用户名: 密码: 验证码:
导管架平台结构模型裂纹扩展声发射特征提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近海油气的开发主要使用固定式海洋平台,最常用的固定式海洋平台是导管架式海洋平台,管结点裂纹破坏问题对导管架式海洋平台来讲是一个公认的设计问题,恶劣的海洋环境,有时会使导管架式海洋平台的结点出现裂纹断裂,早期诊断出结点裂纹是导管架式海洋平台的关键问题。因此,运用声发射技术对海洋平台进行动态监测具有重要的现实意义。声发射技术的关键是从声发射信号中提取特征,信号分析和处理是特征提取最常用的方法。由于声发射信号是非平稳非线性信号,因此有必要选择恰当的适合于非平稳非线性信号分析的信号处理方法。
     由于时频分析方法能同时提供声发射信号的时域和频域信息,因而人们广泛进行了研究。但常用的时频分析方法如窗口傅里叶变换和小波变换等都有各自的局限性。近年来,一种适合于处理非平稳信号的时频分析方法局域波法被提出来以后,经验证在很多方面的应用效果都优于其它的信号处理方法。本文在国家自然科学基金项目的资助下,提出将局域波法引入到声发射特征提取中。将局域波用于分析导管架海洋平台结构模型的声发射信号,以获得声发射信号的时频特征和频率能量分布。通过局域波分解将声发射信号分解为一组本征模函数分量(IMF),对每一个IMF分量进行希尔伯特变换获得信号能量随时间和频率的变化;由局域波时频谱得到边际谱,反映声发射信号的能量频率分布特征。分析了导管架海洋平台结构模型模拟声发射信号的特征,运用局域波分析方法监测到导管架海洋平台结构模型裂纹声发射信号的出现。试验表明,局域波法可以有效地捕捉到导管架海洋平台结构裂纹的声发射信号,在声发射信号处理领域将会有广阔的应用前景。
     本文提出了一种新的结构裂纹声发射信号特征提取方法——近似熵法,近似熵是一种最近新发展起来的度量序列复杂性的统计方法。介绍了近似熵的概念及性质,并对仿真声发射信号和预制裂纹钢管在逐渐加载作用下的裂纹扩展声发射信号进行了近似熵计算分析,结果表明,近似熵在表征声发射信号的复杂性方面有明显的效果,从而为声发射信号分析提供了一种很有效的新方法。
     提出将近期发展的局域波法和近似熵法相结合应用于声发射信号的特征提取中。首先,将声发射信号进行局域波分解,得到自适应的本征模函数分量,然后对各本征模函数分量计算近似熵,描述各本征模函数分量的复杂程度,监测声发射信号的发生和发展,量化声发射信号的特征。通过预制裂纹钢管逐渐加载试验,分析计算了钢管裂纹声发射信号的各本征模函数分量的近似熵,表明局域波法与近似熵相结合的方法可以有效地提取声发射信号的特征,从而为声发射信号特征提取提供了一种新的方法。
     提出将近期发展的局域波法和神经网络相结合应用于声发射信号特征提取识别中。首先,将海洋平台结构声发射信号进行局域波分解,得到自适应的本征模函数分量,然后从各本征模函数分量中提取能量特征参数作为神经网络的输入参数来识别海洋平台结构的声发射信号。通过对导管架海洋平台结构模型声发射信号的试验数据分析表明,以局域波法提取各频带能量作为特征参数的神经网络方法可以准确、有效地识别导管架海洋平台结构模型声发射信号。从而为海洋平台结构声发射信号特征提取识别提供了一种新的方法。
     为管理大量导管架海洋平台结构声发射信号试验数据,运用识别算法对声发射信号进行定性识别研究,提出了建立以开放式数据库为支持,基于局域波法的导管架海洋平台结构声发射信号识别系统平台。采用PowerBuilder和Matlab等编程工具,结合SQL Server数据库技术,通过多种接口设计方法实现了导管架海洋平台结构声发射信号的数据、识别算法等的有机结合。通过试验证明,该识别平台操作简便,具有较强的实用价值,对导管架海洋平台结构声发射信号的科学研究试验数据和实际监测数据的管理及识别提供了便利。
Fixed offshore platforms are widely employed in the offshore oil-gas exploration and jacket offshore platforms are the common ones of fixed offshore platforms. Tubular joint fatigue failures have been commonly regarded as the design problem for jacket offshore platforms. When a fatigue fracture occurs in the node of jacket offshore platforms, an early diagnosis is the key in hostile ocean environments.Therefore it is extremely significant to detect the crack of offshore platforms using the acoustic emission (AE) technique. As we all know, extracting features is the key of the AE technique. To extract features effectively, signal processing-based methods are widely used today. Due to the fact that most of the AE signals present non-stationary and nonlinear properties, it is essential to choose appropriate signal processing methods that are suitable for non-stationary and nonlinear signals to extract AE signals features.
     The time-frequency analysis methods are widely studied in AE signals processing because they can provide both time and frequency domain information of a signal simultaneously. However, the time-frequency analysis methods such as windowed Fourier transforms(WFT) and wavelet transform have their own limitations. Recently, a novelty for non-stationary signals named as Local Wave Analysis (LWA), has been put forward and confirmed to be superior to the other signal processing methods in many applications. Supported by National Natural Science Foundation, this dissertation introduces LWA into AE signals processing, whose aim is to extract feature of AE signals by using LWA. In this paper we show the possibility of using local-wave to analyze the time-frequency feature of the acoustic emission signals produced by the crack in the offshore structure model.In the investigation, we used a local wave decomposition technique, allowing time series of acoustic emission signal being decomposed into a small number of intrinsic mode function components (IMF). Under the Hilbert transformation process, IMF can be translated into an expression called Hilbert spectra, which exhibits the amplitude-frequency-time distribution of the data. The marginal spectra, which present the energy-frequency distribution of the data, were obtained by integrating the Hilbert spectra with time. The feature of the offshore structure simulation acoustic emission signals could be extracted by applying local wave analysis. The characteristics of the crack acoustic emission signals in the offshore structure, was found which indicated the acoustic emission occurrence by using the local-wave analyzing. Consequently, the experimental results show that the proposed approach is able to effectively capture the significant information reflecting the acoustic emission in the offshore structure, and thus has good potential in the field of acoustic emission signal feature extraction.
     This thesis presents a new approach to characterize the acoustic emission signals of the structure cracking in the process of loading based on the Approximate Entropy (ApEn), which is a statistical measure that quantifies the regularity of a time series. The conception and nature are introduced. Successful application has been achieved to analyze the simulating acoustic emission signals and the acoustic emission signals produced by the crack in the steel tube. The results show that ApEn has obvious high ability to quantify the complexity of signals, thereby providing a new effective tool for the acoustic emission signals processing.
     A new approach through combining the recently developed Local Wave method with the Approximate Entropy to characterize the acoustic emission signals was studied in the thesis. Firstly, local wave method is used to decompose the acoustic emission signal into a number of intrinsic mode functions (IMFs), and then calculate the ApEn of IMFs to describe their complexity, detect the occurrence and the development and quantify the characteristic of the acoustic emission signals. The effectiveness of the proposed methods has been demonstrated by using the acoustic emission signals from the steel tube cracking during a quasi-static loadings test. The experimental results show that the proposed approach can effectively capture the significant information reflecting the acoustic emission, and thus has good potential in the field of acoustic emission signal feature extraction.
     This dissertation presents a new approach, which is combined the recently developed Local Wave method with the neural network to characterize and identify the acoustic emission signals of offshore structures. Local wave method is used to decompose the acoustic emission signals of offshore structures into a number of intrinsic mode functions, and then energy feature parameter extracted from IMFs could be served as input parameter of neural networks to identify the acoustic emission signals of offshore structures. The experimental analysis results from the acoustic emission signals of offshore structures model show that the approach of neural network based on local wave extracting energy parameter as feature can effectively recognise the offshore structures AE signals, and thus providing a new effective tool for the acoustic emission signal feature extraction identification of offshore structures.
     This paper presents an identification platform of acoustic emission signals of offshore structures supported by the open country-wide interconnected database and based on local wave method, which can manage a lot of acoustic emission signal experimental data of offshore structures and study the nature of the acoustic emission signals by multi-recognition arithmetic. By using the program tools such as PowerBuilder and Matlab, in combination with database technique, the data and algorithm of acoustic emission signals of offshore structures were combined by designing several interfaces. The results show that the identification platform has powerful functions with easy operation, and has more practical values. And the system can offer convenience for managing and identifying the experimental data and the practical data of acoustic emission signals of offshore structures.
引文
[1]欧进萍,段忠东.肖仪清.海洋平台结构安全评定:理论、方法与应用.北京:科学出版社,2003.5
    [2]杨明纬,耿荣生.声发射检测.北京:机械工业出版社,2004
    [3]张平.集成化声发射信号处理平台的研究:(博士学位论文).北京:清华大学,2002.
    [4]Silk.M.G,Williams.N.R,Bainton,K.F.The potential role of NDT techniques in the monitoring of fixed offshore structures.British Journal of Non-Destructive Testing,1975,17(3):83-87.
    [5]Peters.V.A.Offshore platform NDT instrumentation requirements.Institute of Physics Conference Series,1977:13-18.
    [6]Dumousseau.P.F,Laffont.P,Thebault.J.M.Experimental study of acoustic emission monitoring of crack propagation in offshore steel tubular joint.Offshore Technol Conf 11th Annu,Houston,TX,USA,1979:593-599.
    [7]Edwards.G.R.Ultrasonics in the north sea oil industry.Anti-Corrosion Methods and Materials,1979,26(12):5-7.
    [8]Rogers.L.M,Hansen,John P.,Webborn.Christopher.Application of acoustic emission analysis to the integrity monitoring of offshore steel production platforms.Materials Evaluation,1980,38(8):39-49.
    [9]VicDonald.A.,Thomson.J.F.Fatigue strength of large-scale welded tubular T joints.American society of mechanical engineers,1980:l-16.
    [10]Fuller.Michael D.,Rose.Joseph L.Application of the acoustic emission technique for monitoring offshore structures.Society of petroleum engineers of AIME,1983:25-35.
    [11]Bindal.V.N.Testing of underwater offshore structures.Chemical Age of India,1984,35:721-725.
    [12]Tonolini.F.,Fontana.E.,Acoustic emission researches for an application to the surveillance of offshore platforms.5th Offshore Inspection Repair and Maintenance Conference,Aberdeen,Scotl,1984:10-21.
    [13]Thaulow.Christian,Lovaas.Steinar,Applications of acoustic emission for underwater monitoring of cracks and leakages.Norwegian Maritime Research,1984,12(2):35-44.
    [14]Visweswaran,R.,Manoharan,M.,Jothinathan,G.,Prabhakar,O.,Amplitude distribution analysis of acoustic emission during fatigue testing of steels used in offshore structures.Spec Suppl J Acoust Emiss,1985:207-210.
    [15]Lovaas,Steinar,Acoustic emission of offshore structures,attenuation noise-crack monitoring.Spec Suppl J Acoust Emiss,1985:161-164.
    [16]Rogers,L.M.,Detection and monitoring of cracks in structures,process vessels and pipework by acoustic emission.Institution of Chemical Engineers Symposium Series,Manchester,Engl,1986,97:201-214.
    [17]Rogers,L.M.,Keen,E.J.Detection and monitoring of cracks in offshore structures by acoustic emission.NDT-85,Proceedings of the 20th Annual British Conference on Non-Destructive Testing,Erskine,Scotl,1986:205-217.
    [18]Rogers,L.M.Detection and monitoring of cracks in offshore structures by acoustic emission.American Society of Mechanical Engineers,Petroleum Division(Publication)PD,1987,10:55-60.
    [19]Atria,Farouk G.,Tawfik,Adel S..Monitoring structural integrity of offshore structures.Proceedings of the 14th Annual Energy-Sources Technology Conference and Exhibition,Houston,TX,USA,1991:47-52.
    [20]Wang,Z.F.,Li,J.,Ke,W.,Zhu,Z..Characteristics of acoustic emission for A537structural steel during fatigue crack propagation.Scripta Metallurgica et Materialia,1992,27(5):641-646.
    [21]Jolly,William D.Status and future directions for acoustic emission standards.ASTM Special Technical Publication,1992,1151:56-62.
    [22]Rogers,L.M.Use of acoustic emission methods for crack growth detection in offshore and other structures.Transactions-The Institute of Marine Engineers,1998,110(3):171-180.
    [23]Rogers,Leonard M.Crack detection using acoustic emission methods-Fundamentals and applications.Key Engineering Materials,2005,293-294:33-46.
    [24]耿荣生,沈功田,刘时风.声发射信号处理和分析技术.无损检测,2002,24(1):23-28.
    [25]Gorman MR.Plate wave acoustic emission.JASA,1991,90(1):358-364.
    [26]Prosser WH,Gorman MR.Plate mode velocities in graphite/epoxy plates.JASA,1994,96(2):902-907.
    [27]刘松平,Gorman MR等.模态声发射检测技术.无损检测,2000,22(1):38-41.
    [28]秦前清,杨宗凯.实用小波分析技术.西安:西安电子科技大学出版社,1994.
    [29]刘时风.焊接缺陷声发射检测信号谱估计及人工神经网络模式识别研究:(博士学位论文).北京清华大学,1996.
    [30]李家林,董云朝等.声发射源特征的神经网络模式识别研究.无损检测,2001,23(6):231-233.
    [31]沈功田,段庆儒等.压力容器声发射信号人工神经网络模式识别方法研究.无损检测,2001,23(4):144.
    [32]李圣怡,C.James Li.声发射分析用于轴承状态监测的研究.国防科技大学学报,1991,13(3):56-61.
    [33]游淳,翁世修.基于神经网络的刀具状态实时监控系统.组合机床与自动化加工技术,1995,9:32-37.
    [34]陈国聪.深孔镗加工工况监测系统的研究.电脑开发与应用,1995,9(4):37-39.
    [35]张卫民,王信义,邢济收和王克勇.人工神经网络在压缩机故障检测中的应用.压缩机技术,1996,6:15-18.
    [36]廖光煊,姚斌,范维澄,邹样辉和花锦松.油罐扬沸火灾预测方法的研究及安全预警系统的建立.中国安全科学学报,1997,7:8-12.
    [37]梁家惠,尹作友.声发射仪器的发展.无损检测,1998,20(10):285-291.
    [38]黄惟公,罗中先.刀具磨损监测中信号特征值的提取与聚类分析.机械,1999,26(3):7-11.
    [39]吴学忠,李圣怡,刘晓贵.基于多传感器的刀具状态监测系统.数据采集与处理,1999,14(2):200-203.
    [40]崔岩,史文方.SiCp/Al复合材料界面控制与评价新方法.航空学报,2000,21(6):571-574.
    [41]陈嘉陵,诸静.基于专家系统的微机控制与碰摩故障检测系统.工业控制计算机,2000,13(4):45-46.
    [42]陈顺云,杨润海,赵晋明,许昭永.小波分析在声发射资料处理中的初步应用.地震研究,2002,25(4):328-334.
    [43]张蕾,高胜友,谈克雄.油中局部放电超声信号模式识别的研究.电工电能新技术,2002,21(3):32-35.
    [44]马建峰,王信义.基于高阶累积量的特征提取方法研究.机械,2002,29(1):30-31.
    [45]理华,徐春广,肖定国,黄卉,郑军,季皖东,郭浩.小波包原理在滚动轴承声发射检测技术中的应用.机械,2002,29(4):11-12.
    [46]张平,施克仁,耿荣生,沈功田.小波变换在声发射检测中的应用.无损检测,2002,29(10):436-439.
    [47]喻俊馨,黄惟公,王计生.基于小波神经网络的刀具故障监测系统.机械加工与自动化,2004,8:19-21.
    [48]戴光,李宝玉,李伟.金属腐蚀染噪声发射信号的小波分析.化工机械,2004,31(5):285-288.
    [49]李耀东,黄成祥,侯力,王小龙.疲劳裂纹的声发射信号检测技术.计算机测量与控制,2004,12(6):504-506.
    [50]王海丽,张广鹏,翁德玮,胡德金.基于声发射法的刀具破损特征量的提取.江苏机械制造与自动化,2001,4:121-123
    [51]王余刚,骆英,柳祖亭.全波形声发射技术用于混凝土材料损伤监测研究.岩石力学与工程学报,2005,24(5):803-807.
    [52]王强,张光新,周泽魁,黄翼虎.基于声发射的输油管线破坏点定位方法研究.浙江大学学报(工学版),2005,39(3):803-807.
    [53]徐洪安,王民,徐小力,费仁元.基于声发射的双谱分析在金刚笔状态特征提取中的应用.中国机械工程,2005,16(7):578-582.
    [54]杨振东,舒乃秋,王文志,刘敏.绝缘子污秽放电声发射监测方法研究.电力自动化设备,2005,25(7):35-37.
    [55]喻俊馨,王计生,黄惟公,李江.小波包分析在刀具声发射信号特征提取中的应用.数据采集与处理,2005,20(3):346-350.
    [56]李孟源,陈春朝,任焕琴.小波神经网络在货车滚动轴承故障检测中的应用.机械.2005(11):52-54.
    [57]江云飞.声发射技术在复合材料损伤模式识别中的应用.直升机技术.2005(01):26-30.
    [58]陈春朝,李孟源,王恒迪等.铁路货车轴承的声发射故障诊断及分析.轴承.2006(01):36-38.
    [59]舒服华.基于小波神经网络的刀具状态监测.组合机床与自动化加工技术.2006(01):69-70.
    [60]郭占斌,刘海军.小波神经网络技术用于发动机曲轴探伤的研究.机械.2006(01):4-6.
    [61]朱云芳,戴朝华,傅攀.采用小波神经网络的刀具故障诊断.振动、测试与诊断.2006(01):64-66.
    [62]李冬生,黄新民,欧进萍.改进的神经网络技术在声发射定位中的应用.无损检测.2006(06):288-291.
    [63]姜长泓,王龙山,尤文等.基于平移不变小波的声发射信号去噪研究.仪器仪表学报.2006(06):607-610.
    [64]黄翔,候力,谭永健等.机械故障诊断中的声发射信号处理方法研究.噪声与振动控制.2006(03):39-41.
    [65]王观石,胡世丽,刘洪兴等.用声发射监测岩石与混凝土界面的破坏过程.矿业工程.2006(04):22-24.
    [66]刘卫东,丁恩杰.柴油发动机故障诊断技术研究.农业装备与车辆工程.2006(07):14-16.
    [67]高宏力,许明恒,傅攀等.基于动态树理论的刀具磨损监测技术.机械工程学报.2006(07):227-230.
    [68]朱祥军.单闸板防喷器的声发射检测初步实践.钻采工艺.2006(04):86-87.
    [69]谷小红,侯迪波,周泽魁.声发射与EMD相结合的埋地水管泄漏定位检测.浙江大学学报(工学版).2006(07):1105-1108.
    [70]宋万民,郝如江.小波变换在轴承故障声发射信号降噪中的应用.石家庄铁道学院学报.2006(04):34-37.
    [71]谷小红,蔡晋辉,周泽魁.基于声发射传感器与ChiMerge粗糙集的埋地水管泄漏检测.传感技术学报.2006(06):2470-2473.
    [72]王海丽,马春翔,邵华等.车削过程中刀具磨损和破损状态的自动识别.上海交通大学学报.2006(12):2467-2473.
    [73]张同华,张慧萍,晏雄.小波分析在复合材料声发射信号特征研究中的应用.玻璃钢/复合材料.2007(01):46-48.
    [74]张同华,杨壁玲,彭永超等.基于声发射检测技术的PE/PE自增强复合材料破损机理分析.材料工程.2007(01):56-59.
    [75]蔡海潮,李孟源,靳颜博等.铁路货车轮对轴颈轴承内圈松动故障检测.轴承.2007(02):29-31.
    [76]李冬生,欧进萍.声发射技术在拱桥吊杆损伤监测中的应用.沈阳建筑大学学报(自然科学版).2007(01):6-10.
    [77]李伟,方江涛,戴光.基于独立分量分析和小波变换的低碳钢点蚀声发射信号特征提取.化工机械.2007(02):74-77.
    [78]梁伟,张来斌,王朝晖.声发射检测技术在管道泄漏信号识别中的应用.科学技术与工程.2007(08):1596-1601.
    [79]蔡海潮,李孟源,陈春朝等.352226X_2滚锥轴承内圈松动的声发射诊断.河南科技大学学报(自然科学版).2007(03):14-16.
    [80]刘红光,骆英,赵国旗等.基于HHT的混凝土损伤AE信号分析新方法.防灾减灾工程学报.2007(02):187-191.
    [81]咎涛,王民,费仁元.基于小波包分解与支持向量机的金刚笔钝化识别研究.机床与液压.2007(06):34-37.
    [82]周洁,毛汉领,黄振峰等.金属疲劳断裂的声发射检测技术.中国测试技术.2007(03):7-9.
    [83]黄新民.神经网络技术在声发射定位中的应用.邵阳学院学报(自然科学版).2007(02):26-29.
    [84]王建新,耿荣生,胡晓光等.小波包-AR谱在钛合金材料声发射监测技术中的应用.无损检测.2007(09):512-518.
    [85]孙立瑛,李一博,曲志刚等.EMD信号分析方法的声发射管道泄漏检测研究.振动与冲击.2007(10):161-164.
    [86]殷冬萌,王军,刘云飞.木塑复合材料缺陷及损伤的声发射信号特征分析及神经网络模式识别.应用声学.2007(06):352-356.
    [87]李一博,孙立瑛,靳世久等.大型常压储罐底板的声发射在线检测.天津大学学报.2008(01):11-16.
    [88]刘国华,黄平捷,龚翔等.基于分形维和独立分量分析的声发射特征提取.华南理工大学学报(自然科学版).2008(01):76-80.
    [89]吴占稳,王少梅,沈功田.基于小波能谱系数的声发射源特征提取方法研究.武汉理工大学学报(交通科学与工程版).2008(01):85-87.
    [90]何沿江,齐明侠,罗红梅.基于ICA和SVM的滚动轴承声发射故障诊断技术.振动与冲击.2008(03):150-153.
    [91]金文,陈长征,金志浩等.声发射源识别中的三比值特征提取方法研究.仪器仪表学报.2008(03):530-534.
    [92]黄琪,余波,李录平等.基于声发射检测的滑动轴承状态诊断实验研究.电站系统工程.2008(02):15-16.
    [93]郝如江,卢文秀,褚福磊.形态滤波在滚动轴承故障声发射信号处理中的应用.清华大学学报(自然科学版)网络.预览.2008(05):35-37.
    [94]Crostack H A,Kock K H.Application of pattern recognition methods in acoustic emission analysis by means of computer techniques.Solid State Technology.1979:10-12.
    [95] Bae P, Chaari A, Gaillard P, et al. Pattern recognition technique for characterization and classification of acoustic emission signal.NATO Conference Series, (Series)4: Marine Sciences. 1980,1:134-136.
    [96] Chan W Y, Hay D R, Suen C Y, et al. Application of pattern recognition techniques in the identification of acoustic emission signals. NATO Conference Series, (Series)4: Marine Sciences. 1980,1:108-111.
    [97] Roy C, Maslouhi A, Gaucher D, et al. Classification of acoustic emission sources in CFRP assisted by pattern recognition analysis. Canadian Aeronautics and Space Journal. 1988, 34(4): 224-232.
    [98] Yang J, Dumont G A. Classification of acoustic emission signals via Hebbian feature extraction. International Joint Conference on Neural Networks - IJCNN-91-Seattle Part 1 (of 2),Seattle,WA,USA, 1991.
    [99] Luo Z, Zheng L, Quan Y, et al. Study on monitoring of tool wear/fracture using a regression model. Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, USA, 1993.
    [100] Dress W B, Kercel S W. Wavelet-based acoustic recognition of aircraft. Wavelet Applications, Orlando, FL, USA, 1994.
    [101] Li C J, Li S Y. Acoustic emission analysis for bearing condition monitoring. Wear.1995,185(1-2):67-74.
    [102] Fang J, Atlas L E, Bernard G D. Advances in acoustic emission energy estimation. Machine Tool, In-Line, and Robot Sensors and Controls, Philadelphia, PA, USA,1995.
    [103] Kamarthi S V, Kumara S R, Cohen P H. Wavelet representation of Acoustic Emission in turning process. Proceedings of the 1995 Artificial Neural Networks in Engineering, St. Louis, MO,USA, 1995.
    [104] Walker J L, Hill E K. Backpropagation neural networks for predicting ultimate strengths of unidirectional graphite/epoxy tensile specimens. Advanced Performance Materials. 1996, 3(1): 75-83.
    [105] Hessel G, Schmitt W, Weiss F-. A neural-network approach for acoustic leak monitoring in pressurized plants with complicated topologies. Control Engineering Practice. 1996, 4(9): 1271-1276.
    [106] Ravindra H V, Srinivasa Y G, Krishnamurthy R. Acoustic emission for tool condition monitoring in metal cutting. Wear. 1997, 212(1):78-84.
    [107] Bukkapatnam S T, Kumara S R, Lakhtakia A. Analysis of acoustic emission signals in machining. Proceedings of the 1997 6th Annual Industrial Engineering Research Conference, Miami Beach, FL, USA, 1997.
    [108] Niu.Y M, Wong Y S, Hong G S, et al. Multi-category classification of tool conditions using wavelet packets and ART2 network. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 1998,120(4):807-816.
    [109] Quan Y, Zhou M, Luo Z. On-line robust identification of tool-wear via multi-sensor neural-network fusion. Engineering Applications of Artificial Intelligence. 1998,11(6): 717-722.
    [110] Li X, Wu J. Wavelet analysis of acoustic emission signals in boring. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture. 2000, 214(5):421-424.
    [111] Emamian V, Kaveh M, Tewfik A H. Acoustic emission classification for failure prediction due to mechanical fatigue. Proceedings of SPIE - The International Society for Optical Engineering. 2000, 3986:78-84.
    [112] Emamian V, Kaveh M, Tewfik A H. Robust clustering of acoustic emission signals using the Kohonen network. 2000 IEEE Interntional Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 2000.
    [113] Ravishankar S R, Murthy C R. Characteristics of AE signals obtained during drilling composite laminates. NDT and E International. 2000, 33(5):341-348.
    [114] Emamian V, Shi Z, Kaveh M, et al. Acoustic emission classification using signal subspace projections. 2001 IEEE Interntional Conference on Acoustics, Speech, and Signal Processing , Salt Lake, UT, 2001.
    [115] Emamian V, Kaveh M, Tewfik A H, et al.Robust clustering of acoustic emission signals using neural networks and signal subspace projections. Eurasip Journal on Applied Signal Processing. 2003, 2003(3):276-286.
    [116] Al-balushi K R, Samanta B. Gear fault diagnosis using energy-based features of acoustic emission signals. Proceedings of the Institution of Mechanical Engineers. Part Ⅰ: Journal of Systems and Control Engineering. 2002, 216(3):249-263.
    [117] Haili W, Hua S, Ming C, et al. On-line tool breakage monitoring in turning. Journal of Materials Processing Technology. 2003,139(1-3 SPEC):237-242.
    [118] Yang M, Manabe K, Hayashi K, et al.Data fusion of distributed AE sensors for the detection of friction sources during press forming. Journal of Materials Processing Technology. 2003,139(1-3 SPEC):368-372.
    [119] Wang C Y, Shang Y. Intelligent Detecting Method to Recognize the Faults of Compressors. ISTM/2003 5th Internatinal Symposium on Test and Measurement Shenzhen, China, 2003.
    [120] Strauss D J,Delb W, Plinkert P K, et al. Hybrid Wavelet-Kernel Based Classifiers and Novelty Detectors in Biosignal Processing. A New Beginning for Human Health: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society , Cancun,Mexico,2003.
    [121] Eissa S,Terchi A, Au Y H, et al. Powder compression monitoring with fuzzy clustering of acoustic emission signals. International Conference on Mechatronics, Royal Mail, 2003.
    [122] Wu H, Mendel J M. Multi-category classification of ground vehicles based on their acoustic emissions. Unattended/Unmanned Ground, Ocean, and Air Sensor Technologies and Applications VI, Orlando, FL, United States, 2004.
    [123] Haddad Y M.A knowledge-based intelligent non-destructive inspection system for the determination of material response states. Proceedings of the International Conference on Restoration, Recycling and Rejuvenation Technology for Engineering and Architecture Application, Cesena, Italy, 2004.
    [124] Liu Q, Chen X,Gindy N. Fuzzy pattern recognition of AE signals for grinding burn. International Journal of Machine Tools and Manufacture. 2005,45(7-8):811-818.
    [125] Nkrumah F, Grandhi G, Sundaresan M J, et al. Identification of failure modes in composite materials. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure Ⅳ ,San Diego, CA, United States, 2005.
    [126] Stephan M, Frohlich K J, Frankenstein B, et al. Statistical signal parameters of acoustic emission for process monitoring. Testing, Reliability, and Application of Micro-and Nano-Material Systems Ⅲ, San Diego, CA, United States, 2005.
    [127] Saxena A, Saad A. Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Applied Soft Computing Journal. 2007, 7(1): 441-454.
    [128] Warren L T, Ting C F, Qu J, et al. A wavelet-based methodology for grinding wheel condition monitoring. International Journal of Machine Tools and Manufacture.2007, 47(3-4):580-592.
    [129] Kappatos V, Dermatas E. Crack detection in noisy environment including raining conditions. Aircraft Engineering and Aerospace Technology. 2007, 79(2):163-169.
    [130] Kappatos A V, Dermatas S E. Feature extraction for crack detection in rain conditions. Journal of Nondestructive Evaluation.2007, 26(2-4):57-70.
    [131] Chen X, Griffin J, Liu Q. Mechanical and thermal behaviours of grinding acoustic emission. International Journal of Manufacturing Technology and Management. 2007, 12(1-3):184-199.
    [132] Yella S, Gupta N K, Dougherty M S. Comparison of pattern recognition techniques for the classification of impact acoustic emissions. Transportation Research Part C: Emerging Technologies. 2007,15(6):345-360.
    [133]Ince N F,Onaran I,Tewfik A H,et al.W heat and hazelnut inspection with impact acoustics time-frequency patterns.2007 ASABE Annual International Meeting Minneapolis,MN,United States,2007.
    [134]Cao H,Chen X,Zi Y,et al.End milling tool breakage detection using lifting scheme and Mahalanobis distance.International Journal of Machine Tools and Manufacture.2008,48(2):141-151.
    [135]Li X,Bassiuny A M.Transient dynamical analysis of strain signals in sheet metal stamping processes.International Journal of Machine Tools and Manufacture.2008,48(5):576-588.
    [136]Wu Zhanwen,Wang Shaomei,Shen Gongtian.Extraction of acoustic emission resource characteristics based on wavelet transform.Wuhan Ligong Daxue Xuebao(Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology(Transportation Science and Engineering).2008,32(1):85-87.
    [137]Chiu N H,Guao Y Y.State classification of CBN grinding with support vector machine.Journal of Materials Processing Technology.2008,201(1-3):601-605.
    [138]Li Xuejun,Liao Chuanjun,Chu Fulei.Wavelet function suitable for fault feature extraction of acoustic emission signal.Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering.2008,44(3):177-181.
    [139]Liu Guo- Hua,nuang Ping- Jie,Gong Xiang,et al.Feature extraction of acoustic emission signals based on fractal dimension and independent component analysis,Huanan Ligong Daxue Xuebao/Journal of South China University of Technology(Natural Science).2008,36(1):76-80.
    [140]He Yan-Jiang,Qi Ming-Xia,Luo Hong-Mei.AEbased fault diagnosis of rollingbearings by use of ICA and SVM.Zhendong yu Chongji/Journal of Vibration and Shock.2008,27(3):150-153.
    [141]袁振明,马羽宽,何泽云.声发射技术及其应用.北京:机械工业出版社,1985.
    [142]沈功田,耿荣生,刘时风.声发射信号的参数分析方法.无损检测.2002,24(2):72-77.
    [143]耿荣生,景鹏,雷洪等.飞机主梁疲劳裂纹萌生声发射信号的识别方法.航空学报.1996,5:368-372.
    [144]耿荣生,沈功田,刘时风.声发射信号处理和分析技术.无损检测.2002,1:23-28.
    [145]梁忠雨,高峰,钟卫平等.岩石脆性断裂试验的声发射分析.矿业工程.2007,5(2):16-17.
    [146]周洁,毛汉领,黄振峰,曾德良.金属疲劳断裂的声发射检测技术.中国测试技术.2007,33(3):7-9.
    [147]龚斌,李兆南,殷天舟等.压力管道泄漏声发射信号能量累计特性研究.压力容器.2007,24(1):27-30.
    [148]李冬生,欧进萍.声发射技术在拱桥吊杆损伤监测中的应用.沈阳建筑大学学报(自然科学版).2007,23(1):6-10.
    [149]王祖萌.声发射技术基础.济南:山东科学技术出版社,1990.
    [150]Huang N E,Shen Z L S R.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear Non-stationary Time Series Analysis.Proc.R.Soc.1998,A 454:903-995.
    [151]马孝江,余泊,张志新,蔡悦.一种新的时频分析方法-局域波法.振动工程学报.2000,13:219-224.
    [152]林丽,赵德有.局域波时频分析在声发射信号处理中的研究.振动与冲击(增刊).2006,25:390-392.
    [153]J S.'Instantaneous' frequency.Proc.IRE.1953,41:548.
    [154]Tichmarsch E C.Introduction to the Theory of Fourier Integrals.Oxford:Oxford University Press,1948.
    [155]g D P.Nonlinear systems.Cambridge University Press,1992.
    [156]Pincus S M.Approximate entropy as a measure of system complexity.Proc.Natl.Acad.Sci.USA.1991,88:2297-2301.
    [157]洪波,唐庆生,杨福生等.近似熵、互近似熵的性质、快速算法及其在脑电与认知研究中的初步应用.信号处理.1999,15(2):100-108.
    [158]杨福生,廖旺才.近似熵.一种适用于短数据的复杂性度量.中国医疗器械杂志.1997,21(5):283-286.
    [159]新疆维吾尔自治区科学技术协会编.熵与交叉学科.北京:气象出版社,1988.
    [160]冯端,冯少彤.溯源探幽:熵的世界.北京:科学出版社,2005.
    [161]石峰,莫忠息.信息论基础.武汉:武汉大学出版社,2006.
    [162]Cover T M,Thomas,j A.信息论基础.北京:机械工业出版社,2005.
    [163]胡红英,马孝江.局域波近似熵及其在机械故障诊断中的应用.振动与冲击.2006,25(4):38-45.
    [164]胥永刚,李凌均,何正嘉.近似熵及其在机械设备故障诊断中的应用.信息与控制.2002,31(6):547-551.
    [165]Lin Li,Zhao Deyou.Research on the identification of acoustic emission signals based on local wave.The Notification of 7~(th) International Symposium on Test and Measurement,beijing,2007.
    [166]林丽,赵德有.近似熵在声发射信号处理中的应用.振动与冲击.2008,27(2):99-102.
    [167]Emoto T,Abeyratne U R,Akutagawa M,et al.Feature extraction for snore sound via neural network processing.29th Annual International Conference of IEEE-EMBS,Engineering in Medicine and Biology Society,Lyon,France,2007.
    [168]Brezak D,Udiljak T,Mihoci K,et al.Tool wear monitoring using Radial Basis Function neural network.2004 IEEE International Joint Conference on Neural Networks-Proceedings,Budapest,Hungary,2004.
    [169]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法.振动与冲击.2005,24(1):85-88.
    [170]孙斌,周云龙,向新星等.基于经验模式分解和概率神经网络的气液两相流识别.中国电机工程学报.2007,27(17):72-77.
    [171]黄梯云.智能决策支持系统.北京:电子工业出版社,2001.
    [172]张宏伟,张永举,郭袆萍等.城市供水系统决策支持系统的开发与设计.中国给水排水.2006,22(4):74-77.
    [173]陈江波,付锡年,聂德鑫等.UHV变压器故障监测与诊断的信息决策平台.高电压技术.2006,32(12):108-111.
    [174]张勇毅,姚华.PowerBuilder+SQL Server数据库应用系统开发与实例.北京:人民邮电出版社,2007.
    [175]张新平.PB集成MATLAB功能的方法.电脑学习.2006,2(4):27-29.
    [176]王世香.精通MATLAB接口与编程.北京:电子工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700