用户名: 密码: 验证码:
单源化学气相法制备ZnO薄膜及其光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种直接宽禁带半导体材料,室温禁带宽度为3.37 eV,激子束缚能高达60 meV。因此可以实现室温下的高效率激子发射以及紫外发光,使得ZnO成为一种极具发展和应用潜力的半导体材料,有望在不久的将来取代Ⅲ-Ⅴ族半导体材料,在短波长发光二极管、激光器等领域得到广泛的应用。
     要实现ZnO基光电器件的应用,首先必须获得高质量稳定p型ZnO薄膜,其次是要提高ZnO的发光效率。而ZnO因其本征缺陷而天然呈n型导电特性,导致高质量稳定p型ZnO薄膜的制备非常困难,这是ZnO研究中面临的主要挑战:此外,一般方法制备的ZnO薄膜大多呈极性c面生长,而极性ZnO由于强压电场效应往往导致发光效率较低,因此沿非极性和半极性面生长的ZnO薄膜通过抑制或减弱压电场,可望提高其发光效率。本文针对以上这两点作了有益的探索性的研究:采用一种单源化学气相沉积(SSCVD)技术,在n-Si(100)衬底上制备非极性面(100)择优取向ZnO薄膜,对其微结构、生长机理和光电性质进行了深入的研究;制备基于非极性面择优取向的p型ZnO薄膜,首次从实验和理论的角度探讨了p型ZnO薄膜的稳定性与其织构取向的关系。论文的主要内容和创新性结果如下:
     1.制备出一种适合SSCVD技术沉积ZnO薄膜的新型单一固相源,采用傅立叶变换红外光谱和热重分析等手段对其结构和性质进行了研究。确定其化学式(Zn_4(OH)_2(O_2 CCH_3)_6·2H_2O)及热分解温度(210℃)。选择适当的条件热分解固相源沉积薄膜,薄膜的红外透射谱及光电子能谱测试表明该固相源适合SSCVD技术制备ZnO薄膜。
     2.基于SSCVD技术制备非极性面(100)择优取向ZnO薄膜,研究各工艺参数(源温、衬底温度、热退火温度以及沉积压强)对其微结构的影响。实验发现源温、衬底温度、热退火温度影响薄膜的非极性面择优取向度和结晶质量,结果表明源温为220℃、衬底温度为400~450℃、退火温度为600~700℃时,薄膜结晶质量较好;沉积压强则影响薄膜成分的化学配比,在一定压强下(20~60Pa)获得了富氧的薄膜。通过对各工艺参数的控制,制备随机取向和极性c面取向的ZnO薄膜,对照c面取向出现的条件,探讨了所制备的非极性面择优取向ZnO薄膜的生长机理,首次从实验的角度证明了这种非极性面择优取向薄膜的生长基于单固相源在一定条件下分解的多聚ZnO单体沉积,当这种多聚ZnO沉积单体被破坏时,可获得随机取向和极性c面取向的ZnO薄膜。
     3.研究了不同激发条件、不同退火温度、不同环境温度及压强对非极性面择优取向系列ZnO薄膜的光致发光影响。实验发现选择适当的荧光激发波长时,有利于从薄膜的PL谱中获得其结构质量等信息;其它条件一定,当热退火温度为700℃时,有利于薄膜的紫外发射峰的增强同时抑制其缺陷峰,表面薄膜结晶质量较好;通过He-Cd激光激发的PL谱探讨了不同环境温度和压强对富氧具有V_(Zn)(锌空位)的ZnO薄膜紫外光致发光的影响,发现薄膜的紫外发光强度随温度的升高而降低,而发光峰位则随之红移;环境真空度的降低有利于薄膜紫外发光的增强;通过与极性c面取向、非极性面择优取向的富锌的ZnO薄膜的光致发光强度的比较,发现非极性面择优取向的富氧ZnO:V_(Zn)薄膜有强紫外光发射现象;薄膜的透射谱表明其良好的结晶质量;飞秒激光激发的PL表明这种ZnO:V_(Zn)薄膜同时还具有非线性光学即双光子吸收现象。
     4.研究了沉积压强和衬底温度对ZnO薄膜的电学性质的影响规律。霍尔测试结果表明在20~60Pa的压强、衬底温度为400~500℃的条件下,在不掺杂下获得了p型ZnO薄膜。研究发现ZnO薄膜中化学成分配比偏离,即具有V_(Zn)的ZnO薄膜,化学计量比值的大小对其电学性质影响较大;并从点缺陷的平衡理论的角度对本征ZnO的p、n型导电特性机理进行分析。在获得稳定p型ZnO薄膜的基础上,制备了p-ZnO:V_(Zn)/n-ZnO:Al同质p-n结,该结的Ⅰ-Ⅴ特性曲线表明其具有明显的电流整流特性。
     5.基于第一性原理计算,从理论的角度探讨了非极性面(100)ZnO:V_(Zn)的电子结构及光学性质。通过与ZnO晶体的电子结构及光学性质对比研究,发现(100)ZnO:V_(Zn)具有p型导电特性及强紫外光吸收及发射等特性,这与实验发现的非极性面(100)择优取向ZnO:V_(Zn)薄膜具有p型导电特性和强紫外光发射等现象相符合。
     6.研究了基于非极性面择优取向的掺N的p型ZnO薄膜的稳定性与其织构取向的关系。采用后处理和原位双源方法进行N掺杂,制备非极性面取向和极性c面取向的p型ZnO薄膜,发现了非极性择优取向ZnO薄膜具有更好的p型稳定性。首次从薄膜的内建电场和电子结构的理论计算等角度对两种织构取向的p型薄膜的稳定性进行比较和分析,结果表明p型ZnO薄膜与其织构取向有关,非极性面取向结构有利于p型ZnO薄膜电学性能的稳定。
ZnO is an optoelectronic semiconductor material with a direct wide-band of 3.37eV and a high exciton binding energy of 60meV at room temperature.It can realize efficient excitonic emission and UV emission at room temperature.Rencently,ZnO has been considered as a potential semiconductor material with promising applications to substituteⅢ-Ⅴmaterial in shortwave length light-emitting diodes and lasers.
     To realize ZnO-based optoelectronic device applications,there are two imperative issues need to be solved,one is to fabricate high-quality p-type ZnO films,the other is to obtained the efficient luminescence.While ZnO is naturally n-type conductivity due to the native defects of oxygen vecancy,which is the difficulty in achieving high-quality stable p-type ZnO thin films,and is the greatest challenge in expoiting ZnO. Furthermore,the ZnO films fabricated by most deposition technique are usually with polar c-plane orientation.Polar ZnO is always with low luminescence efficiency for its strong piezoelectric field.Thus nonpolar and semi-polar plane orientation ZnO films can restrain or weaken piezoelectric field and improve luminescence efficiency.In this work,we mainly concern on the above two issues and make some useful researches for them:The preferential nonpolar(100) plane orientation ZnO thin films were fabricated by single source chemical vapour deposition(SSCVD) technique.The microstructure, growth mechanism and opto-electronic properties were investgated.And preferential nonpolar(100) plane orientation p-type ZnO thin films were also deposited on n-Si(100) substrate.The relationship of its stability and structural orientation was first studied by experimental anlysis and theoretical calculation.The detailed contents and innovations of the dissertation are as follows:
     1.A novel single solid organic zinc fountain precursor was synthesized.ZnO thin films were prepared by SSCVD with the precursor.The Fourier transform infrared (FTIR) spectra analysis revealed that precursor formula can be described as Zn_4(OH)_2(O_2CCH_3)_6·2H_2O.And thermogravimetric analysis(TGA) demonstrated that it could decompose at low temperature(210℃).X-ray photoelectron spectra and FTIR analysis of ZnO thin films by precursor thermo-decomposing provided the evidence that solid organic zinc fountain can be employed for preparing ZnO thin films by SSCVD
     2.Preferential nonpolar plane(100) orientation ZnO thin films were fabricated by SSCVD technique.The influence of deposition parameters(precursor,substrate, annealing temperature and the chamber atmosphere pressure) on the microstructure of the films were studied.Found that the deposition parameters mentioned can take an effect on the preferential orientation degree and the crystal quality of the films.The results demonstrated the films were with good quality at precursor temperature(220℃), substrate temperature(400~450℃) and annealing temperature(600~700℃).And the effects of chamber atmosphere pressure on O/Zn atomic ratio of the films were studies. It was found that the films deposited at the pressure of 20~60Pa were with excess oxygen.The random orientation and polar e plane ZnO thin films were also fabricated by controlling deposition parameters.Compared to the growth condition of the preferential nonpolar plane orientation ZnO thin films,the mechanism of the growth of the preferential nonpolar plane orientation ZnO thin films were studied and first proved to originating from the poly-ZnO molecule deposition unit decomposed by the single solid precursor.Hence,when the poly-ZnO molecule deposition unit was destroyed,the random orientation and polar c plane ZnO thin films can be obtained.
     3.The influence of different exciton light source,different annealing temperature of the film,different temperature and atmosphere pressure of experiment on the photoluminescenee(PL) properties were also studied.Found it was better for the fluorescence PL spectra of ZnO films showing the information of its structure and crystal quality if with appropriate exciton light wavelength.And the Ultrovioliet(UV) emission can be enhanced and emission correlative to defect can be restrained when the films annealed at 700℃,which demonstrated the film with high quality.The intensifies and energy of UV emission of the V_(Zn)(zinc vacancy)film with excess oxygen varied with the temperature and atmosphere environment were investigated by UV PL excited by He-Cd laser.The intensities and energy of which decreased with the temperature increased.It was also found that intense UV emission of the film in atmosphere environment but weak in vacuum.Contrasted to the UV PL of the polar c plane and preferential nonpolar plane orientation but with deficiency oxygen ZnO thin films,the preferential nonpolar plane orientation with excess oxygen ZnO thin films showed the strongest UV emission.Its transmittance spectra showed the film with high crystal quality.And its femo-laser PL demonstrated that the films were with nonlinear optics properties of double photon absorbed.
     4.The electrical properties of the films fabricated at the conditions of different chamber pressures and substrate temperatures were studies in detail.Hall-effect measurements demonstrated that the native p-type ZnO films(ZnO:V_(Zn)) were obtained at the conditions of chamber pressure(20~60Pa),substrate temperature(400~500℃). At the same time,O/Zn atomic ratio of the films was found to affect the electronic properties.The p,n-type conduction mechanisms of the native ZnO films were also proved by defects equibrium theory in this thesis.Based on the p-type ZnO thin film obtained,p-ZnO:V_(Zn)/n-ZnO:A1 p-n homo-junction was fabricated,itsⅠ-Ⅴcurve exhibited the p-n homo-junction with an evident rectifying characteristics.
     5.Based on the first principle stimulation,the electronic structures and optical properties of the(100) ZnO:Vzn studied by theoretical analysis demonstrated it possesed p-type condution and trong UV absorbance and emission compared to that of the ZnO crystal.These were consistent to the experimental results on preferential nonpolar(100) plane orientation ZnO:V_(zn) thin films.
     6.Preferential nonpolar plane and polar c plane orientation p-type ZnO thin films were fabricated by the N doping methods of heat treatment subsequently and double-sources in situ respectively.The relationship of the stability and structural orientation of preferential nonpolar plane orientation N doped p-type ZnO thin film was studied.The electronic properties of them exhibited the former was more stable than the latter,the phenomenon was first analyzed and proved by the internal-developing electronic field mode and the electronic structure theoretical calculation of two kinds orientation of p-type ZnO.And the results demonstrated that the stability of the p-type ZnO thin film was correlative to its structural orientation,the structure of preferential nonpolar plane orientation would favor the stability of the p-type ZnO thin film.
引文
[1] Sharma R, Pattison P M, H. Masui, et al. Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode. Appl. Phys. Lett., 2005, 87:231110-231112
    [2] Liu B, Zhang R, Xie Z L, et al. Nonpolar m-plane thin film GaN and InGaN/GaN light-emitting diodes on LiAlO_2(100) substrates. Appl.Phys.Lett., 2006,91:253506-253508
    [3] Kayamura Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B, 1988,38:9797-9805
    [4] Ong H C, Lei D Y, Li J, Surface plasmon mediated emission from metal/ZnO: an example for the fabrication of high brightness top-emitting light emitting diodes. Proc. SPIE., 2007, 6474(V1-V10)
    [5] Shingo H, Nobuo T, Shu S, et al. Room-temperature nanowire ultraviolet lasers: An aqueous pathway for zinc oxide nanowires with low defect density. J. Appl. Phys., 2005, 98:094305-094311
    
    [6] Min C J, Oh B Y, Ham M H. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 2006, 88:202105 -202107
    
    [7] Bunn C W. The lattice-dimensions of zinc oxide. Proc. Phys. Soc. London, 1935,47:835-842.
    [8] Anderson J, Chris G. V, New insights into the role of native point defects in ZnO. J. Crystal. Growth, 2006, 287:58-65
    [9] Lee E C, Kim Y S, Jin Y G, et al. First-principles study of the compensation mechanism in N-doped ZnO. Physica B: Condensed Matter, 2001,308-310: 912-915
    [10] Monica S, Diamandescu L, Wood J. Synthesis and characterization of the ZnO-(1-x)α-Fe_2O_3 nanoparticles system. J, Phys. Chem. Solids, 68,2007,426-430
    [11] Gray T J. First-principles study of native point defects in ZnO. J. Am. Ceram. Soc. 1954, 37:534-538
    
    [12] Thomas D G. The exciton spectrum of zinc oxide, J. Phys. Chem. Solids, 1960,15:86-96.
    [13] Hutson A R. Piezoelectric scattering and phonon drag in ZnO and CdS. J. Appl. Phys. 1961, 32:2287-2292
    [14] Weiher R L. Optical properties of free electrons in ZnO, Phys. Rev. 1966, 152:736-739
    [15] Freeouf J L. Far-ultraviolet reflectance of II—VI componds and correction with the Penn-Phillips gap. Phys. Rev. B, 1973, 7:3810-3830.
    
    [16] Park Y S, Schneider J R. Index of Refraction of ZnO. J. Appl. Phys. 1968,39:3049-3052
    [17] Bergman L, Chen X B, Jesse H. Raman scattering of polar modes of ZnO crystallites. J. Appl. Phys. 2005,98:093507-093510
    [18] Jsheng Jie, Guanzhong Wang, Yiming Chen, et al. Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Appl. Phys. Lett., 2005, 86:031909-031911
    [19] Callender j R, Sussman S S, Selders M, et al. Dispersion of raman cross section in CdS and ZnO over a wide energy range. Phys. Rev. B, 1973,7:3788-3798
    [20] Mitra S S, Brafman O, Daniels W B, et al. Pressure-induced phonon frequency shifts measured by raman scattering. Phys. Rev B. 1969,186:942-944
    [21] Gorla C R, Emanetoglu N W, Liang S, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on sapphire by metalorganic chemical vapor deposition. J. Appl. Phys., 1999,85:2595-2602
    [22] Wang J X, Sun X W, Wei A. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett., 2006,88:233106-233108
    [23] Krishnamoorthy S, Iliadis A A. Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices. Solid State Electronics, 2006,50:1113-1118
    [24] Leo P S, Maan M A, Paul M, et al. UV sensing using surface acoustic wave device on DC sputtered ZnO monolayer. Microelectronic Engineering, 2006,83:1403-1406
    [25] Sahu D R , Huang J L. High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature. Thin Solid Films, 2006,515:876-879
    [26] Sahu D R, Lin S Y, Huang J L. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci., 2006,252:7509-7514
    [27] Vayssiere L, Keis K, Hagfeldt A, et al. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater., 2003,13:4395-4398
    [28] Keis K, Magnusson E, Lindstrom H, et al, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Solar Energy Materials And Solar Cells, 2002, 73:51 -58
    [29] Gao P, Wang Z. Nanoarchitectures of semiconducting and piezoelectric zinc oxide. J. Appl. Phys., 2005,97:044304-044306
    [30] Kim H, Pique A, Horwitz J S, et al. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films, 2000, 377:798-802.
    [31] Yu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulated emission from ZnO microcrystallite thin films at room temperature. Solid State Commun., 1997, 103:459-463
    [32] Bagnall D M, Chen Y F, Z.Zhu, et al. Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett., 1997, 70(17):2230-2232.
    
    [33] Service R F. Will UV laser beat the blues? Science, 1997,276(5314):895-897
    [34] Yungryel R, Lee T, Jorge A, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett., 2006, 88:241108-241110
    [35] Alivov Ya I, Nostrand J EVan, Look D C. Observation of 430 run electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett., 2003, 83:2943-2945
    [36] Jeong M C, Oh B Y, Ham M H, et al. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 2006,88:202105-202107
    [37] Jeong M C, Oh B Y, Ham M H, et al. Greenish-white electroluminescence from p-type CuGaS2 heterojunction diodes using n-type ZnO as an electron injector. Appl. Phys. Lett., 2004, 85:4403-4405
    [38] Jeong M C, Oh B Y, Ham M H, et al. Vertical nanowire light-emitting diode. Appl. Phys. Lett. 2004, 85:6004-6006
    [39] Ozgur U, Alivov Ya I, Liu C , et al. A comprehensive review of ZnO materials and devices. J.Appl. Phys. 2005, 98:041301-041404
    [40] Pearton S J, Norton D P, Y. W. Heo. Recent advances in processing of ZnO. J. Vac. Sci. Technol. B, 2004,22(3): 932-948
    [41] Bloom S, Ortenburger I. Pseudopotential band structure of ZnO. Phys. Status Solidi B, 1973, 58: 561-566
    [42] J. R. Chelikowsky. An oxygen pseudopotential: Application to the electronic structure of ZnO. Solid State Commun., 1977,22:351-354
    [43] Ivanov I, Pollmann J. Electronic structure of ideal and relaxed surfaces of ZnO: A prototype ionic wurtzite semiconductor and its surface properties. Phys. Rev. B, 1981, 24:7275-7296
    [44] Fan W J, Xia J B, Agus P A. Band parameters and electronic structures of wurtzite ZnO and ZnO/MgZnO quantum wells. J. Appl. Phys., 2006,99:013702-013706
    [45]Kobayashi A,Sankey O F,Volz S M,et al.Semiempirical tight-binding band structures of wurtzite semiconductors:AIN,CdS,CdSe,ZnS,and ZnO.Phys.Rev.B,1983,28:935-945
    [46]Kobayashi A,Sankey O F,Dow J D.Deep energy levels of defects in the wurtzite semiconductors AIN,CdS,CdSe,ZnS,and ZnO.Phys.Rev.B,1983,28:946-956
    [47]Powell R A,Spicer W E,McMenamin J C.Location of the Zn 3d States in ZnO.Phys.Rev.Lett.1971,27:97-100
    [48]Ley L,Pollak R A,McFeely F R,et al.Total valence-band densities of states of Ⅲ-Ⅴ and Ⅱ-Ⅵcompounds from x-ray photoemission spectroscopy.Phys.Rev.B,1974,9:600-621
    [49]Vesely C J,Vesely R L,Langer D W.UV photoemission measurements of the upper d levels in the ⅡB-ⅥA Compounds.Phys.Rev.B 1972,5:2296-2301
    [50]傅竹西,林碧霞,何一平,廖桂红.ZnO薄膜的反射、透射光谱及能带结构测量.发光学报,2002,23(6):559-562
    [51]Albrecht J D.,Ruden P,Limp P S,et al.High field electron transport properties of bulk ZnO.J.Appl.Phys.1999,86:6864-6867.
    [52]Look D C,Reynolds D C,Sizelove J R,et al.Electrical properties of bulk ZnO.Solid State Commun.1998,105:399-401
    [53]Kaidashev E M,Lorenz M,Wenekstern H von,et al.High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition.Appl.Phys.Lett.,2003,82:3901-3903
    [54]Kato H,Smao M,Miyamoto K,et al.Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam Epitaxy.Jpn.J.Appl.Phys.,2003,42:2241-2244
    [55]Iwata K,P Fons,S.Niki,et al.Improvement of electrical properties in ZnO thin films grown by radical source(RS)-MBE.Phys.Status Solidi A,2000,180:287-292
    [56]Ohmoto A,Tsukazaki A,Pulsed laser deposition of thin films and superlattices based on ZnO Semicond.Sci.Technol.2005,20:S1-S12
    [57]Mang A,Reimman K,R(u|¨)benaeke S.Band gaps,crystal-field splitting,spin-orbit coupling,and exciton binding energies in ZnO under hydrostatic pressure.Solid State Commun.1995,94:251-254
    [58]Teke A,Ozgu U,Dogan S,et al.Excitonic fine structure and recombination dynamics in single-crystalline ZnO.Phys.Rev.B,2004,70:195207-195217
    [59]Thonke K,Gruber T,Teofilov N,et al.Donor-acceptor pair transitions in ZnO substrate material,Physiea B,2001,308-310:945-948.
    [60]Boemare C,Monteiro T,Soares M J,et al.Photoluminescence studies in ZnO samples Physics B 2001,308-310:985-988.
    [61]Reynolds D C,Look D C,Jogai B,et al.Neutral-donor-bound-exciton complexes in ZnO crystals.Phys.Rev.B 1998,57:12151-12155
    [62]Hamby D W,Lucca D A.,Klopfstein M J,et al.Temperature dependent exciton photoluminescence of bulk ZnO.J.Appl.Phys.2003,93:3214-3217
    [63]Alves H,Pfisterer D,Zeuner A,et al.Optical investigations on excitons bound to impurities and dislocations in ZnO.Opt.Mater.,2003,23:33-37.
    [64]Reynolds D C,Litton C W,Collins T C,et al.Observation of donor-acceptor pair spectra in the photoluminescence of H- and Zn-implanted ZnO single crystals.Appl.Phys.Lett.,2006,88:141919-141921
    [65]傅竹西,固体光电子学,合肥:中国科学技术大学出版社,1999,167-179
    [66]沈学础 半导体光谱和光学性质,北京:科学出版社,2003,298-327
    [67]方容川,固体光谱学,合肥:中国科学技术大学出版社,2003,98-115
    [68]Xiong G,Ucer K B,Williams R T,et al.Donor-aceeptor pair luminescence of nitrogen-implanted ZnO single crystal.J.Appl.phys.,2005,97:043528-043532
    [69]Kang J S,Kang H S,Pang S S,et al.Investigation on the origin of green luminescence from laser-ablated ZnO thin film.Thin Solid Films,2003,443:5-8.
    [70]Lin B X,Fu Z X,Jia Y B.Green luminescent center in undoped zinc oxide films deposited on silicon substrates.Appl.Phys.Lett.,2001,79:943-945
    [71]Zhang D H,Xue Z Y,Wang Q P.The mechanisms of blue emission from ZnO films deposited on glass substrate by rf magnetron sputtering.J.Phys.D:Appl.Phys.2002,35:2837-2840
    [72]Kang H S,Kang J S,Kim J W,et al.Annealing effect on the property of ultraviolet and green emissions of ZnO thin films.J.Appl.Phys.,2004,95:1246-1250
    [73]Djurisic A B,Leung Y H,Tam K H.Green,yellow,and orange defect emission from ZnO nanostructures:Influence of excitation wavelength.Appl.Phys.Lett.2006,88:103107-103109
    [74]Lina Y J,Tsai C L,Lu Y M.Optical and electrical properties of undoped ZnO films.J.Appl.Phys.,2006,99:093501-093505
    [75]Wang Z G,Zu X T,Zhu S,et al.Green luminescence originates from surface defects in ZnO nanoparticles.Physiea E:Low-dimensional Systems and Nanostructures,2006,35:199-202
    [76]Hur T B,Jeen G S,Hwang Y H,et al.Photoluminescence of polycrystalline ZnO under different annealing conditions.J.Appl.Phys.,2003,94:5787-5790
    [77] Tang Z K, Wong G. K L, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Appl. Phys. Lett., 1998,72:3270-3272
    [78] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001,292:1897
    [79] Aoki T, Hatanaka Y, Look D C, et al. ZnO diode fabricated by excimer-laser doping. Appl. Phys.Lett., 2000,76(22):3257-3259
    [80] Minemoto T, Negami T, Nishiwaki S, et al. Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering. Thin Solid Films, 2000,372:173-176
    [81] Liu Y, Gorla C R, Liang S, et al. Ultraviolet detectors based on epitaxial ZnO film grown by MOCVD. J. Elec. Mater., 2000,29(1):60-63
    [82] Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth. 2001,225:110-113
    [83] Jasenek A., Rau U., Weinert K., et al. Radiation resistance of Cu(In,Ga)Se_2 solar cells under 1-MeV electron irradiation .Thin Solid Films, 2001,387:228-230
    [84] Ohta H, Kawamura K, Orita M, et al. Current injection emission from a transparent p-n junction composed of p-SrCu202/n-ZnO. Appl. Phys. Lett., 2000,77 (4): 475-477
    [85] Barnes J O, Leary D J, Jordan A G, et al. Relationship between deposition, conditions and physical properties of sputtered ZnO. Electrochem Soc., 1980,127(7): 1636-1640
    [86] Yoshikawa H, Adachi S. Optical constants of ZnO. Jpn. J. Appl. Phys., 1997,36: L3237-L3243.
    [87] Nause, Cermet J E. ZnO broadens the spectrum. Research Review, 1979,12(4): 28-31
    [88] Gao W, Zheng W L. ZnO thin films produced by magnetron sputtering. Ceramics International 2004,30:1155-1159
    [89] Nagase T, Ooie T, Sakakibara J. A novel approach to prepare zinc oxide films excimer laser irradiation of sol-gel derived precursor film. Thin Solid Films, 1999, 357:151
    [90] Maiti U N, Ghosh P K, Nandy S, et al. Effect of Mn doping on the optical and structural properties of ZnO nano/micro-fibrous thin film synthesized by sol-gel technique. Physica B 2007, 387:103-108
    [91] Joseph M, Tabata H, Saeki H, et al. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B: Condensed Matter, 2001,302-303 (1-4): 140
    
    [92] Ryu Y R, Zhu S, Look D C, et al. Synthesis of p-type ZnO films. J. Crystal. Growth, 2000, 216:330-334
    [93] Ohtomo A, Kawasaki M, Sakurai Y, et al. Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE. Materials Science and Engineering B, 1998, 54:24-28
    [94] Yang X D, Zhang J W, Bi Z, et al. Glancing-incidence X-ray analysis of ZnO thin films and ZnO/ZnMgO heterostructures grown by laser-MBE. J. Crystal. Growth, 2005, 284: 123-128
    [95] Purica M, Budianu E, Rusu E, et al. Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films, 2002,403-404:485-488
    [96] Hou C M, Huang K K, Gao Z M, et al. Structure and optical properties of ZnO films with different thicknesses grown on sapphire by MOCVD. Chem. Res. Chinese, 2006, 22(5):552-555
    [97] Lee E Y, Tran N, Russell J, et al. Nanocrystalline order of zinc oxide thin films grown on optical fibers. Appl. Phys. Lett., 2002, 92(6): 2996-2999
    [98] Petrella A J, Deng H, Roberts N K, et al. Single-source chemical vapor deposition growth of ZnO thin films using Zn_4O(CO_2NEt_2)_6. Chem. Mater., 2002,14:4339-4342
    [99] Deng H, Gong B, Petrella A J, et al. Characterization of the ZnO thin film prepared by s inglesource chemical vapor deposition under low vacuumcondition. Sci. Chin. (Series E), 2003,46(4):355-360
    [100] Jian G L, Zhi Z Y, Jing Y H, et al. Synthesis and properties of ZnO films with (100) orientation by SS-CVD. Applied Surface Science 2003, 207:295-299
    [101] Matthew R H, Ashley W J, Russell J J, et al. Towards new precursors for ZnO thin films by single source CVD: the X-ray structures and precursor properties of zinc ketoacidoximates. Inorganica Chimica Acta, 2005,358:201-206
    [102] Lu J G, Zhang Y Z, Ye Z Z, et al. Control of p- and n-type conductivities in Li-doped ZnO thin films. Appl. Phys. Lett., 2006, 89:112113-112115
    [103] Zeng Y J, Ye Z Z, Lu J G, et al. Identification of acceptor states in Li-doped p-type ZnO thin films. Appl. Phys.Lett., 2006, 89: 042106-042108
    [104] Aoki T, Hatanaka Y. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett., 2000, 76(22):3257-3259
    [105] Ryu Y R, Zhu S, Look D C, et al. Synthesis of p-type ZnO films. J. Crystal. Growth, 2000, 216: 330-334
    [106] Yamamoto T, Katayama Y H. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys., 1999, 38: L166-169
    [107]Ryu Y R,Zhu S,Budai J D,et al.Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition.J.Appl.Phys.,2000,88(1):201-204
    [108]Joseph M,Tabata H,Saeki H,et al.Fabrication of the low-resistive p-type ZnO by codoping method.Phys.B,2001,302-303:140-144
    [109]Ryu Y R,Kim W J,White H W,et al.Fabrication of homostmctural ZnO p-n junctions.J.Cryst.Growth,2000,219:419-423
    [110]Park C H,Zhang S B,Wei S H,et al.origin of p-type doping difficulty in ZnO:The impurity perspective.Physical Review B,2002,66:073202-(1-3)
    [111]Yamamoto R,Tetsuya Y,Hiroshi K Y,et al.Unipolarity of ZnO with a wide-band gap and its solution using eodoping method.J.Cryst Growth,2000,214-215:552-555
    [112]Lee E C.Compensation mechanism for N aceeptors in ZnO.Physical Review B,2002,64:085-088
    [113]Yamamoto T,Katayama Y.Solution using a aeodoping method to unipolarity for the fabrication of p-type ZnO.Jpn.J.Appl.Phys,1999,38(2B):166-169
    [114]Suldt L J,Zhang S B,Weiand S H,et al.Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide.Phys.Rev.Lett.,2004,92:155504-155509
    [115]Min S O,Sang H K,Tae Y S.Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition.Appl.Phys.Lett.,2005,87:122103-122105
    [116]Liu M,Kitai A H,Mascher P.Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese.J.Lumin.,1992,54:35-39
    [117]Tomlis G W,Routbort J L,Mason T O.Zinc self-diffusion,electrical properties,and defect structure of undoped,single crystal zinc oxide.J.Appl.Phys.,2000,87:117-119
    [118]Zeng Y J,Ye Z Z,Xu W Z,et al.p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth.Appl.Phys.Lett.,2006,88:262103-262105
    [119]Hong S K,Byung D A,Jong H K,et al.Structural,electrical,and optical properties of p-type ZnO thin films with Ag dopant.Appl.Phys.Lett.,2006,88:202108-202120
    [120]Du G T,Ma Y,Zhang Y T,et al.Preparation of intrinsic and N-doped p-type ZnO thin films by metalorganic vapor phase epitaxy.Appl.Phys.Lett.,2005,87:213103-213105
    [121]Teresa M,Barnes,K O,Colin A W.On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide.Appl.Phys.Lett.,2005,86:112112-112114
    [122]Li X N,Keyes B,Asher S,et al.Passivation effect in nitrogen-doped ZnO thin films.Appl.Phys.Lett.,2005,86:122107-122109
    [123] Xiu F X, Yang Z, Mandalapu L J, et al. P-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. Appl. Phys. Lett., 2006, 88:052106-052108
    [124] Yu Z G, Wu P, Gong H. Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering, Appl. Phys. Lett., 2006, 88:132114-132116
    [125] Vaithianathan V, Lee B T, Kim S S. Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition. Appl. Phys. Lett., 2005, 86:062101-062103
    [126] Vaithianathan V, Lee B T, Chang C H. Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy. Appl. Phys. Lett., 2006, 88: 112103-112105
    [127] Mandalapu L J, Yang Z, Xiu F X, et al. Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection. Appl. Phys. Lett., 2006,88:092103-092105
    [128] Mandalapu L J, Xiu F X, Yang Z, et al. P-type behavior from Sb-doped ZnO heterojunction photodiodes. Appl. Phys. Lett., 2006,88:112108-112110
    [129] Yuan G D, Ye Z Z, Zhu L P, et al. Control of conduction type in Al- and N-codoped ZnO thin films. Appl. Phys. Lett., 2005, 86:202106-202108
    [130] Chen L L, Lu J G., Ye Z Z, et al. P-type behavior in In-N codoped ZnO thin films. Appl. Phys. Lett., 2005, 87: 252106-252108
    [131] Kumar M, Kim T H, Kim S S, et al. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Appl. Phys. Lett., 2006,89: 112103:112105
    [132] Cao Y, Lei M, Tanemure S, Masaki Tanemura, et al. Low resistivity p-ZnO films fabricated by sol-gel spin coating Appl. Phys. Lett., 2006, 88:251116-251118
    [133] Lu J G., Zhang Y Z, Ye Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Appl. Phys. Lett., 2006,88:222114-222116
    [134] Tsukazaki A, Kubota M, Blue light-emitting diode based on ZnO. Jpn. J. Appl. Phys., 2005, 44(21): 643-648
    [135] Tsukazaki A, Kubota M, Onuma T, et al. Repeated temperature modulation modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater., 2005,4: 42-46
    [136] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett., 2006, 88: 031911-031913
    [137] Gu S L, Ye J D, Zhu S M, et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Appl. Phys. Lett., 2006, 88: 092101-092103
    [138] Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. lett, 2006, 88: 173506-173508
    [139]Zuniga-Pérez J,Munioz-Sanjosé V,Palacios-Lidon E,et al.Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films.Appl.Phys.Lett.,2006,88:261912-2611914
    [140]T.Abe,Y.Kashiwaba,S.Onodera,et al.Homoepitaxial growth of non-polar ZnO(11-20)films on off-angle ZnO substrates by MOCVD Journal of Crystal Growth,2007,298:457-460
    [141]Takumi Moriyama and Shizuo Fujita.Growth behavior of nonpolar ZnO on M-plane and R-plane sapphire by metalorganic vapor phase epitaxy.Japanese Journal of Applied Physics,2005,44(11):7919-7921
    [142]Takumi Moriyama,Shizuo Fujita.Epitaxial growth of nonpolar ZnO by MOVPE.Physica Status Solidi(c),3(4):726-729
    [143]H.Sbeng,S.Muthukumar,N.W.Emanetoglu.Schottky diode with Ag on(11 2 0) epitaxial ZnO film.Applied Physics Letters,2002,80(12):2132-2134
    [144]Petrella A J,Deng H,Roberts N K,et al.Single-Source Chemical Vapor Deposition Growth of ZnO Thin Films Using Zn_4O(CO_2NEt_2)_6.Chem.Mater.,2002,14:4339-4342
    [145]Belforte A,Calderazzo F,Strahle J.Deoxygenation of carbon dioxide to diethylaormamide in the Zn/HNEt2/CO2 system.Crystal and molecular structure of[Zn_4O(CO_2NEt_2)_6].Inorg.Chem.,1991,30:3778-3781
    [146]Jesus J C.,Gonzalez I,Quevedo A,et al.Thermal decomposition of nickel acetate tetrahydrate:an integrated study by TGA,QMS and XPS techniques.Journal of Molecular Catalysis A:Chemical,2005,228:283-291
    [147]Leong G M,Peter Y.Lamb T,et al.An XPS study of zinc oxide thin film growth on copper using zinc acetate as a precursor.Thin Solid Films,223,1993:341-347
    [148]Michael Quirk,Julian Serda.半导体制造技术.北京:电子工业出版社,2006,265-270
    [149]Teisseyre H,Skierbiszewski C,Lucznik B,et al.Free and bound excitons in GaN/AlGaN homoepitaxial quantum wells grown on bulk GaN substrate along the nonpolar[11-20]direction.Appl.Phys.Lett.,2005,86:162112-162114
    [150]Fujimura N,Nishihara T,Goto S,et al.Control of preferred orientation for ZnO films:Control of self-texture.J.Crystal.Growth.,1993,130:269-279
    [151]Kajikawa Y.Texture development of non-epitaxial polycrystalline ZnO films.J.Cryst.Growth,2006,289:387-394
    [152]Lee H S,Lee J Y,Kim T W,et al.Formation mechanism of preferential c-axis oriented ZnO thin films grown on p-Si substrates.J.Mater.Sci.,2004,39:3525-3528
    [153]Kim K S,Kim H W,Lee C M.Effect of growth temperature on ZnO thin films deposited on SiO_2 substrate.Mater.Sci.Eng.B,2003,98:135-139
    [154]Prasad S V,Walck S D,Zabinski J S.Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition.Thin Solid Films,2000,360:107-117
    [155]Choi J H,Tabata H,Kawai T.Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition.J.Crystal.Growth,2001,226:493-500
    [156]Znaidi L,Soler Illia J A,Benyahia S,et al.Oriented ZnO thin films synthesis by sol-gel process for laser application.Thin Solid Films,2003,428:257-262
    [157]Znaidi L,Soler Illia J A,Guennic R Le,et al.Elaboration of ZnO thin films with preferential orientation by a soft chemistry route.J.Sol-Gel.Sci.Technol.,2003,26:817-821
    [158]Govender K,Boyle D S,Kenway P B,et al.Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution.J.Mater.Chem.,2004,14:2575-2591
    [159]Tyagi A,Zhong H,Roy B,et al.Semipolar(1011) InGaN/GaN laser diodes on bulk GaN substrates.Jpn.J.Appl.Phys.,2007,46:L444-L445
    [160]Kim H W,Kim N H.Annealing effect for structural morphology of ZnO film on SiO_2substrates.Thin Solid Films,2004,458:43-46
    [161]Jung M,Lee J,Park S,et al.Investigation of the annealing effects on the structural and optical properties of sputtered ZnO thin films.J.Crystal.Growth,2005,283:384-389
    [162]Bouhssira N,Abed.S,Tomasella E,et al.Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation.Appi.Surf.Sci.,2006,252:5594-5597
    [163]Deng H,Russell J J,Lamb R N.Microstructure control of ZnO thin films prepared by single-source chemical vapor deposition.Thin Solid Films,2004,458:43-46
    [164]Foster N F.Crystallographic orientation of zinc oxide films deposited by triode sputtering,J.Vac.Sci.Technol.,1969,6:111-114
    [165]王锦春.ZnO纳米线光致发光(PL)行为研究:[硕士学位论文].成都:电子科技大学2006,27
    [166]Shi W S,Agyeman O,Xu C N.Enhancement of the light-emissions from zinc oxide films by controlling the post-treatment ambient.J.Appy.Phys.,2002,91:5640-5642
    [167]Vanheusden K,Seager C H,Warren W L,et al.Correlation between photoluminescence and oxygen vacancies in ZnO phosphors.Appl.Phys.Lett.,1999,68:403-405
    [168]Xu P S,Sun Y M,Shi C S,et al.Electronic structure of ZnO and its defects.Science in China(A).2001,44(9):1174-1181
    [169]Zhang S B,Wei S H,Zunger A.Intrinsic n-type versus ptype doping asymmetry and the defect physics of ZnO.Phys.Rev.B,2001,63:075205-075211
    [170]Meyer B K,Alves H,Hofmann D M,et al.Bound exciton and donor-accepter pair recombinations in ZnO.Phys.Stat.Solidio.(b),2004,241:231-260
    [171]Look D C,Renolds D C,Litton C W,et al.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy.Appl.Phys.Lett.,2002,81:1830-1832
    [172]Look D C,Claflin B,Alivov Y I,et al.The future of ZnO light emitters.Phys.Stat.Sol.(a)2004,201:2203-2212
    [173]Meyer B K,Sann J,Zeuner A.Lithium and sodium accepters in ZnO.Superlattiees and Microstructres,2005,38:344-348
    [174]Look D C,Farlow G C,Reunehan P,et al.Evidence for Native-Defect Donors in n-Type ZnO.Phys.Rev.Lett.,2005,95:225502-225505
    [175]Wang X Q,Yang S R,Yang X T,et al.ZnO thin film grown on silicon by metal-organic chemical vapor deposition.J.Cryst.Growth,2002,243:13-18
    [176]沈学础.半导体光谱和光学性质.北京:科学出版社,2003,284-286
    [177]Jiang D S,Jung H,Ploog K.Temperature dependence of photolumineseence from GaAs single and multiple quantum-well heterostruetures grown by molecular-beam epitaxy.J.Appl.Phys.,1988,64:1371-1377
    [178]Koida T,Chiehibu S F,Uedono A,et al.Radiative and nonradiative excitonic transitions in nonpolar(11-20) and polar(000-1) and(0001) ZnO epilayers.Appl.Phys.Lett.,2004,84(7):1079-1081
    [179]Zhang C F,Dong Z W,You G J,et al.Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires.Appl.Phys.lett.,2006,89:042117-042119
    [180]Sun J,Wang H T,He J L,et al.Ab initio investigations of optical properties of the high pressure phases of ZnO.Phys.Rev.B,2005,71:125132-125136
    [181]Yang X P,Chen J W,Jiang H,et al.Chiral symmetry of double-walled carbon nanotubes detected in first-principles optical absorption spectra.Phys.Rev.B,2004,69:193401-193404
    [182]Kohn W,Sham J.Self-consistent equations including exchange and correlation effects.Phys.Rev.,1965,140:A1133-A1138
    [183]Hohenberg P,Kohn W.Inhomogeneous electron gas.Phys.Rev,1964,136:B864-B871
    [184]Perdew J P,Chevary J A,Vosko S H.Atoms,molecules,solids,and surfaces:applications of the generalized gradient approximation for exchange and correlation.Phys.Rev.B,1993,46(11):6671-6687
    [185]Segall M D,Philip J D,Lindan M J,et al.First principle simulation:ideas,illustrations and the eastep code.J.Phys.Cond.Matt.,2002,14(11):2717-2744.
    [186]Ching W Y,Xu Y N,Wong K W.Ground-state and optical properties of Cu_2O and CuO crystal.Phys.Rev.B,1998,40(11):7684-4709
    [187]Rossler U.Energy band of hexagonal Ⅱ-Ⅵ semiconductors.Phys.Rev.,1969,184(3):733-738
    [188]Xu Y N,Ching W.Y.Electronic,optical,and structure properties of some wurtzite crystal.Phys.Rev.B,1993,48(7):4335-4351
    [189]沈学础.半导体光谱和光学性质.北京:科学出版社,2003.23-27
    [190]Yan Y F,Zhang S B,Pantelides S T.Control of doping by impurity chemical potentials for p-type ZnO.Phys.Rev.Lett.,2001,86:5723-5726
    [191]S.B.Zhang,S.H.Wei,Y.Yan.The thermodynamics of codoping:how does it work? Physica B 302/303(2001) 135-139.
    [192]Matsui H,Saeki H,Kawai T,et al.N doping using N_2O and NO sources:From the viewpoint of ZnO.J.Appl.Phys.,2004,95:5882-5888
    [193]Jaime J E,Hess A C.Hartree-Fock study of phase changes in ZnO at high pressure.Phys.Rev.B,1993,48:7903-7909
    [194]刘念.ZnO电子结构的第一性原理研究:[硕士学位论文].成都:电子科技大学:2007,29-30.
    [195]Erhart P,Albe K,Klein A.First-principles study of intrinsic point defects in ZnO:Role of band structure,volume relaxation,and finite-size effects.Phys.Rev.B,2006,73(20):52031-52039
    [196]Kohan A F,Ceder G,Morgan D,et al.First-principles study of native point defects in ZnO.Phys.Rev.B,2000,61(1):50191-50199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700