed continuous beams.Proceedings of the Institution of Engineers,2001(1):67-74.
    [72]Katrin Habel,Emmanuel Denarie,Eugen Br(u|¨)hwiler.Experimental investigation of composite ultra-high-performance fiber-reinforced concrete and conventional concrete members.ACI Structural Journal,v.104.Jan/Feb.2007(1):93-101.
    [73]K.Habel,J.P.Charron,E.Denarie,E.Br(u|¨)hwiler.Autogenous deformations and viscoelasticity of UHPFRC in structures Part 1:experimental results.Magazine of Concrete Research,v.58.Apr.2006(3):135-145.
    [74]K.Habel,J.P.Charron,E.Denarie,E.Br(u|¨)hwiler.Autogenous deformations and viscoelasticity of UHPFRC in structures Part 2:numerical modelling.Magazine of Concrete Research,v.58.Apr.2006(3):147-156.
    [75]马广德.桥面连续简支梁桥的力素分析及设计方法的探讨.华东公路,1985(2):49-60.
    [76]刘中林,王鸿雁,王彩霞.徐变及温度在先简支后连续结构体系上引起的次内力计算.河南交通科技,1995(5):14-16.
    [77]上官萍,房贞政,付东阳.先简支后连续桥梁结构体系的应用研究.福州大学学报(自然科学版),v.28.2000(5):77-81.
    [78]付东阳,房贞政,上官萍.先简支后连续结构试验研究.福建交通科技,1999(3):35-38.
    [79]付东阳.先简支后连续体系PC梁受力性能的研究:(硕士学位论文).福州:福州大学,1998.
    [80]付东阳,房贞政,上官萍.高等级公路桥梁先简支后连续体系研究.福州大学学报(自然科学版),1997(增刊):75-77.
    [81]聂玉东,刘凤丽,张闻世.连续梁桥不同施工方法恒载内力的比较.黑龙江交通科技,2000(1):29-31.
    [82]裘伯永,盛兴旺.桥梁工程.北京:中国铁道出版社,2000.
    [83]方志,李艳,吴鹏扬.先简支后连续混凝土桥梁徐变影响的参数分析.桥梁建设,2003(4):19-22.
    [84]陈强.先简支后连续结构体系后连续端部施工顺序研究.桥梁工程,2004(8):65-68.
    [85]陈强,黄志义,徐兴.先简支后连续结构体系临时支座的合理拆除顺序研究.桥梁建设,2005(1):69-72.
    [86]盛兴旺,周相华.先简支后连续梁桥结构的疲劳性能与抗裂性能.中南大学学报(自然科学版),v.36.2005(3):511-516.
    [87]曹俊伟.八尺门特大桥先简支后连续梁施工技术.山西建筑,v.5.2001(4):72-73.
    [88]谢琪.结合光明桥谈先简支后连续预应力混凝土连续梁的设计与施工.福建建筑,v.1.1997:29-31.
    [89]丁如珍,谈长庆.恒载简支、活载连续、支点不转换的连续桥梁设想.华东公路,v.2.1996:19-21.
    [90]刘光明,胡柏学.先简支后连续无缝桥梁初探.湖南交通科技,v.2.1999:54-55.
    [91]杨昀.桥梁先简支后连续设计方法的研究.公路交通科技,v.3.1998:58-60.
    [92]胡崇武.先简支后连续刚构PCT梁设计的初探.华东公路,v.1.1992:60-61.
    [93]谢小兵.先简支后连续部分预应力工型梁设计体会.中南公路工程,v.3.2000.
    [94]刘中林,张全.徐变及温度在先简支后连续结构上引起的次内力计算.公路,v.2.1996:26-28.
    [95]刘中林,王鸿雁,王彩霞.徐变及温度在先简支后连续结构体系上引起的次内力计算.河南交通科技,v.5.1995:14-16.
    [96]张百宁,王美强,梁金宏.简支变连续梁加固方法效应分析.辽宁交通科技,2005(7):62-64.
    [97]邓志恒,陆春阳,王良才.钢筋混凝土连续叠合梁受力性能试验研究.广西土木建筑,v.19.1994(3):101-108.
    [98]邓志恒,陆春阳.钢筋混凝土连续叠合梁受弯性能及设计方法研究.广西科学,2000(3):161-164.
    [99]邵永松,王洪达.钢纤维混凝土叠合梁理论及试验研究.哈尔滨工业大学学报,v.26.1994(4):116-120.
    [100]乔润德.预应力混凝土叠合梁的抗裂性研究.合肥工业大学学报(自然科学版),v.18.1995(1):52-59.
    [101]赵顺波,黄和法,李凤兰.钢筋混凝土叠合梁裂缝宽度计算.华北水利水电学院学报,v.19.1998(2):26-29.
    [102]赵顺波,李凤兰,王清河.集中荷载作用下的钢筋混凝土叠合梁斜截面承载力.港工技术,1998(3):25-28.
    [103]徐礼华,丁仕苗.均布荷载下钢纤维混凝土叠合梁抗剪性能试验研究.武汉测绘科技大学学报,v.22.1997(2):172-176.
    [104]刘清海.钢筋混凝土叠合弯压构件正截面强度计算和裂缝宽度验算.华东公路,v.134.2002(1):27-30.
    [105]谢丽芳,宋建中.单调荷载下叠合受弯构件延性的试验分析.长沙交通学院学报,v.16.2000(3):61-67.
    [106]朱惠诚,何山清,彭英.叠合式受弯构件在旧桥改造中的应用与计算.中外公路,v.24.2004(3):60-63.
    [107]李学英等.改性聚丙烯纤维混凝土力学性能的研究.第11届纤维混凝土会议论文集.中国大连:2006.
    [108]华渊,刘荣华,曾艺.纤维增韧高性能混凝土的试验研究.混凝土与水泥制品,1998(6).
    [109]ASTM C1018-97.Standard Test Method for Flexural Toughness and First Crack Strength of Fiber Reinforced Concrete(Using beam with third-point loading).Detroit:ASTM,1997.
    [110]JSCE Standard SF-4. Method of Test for Flexural Strength and Flexural Toughness of Fiber Reinforced Concrete. Tokyo: JSCE, 1984.
    [111]Carlson R. W, Reading T. J. Model study of shrinkage cracking in concrete building walls. ACI Structural Journal, Jul/Aug. 1988(4):395-403.
    [112]Grzybowski M, Shah S. P. Model to predict cracking in fiber reinforced concrete due to restrained shrinkage. Magazine of Concrete Research(London), v.41. 1989(148): 125-135.
    [113]Penev D, Kawamra M. A labotory device for restrained shrinkage fracture of soil-cement mixture. Materials and Structure, v. 25. 1992:115-120.
    [114]Kolver K. Testing systerm for determining the mechanical behavior of early age concrete under restrained and free uniaxial shrinkage. Material and Structure, v. 27. 1994:324-330.
    [115]Agnes Nagy. Simulation of thermal stress in reinforced concrete at early age with a simplified model. Materials and Structure, v.30. 1997:167-173.
    [116]Kheder G. F. A mathematical model for the prediction of volume change cracking in end-restrained concrete members. Materials and Structure, v.30. 1997:395-403.
    [117]Arnon Bentur et al. Prevetion of autogenously shrinkage in high-strength concrete by internal curing using wet lightweight aggregate. Cement and Concrete Research, v. 31. 2001:1587-1591.
    [118]Salah A. Altoubat, David A. Lange, creep, shrinkage and cracking of restrained concrete at early age. ACI Materials Journal, v. 98. 2001(4):323-331
    [119]Bjontegaard, Hammer T. A, Sellevold E. J. Cracking in high performance concrete before setting. International Symposium on High-Performance and Reactive Powder Concrete, Canada. 1-17.
    
    [120] RILEM TC119-TCE: Avoidance of Thermal Cracking in Concrete at Early Ages, 1993.
    [121]Nemkurmar B. Shrinkage cracking in polyolefin fiber reinforced concrete. ACI Material Journal, 2000, 97(4): 432-437.
    [122]Emmons P H. Selecting durable repair material: performance criteria. Concrete International, 2000, (3): 38-45.
    
    [123] 邓宗才. 高性能合成纤维混凝土. 北京: 科学出版社,2004:40-41.
    
    [124]Ashley C. Carden, George E. Ramey. Weather exposure and its effect on bridge deck curing in Alabama. Practice Periodical on Structural Design and Construction, 1999: 139-146.
    [125] ACI Committee 544. Measurement of properties of fiber reinforced concrete. ACI Material Journal, 1988, 85(6): 83-93.
    [126]P. S. Song, J. C. Wu, S. Hwuang, B. C. Sheu. Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiber reinforced concrete. Construction and Building Materials, 2000: 38-45.
    [127]赵铁军.混凝土渗透性.北京:科学出版社,2006.
    [128]卫军,张小玲,赵霄龙.混凝土结构耐久性研究现状和发展方向.低温建筑技术,1992(2):1-4.
    [129]孙家瑛.混杂聚丙烯纤维混凝土性能研究.混凝土,v.168.2003(11):16-20.
    [130]贡 金鑫,郭育霞.聚丙烯纤维高性能混凝土抗渗性能的试验研究.新型建筑材料,2006(11):50-52.
    [131]陈应波,胡继洪,卢哲安.层布式混杂纤维混凝土渗透性及孔隙率试验研究.混凝土与水泥制品,2004(4):34-36.
    [132]李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究.水利学报,1999:41-49.
    [133]Foy Christiane,Pigeon Michel,Banthia Nemkumar.Freezethaw durability and deicer salt scaling resistance of a 0.25 watercement ratio concrete.Cement and Concrete Research,v.18.1988(4):604-614.
    [134]张誉,蒋利学,张伟平等.混凝土结构耐久性概论.上海:上海科学技术出版社,2003.
    [135]谢晓鹏,高丹盈,赵军.钢纤维混凝土冻融和碳化后力学性能试验研究.西安建筑科技大学学报,v.38.2006(4):514-517.
    [136]高丹盈,谢晓鹏.在冻融作用下钢纤维混凝土的性能.工业建筑,v.36.2006(10):65-68.
    [137]杨全兵,朱蓓蓉.钢纤维对混凝土抗盐冻剥蚀性能的影响.建筑材料学报,v.7.2004(4):375-378.
    [138]黄蕴元,沈曼曼.自应力混凝土的力学特性参量及其应用.同济大学,1984.
    [139]杨瑞珊.自应力管设计的现状与展望.混凝土与水泥制品,1993(5).
    [140]Parviz Soroushian,Cha-Don Lee.Distribution and orientation of Fibers in steel fiber reinforced concrete.ACI Materials Journal,v.87.Sep/Oct.1990(5):433-440.
    [141]DavidDupont,Lucie Vandewalle.Distribution of steel fibers in rectangular sections.Cement& Concrete Composites,v.27.2005:391-398.
    [142]ACI Committee 209.Prediction of creep and shrinkage and temperature effects in concrete structure.Report No.ACI 209 R-82,SP76-10,American Concrete Institute,1982.
    [143]游宝坤,李乃珍.膨胀剂及补偿收缩混凝土.北京:中国建材工业出版社,2005:88-91.
    [134]王佳,陶春来,严金海.混凝土的徐变理论及分析.山西建筑,v.33.2007(2):185-187.
    [145]林波.混凝土收缩徐变及其效应的计算分析和试验研究:(硕士学位论文).南京:东南大学,2006.
    [146]Chu K.H,Domingo J,Carreira D.J.Time-dependent cyclic deflections in R/C beams.Journal of Structural Engineering,v.112.1986(5):943-959.
    [147]Dezi L,Ianni C,Tarantino A.M.Simplified creep analysis of composite beams with flexible connectors.Journal of Structural Engineering,v.119.1993(5):1484-1497.
    [148]孙宝俊.混凝土徐变理论的有效模量法.土木工程学报,v.26.1993(3):66-68.
    [149]王勋文,潘家英.按龄期调整有效模量法中老化系数x的取值问题.中国铁道科学,v.37.1996(3):12-23.
    [150]周履.当前国内有关混凝土弹性模量、收缩、徐变计算常用的数学表达式.桥梁建设,1987(4):52-78.
    [151]周履.用有限元方法计算混凝土结构徐变影响的若干计算理论和方法介绍.桥梁建设,1987(3):45-73.
    [152]惠荣炎,黄国兴,易冰若.混凝土徐变.北京:中国铁道出版社,1988.
    [153]周履,陈永春.收缩徐变.北京:铁道出版社,1994.
    [154]唐崇钊.混凝土徐变松弛计算.水利水运科学研究,1980(1):1-13.
    [155]唐崇钊.混凝土的徐变力学与试验技术.北京:水利电力出版社,1982.
    [156]Bazant Z.P.Prediction of concrete creep and shrinkage:pase,present and future.Nuclear Engineering and Design,v.203.2001:27-28.
    [157]中华人民共和国水利部.水工混凝土结构设计规范SL/T 191-96.北京:中国水利水电出版社,1996.
    [158]中华人民共和国建设部.混凝土结构设计规范GB50010-2002.北京:中国标准出版社,2002.
    [159]韩万水.轻质微膨胀混凝土在旧桥加固中的应用研究:(硕士学位论文).西安:长安大学,2003.
    [160]罗立峰,钟鸣,黄成造.钢纤维增强聚合物改性混凝土桥面铺装技术.广州<华南理工大学出版社,2004.
    [161]周旺华.现代混凝土叠合结构.北京:中国建筑工业出版社,1998.
    [162]赵顺波,张新中.混凝土叠合结构设计原理与应用.北京:水利水电出版社,2001.
    [163]赵军,宋纪文,黄石安.钢筋钢纤维混凝土梁正截面抗裂计算方法.郑州大学学报(自然科学版),v.32.2000:37-40.
    [164]赵军,郝彤,张英华.钢筋钢纤维混凝土T形梁正截面抗裂计算方法.黑龙江工程学院学报,v.15.2001:9-11.
    [165]王正霖,简斌,黄音.两跨预应力混凝土连续梁的试验分析.土木工程学报,v.32.1999:22-27.
    [166]李美云,管品武,刘立新,宫广娟.HRB400级钢筋混凝土连续梁的试验研究.郑州大学学报,v.24.2003:89-92.
    [167]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥梁设计规范JTG D62-2004.北京:人民交通出版社,2004.
    [168]赵志方.新老混凝土粘结机理研究与工程应用.北京:中国水利水电出版社,2003.
    [169]田稳苓,赵志方,赵国藩,黄承逵.新老胡凝土的粘结机理和测试方法研究综述.河北理工学院学报,v.20.1998:84-94.
    [170]王振领.新老混凝土粘结理论与试验及在桥梁加固工程中的应用研究:(硕士学位论文).成都:西南交通大学,2006.
    [171]何大治.叠合式受弯构件正截面承载力的受力性能分析:(硕士学位论文).武汉:武汉理工大学.2004.
    [172]Expansive cement concrete-Present state of knowledge.ACI Committee 223.ACI Journal,1970(8).
    [173]A.E.Moore,H.F.W.Taylar.Crystal structure of Ettringite.Acta Cryst,B26,1970.
    [174]刘江宁.不同限制条件下膨胀混凝土变形行为力学特征及微观结构研究:(博士学位论文).北京:中国建材科学研究院,1991.
    [175]“亚运工程中混凝土的补偿收缩裂渗控制技术”鉴定资料.中国建筑材料科学研究院,1990.
    [176]王栋民.高性能膨胀混凝土.北京:中国水利水电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700