用户名: 密码: 验证码:
基于SiC/ZrO_2协同作用的MoSi_2改性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MoSi2是一种金属间化合物,它具有较高的熔点、较低的密度和良好的高温抗氧化性,作为高温结构材料和室温摩擦材料在航空和汽车领域有着广泛的应用前景。但MoSi2室温脆性高而高温强度低,成为其实用化的主要障碍。本文为了提高MoSi2的综合性能,基于纳米改性技术,提出了采用纳米SiC/ZrO2颗粒、SiC晶须/ZrO2纳米颗粒协同复合MoSi2陶瓷的构想,从制备工艺、组织结构、力学性能等方面开展深入系统的探讨,为MoSi2基复合材料在结构材料中的应用奠定基础。
     本文完成的主要工作和取得的成果如下:
     1.利用多相悬浮液混合法制备了SiC/ZrO2-MoSi2复合粉体,发现以聚乙二醇为分散剂、水为分散介质,并利用超声振荡分散以及SiC晶须通过调节乙醇悬浮液的pH值,可获得各相分布均匀的SiC(W)/ZrO2-MoSi2复合粉。
     2.利用热压烧结制备了SiC/ZrO2 -MoSi2纳米复相陶瓷,通过对复相陶瓷的相组成与显微结构和力学性能的分析,发现SiC/ ZrO2协同作用综合机制提高复相陶瓷抗弯强度、断裂韧度以及细化晶粒作用明显,20%SiC(p)+10%ZrO2+MoSi2的抗弯强度是MoSi2的3.8倍,断裂韧度为2.4倍;15%SiC(w)+15%ZrO2+MoSi2的抗弯强度是MoSi2的2.6倍,断裂韧度为2.5倍。
     3.首次利用密栅云纹干涉法测试分析了纳米复相陶瓷高温断裂韧度,发现SiC/ZrO2协同作用提高复相陶瓷高温断裂韧度,纳米ZrO2颗粒高温增韧效果优于纳米SiC颗粒,纳米SiC颗粒高温增韧效果优于SiC晶须。
     4.利用压痕-急冷法研究了SiC/ZrO2 -MoSi2纳米复相陶瓷在100℃~600℃温差范围内的抗热震性能,发现纳米SiC颗粒或晶须与纳米ZrO2颗粒协同复合MoSi2改变了陶瓷裂纹扩展路径和形态,提高抗热震性能;纳米SiC颗粒提高MoSi2抗热震性能效果优于SiC晶须。探讨了SiC/ZrO2 -MoSi2纳米复相陶瓷“粉化”现象、抗氧化性能以及表面膜形成机制,发现复相陶瓷“粉化”现象减弱或没有,表面玻璃膜易形成,SiC/ZrO2协同作用有利于高、低温抗氧化能力的提高。
     5.通过室温磨损试验,测试分析了SiC/ZrO2-MoSi2纳米复相陶瓷的磨损特性,发现SiC/ZrO2协同作用能明显改善MoSi2陶瓷的耐磨性,纳米ZrO2颗粒的加入使复相陶瓷粘着磨损比例增大,纳米SiC颗粒的加入使复相陶瓷的磨粒磨损比例增大;纳米SiC/ZrO2颗粒与SiC晶须/ZrO2纳米颗粒协同作用相比,前者复相陶瓷磨粒磨损特征更明显。
     6.首次利用X射线衍射法研究了SiC/ZrO2-MoSi2纳米复相陶瓷微观应变,分析了SiC/ZrO2协同作用与MoSi2基体的位错关系,探讨了复相协同作用增韧补强MoSi2的机制,发现复相陶瓷断裂过程中ZrO2微观应变下降,部分转变为应力诱导ZrO2发生相变以及形成微裂纹,纳米SiC颗粒弥散分布在复相陶瓷中,难以缓解周边基体对其包围所产生或传递的应力,微观应变较大;ZrO2依靠自身相变的体积效应向基体泵入位错,晶内型SiC和ZrO2粒子对复相陶瓷位错的钉扎作用明显,SiC晶须阻碍位错运动,使位错缠结、交割,形成位错网结,另外,第二相粒子周围出现孪晶以及SiC晶须引起层错;复相陶瓷的韧化效应是ZrO2粒子的相变韧化及微裂纹形成、SiC晶须或SiC和ZrO2粒子的裂纹偏转和桥联、细化晶粒以及复合材料“内晶型”结构等机制的综合作用;复相陶瓷的强化机制主要为细晶强化和弥散强化。
MoSi2 intermetallics possess an unusual combination of the properties such as low density, high melting temperature and good oxidation resistance at high temperatures. These unusual combinations of the properties render them promising applications for friction materials at room temperature and high temperature structural materials widely used in the fields of aviation and auto. However, the high room-temperature brittleness and poor high-temperature strength are the main obstacles of its application. Based on nanoparticles modification technlolgy, the preparation of MoSi2 matrix nanocomosites was proposed compostied with SiC/ZrO2 nanoparticles or SiC whisker/ZrO2 nanoparticles in order to improve the combination properties of MoSi2 ceramics. Furthermore, systemic investigation were based on the preparation process, microstructure and mechanical properties, which provide foundation for the application of MoSi2 matrix nanocomosites as sturcture materials.
     The main work done and the results obtained in this thesis are as follows:
     1. SiC/ZrO2 -MoSi2 composite powders were prepared by multi-phase suspending solution mixture. In this experiment, polyethylene glycol acted as dispersant agent, water acted as dispersive medium, and dispersed the SiC whisker in ultrasonic bath and adjusted pH in the ethanol suspending solution. According to above mentioned method, all phases complete mixed SiC(w)/ZrO2-MoSi2 composites powders were obtained.
     2. SiC/ZrO2-MoSi2 ceramic nanocomposites were prepared by hot pressed sintering. The synergic effect of SiC/ZrO2 to improve bending strength, fracture toughness and grain refining were observed by microstructure observation and mechanical property analysis. Compared to MoSi2 ceramics, for 20%SiC(p) +10%ZrO2+MoSi2, the bending strength increased by 3.8 times, the fracture toughness improved by 2.4 times; Furthermore, for 15% SiC(w)+15%ZrO2+MoSi2, the bending strength increased by 2.6 times, the fracture toughness improved by 2.5 times.
     3. The high-temperature fracture toughness of ceramic nanocomposites were analyzed used Moiréinterferometry for the first time. It was found the SiC/ZrO2 synergism enhanced the high-temperature fracture toughness of ceramic nanocomposites. The effect of ZrO2 particle on high-temperature toughening were better than that of SiC particle, and the effect of SiC particle on high temperature toughening were better than that of SiC whisker.
     4. The heat-shocking resistance of SiC/ZrO2-MoSi2 ceramic nanocomposites were studied using indentation-quick cooling method in the temperature range from 100℃to 600℃. The results showed that the SiC particle or whisker combined with ZrO2 nanoparticles changed the expand path and shape of the cracks in MoSi2 ceramics, which enhanced the heat-shocking resistance. The effect of SiC particle on improving heat-shocking resistance of MoSi2 were better than that of SiC whisker. The“pesting”phenomena, oxidation resitance as well as the forming mechanism of the surface film of SiC/ZrO2-MoSi2 nanocomposites were discussed. The results showed that the“pesting”phenomenon decreased or did not exist, the amorphous film was easy to form on the surface, and the SiC/ZrO2 synergism was advantageous to improve the high and low temperature oxidation resistance.
     5. The wear characteristic of SiC/ZrO2-MoSi2 nanocomposites were analyzed through the wear test on room temperature. The results showed that the SiC/ZrO2 synergism could improve the wear resistance of MoSi2 ceramics obviously. The addition of ZrO2 nanoparticles caused the proportion of adhesive wear increase, and the addition of SiC nanoparticles caused the proportion of abrasive wear increase. Abrasive wear characteristic of SiC/ZrO2 nanoparticles composited MoSi2 was more obvious than that of SiC whisker/ZrO2 nanoparticles composited MoSi2.
     6. The microstrain of SiC/ZrO2-MoSi2 nanocomposites were investigated using X ray diffraction firstly. The dislocation relation between SiC/ZrO2 synergism and MoSi2 matrix were analyzed. The mechanism of toughening and strenghening were discussed as well. It was discovered that the microstrain of ZrO2 decreased in the fracture process, which caused by part of stress inducing ZrO2 transform to form microcrack. SiC nanoparticles distributed in the composite ceramics induced high microstrain as the result of difficulty alleviating the stress that substrate around them bring or pass. ZrO2 produced dislocation in the substrate depending on volume effect caused by its own phase transitions. The pining effect of intracrystalline type SiC and ZrO2 particles on the dislocation in the composite ceramics was obvious, and the SiC whisker block dislocation movement which caused the dislocation tangle, intersect and formed the dislocation network knot. Moreover, the twin crystals appeared around the second particles as well as the SiC whisker caused stacking faults. The toughening meachanism of composites concludes the phase transitions toughening and microcrack forming of ZrO2 particles, the crack deflection and bridge union of SiC whisker or SiC and ZrO2 particles, the grains refined as well as“intracrystalline type”structure in the composites and so on. The strenghening meachanism of composites was mainly for the fine-grain strengthening and dispersion strengthening.
引文
[1]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2001
    [2] T.A.kircher,E.L.courtright.Engineering limitations of MoSi2 coatings[J]. Mater.Sci.Eng,1992,(A155):67~74
    [3]贺国成.硅化钼在电阻炉上的应用[J].工业炉,1994,(4):29~30
    [4]山口正治,马越佑吉.金属间化合物[M].北京:科学出版社,1991
    [5]焦德辉.金属陶瓷二硅化钼的性质及应用[J].中国陶瓷,1997,(5):33~36
    [6] S.M.Tuominen ,J.M.Dahl.Cyclic Oxidation Testing of Molybedenum Protected by Silicide Coatings[J].J.Less-Common Metals,1981,(249):713~719
    [7]艾云龙,程玉桂,杨延清,等.WSi2/MoSi2复合发热元件的制备及组织性能[J].稀有金属材料与工程,2005,34(6):962~965
    [8]黄金昌.含钼材料的最新发展方向[J].中国钼业,1996,(1):22~27
    [9]王德志,左铁镛,刘心宇.MoSi2基高温材料的研究现状和发展趋势[J].材料导报,1997,11(4):53~56
    [10]康鹏超,尹钟大,朱景川,李明伟.MoSi2基高温结构材料的研究进展[J].宇航材料工艺,2002,32(5):10~14
    [11]陈平,张厚安,等.MoSi2材料摩擦磨损特性的研究与发展[J].材料导报,2001,15(10):38~40
    [12] Ying jie H, Louis W, Anthonie J B, et al. Grain size dependence of sliding wear in tetragonal zirconia polycrystals[J]. J Am Ceram Soc,1996, 79(12): 3090~3096
    [13]张厚安,陈平.金属间化合物二硅化钼在干摩擦条件下的磨粒磨损特性[J].机械工程材料.2002,26(5):21~22
    [14] A. K. vasudevan, J. J. petrovic. A comparative overview of molybdenum disilicid composites[J].Mater.Sci.Eng,1992,(A155):1~17
    [15]李玲艳,艾云龙,程玉桂,等.MoSi2及其复合材料的研究进展[J].宇航材料工艺,2005,35(1):10~14
    [16] G.J.zhang,X. M.yue,T.watanabe. Addition effects of aluminum and in situ formation of alumina in MoSi2[J]. Mater. Sci, 1999,(34) :999~1000
    [17]金志浩,李世斌,高积强.MoSi2基复相材料的研究进展[J].西安交通大学学报,2001,35(2):199~202
    [18]冯培忠,曲选辉,王晓虹,等.二硅化钼材料复合强韧化的研究进展[J].材料导报,2005,19(9):12~15
    [19]张小立,吕振林,金志浩.MoSi2金属间化合物复合材料的强韧化机理及其制备技术[J].中国钼业,2002,(3):29~33
    [20] J.J.petrovic. Mechanical behavior of MoSi2 and MoSi2 composites[J]. Mater. Sci.Eng.1995,(A192/A193):31~37
    [21]郭小龙,陈沙鸥,戚凭,等.纳米颗粒对陶瓷材料力学性能的影响[J].青岛大学学报,2000,13(2):60-65
    [22]王昕,孙康宁,等.纳米复合陶瓷材料研究进展[J].复合材料学报,1999,16(1):105~110
    [23]单妍,王昕,尹衍升,等.ZTA纳米复相陶瓷的研究[J].硅酸盐通报,2002,16(2):43~46
    [24] Suzuki Y,Sekino T,Niihara K,Effects of ZrO2 addition on microstructure and mechanical properties of MoSi2[J].Scripta Metallurgicaet. Materialia, 1995, 33(1):69~74
    [25]金燕苹,洪涛,郑灵兴.SiC晶须强韧化MoSi2复合材料[J].材料研究学报,1994,8(2):183~187
    [26]马勤,康沫狂,杨延清.MoSi2—ZrO2纳米复合材料力学性能与断裂行为[J].材料工程,1995,(2):71~72
    [27]艾云龙,邓克明,黄晓鹏.SiC颗粒强韧化MoSi2复合材料研究[J].南昌航空工业学院学报,2000,14(3):16~18
    [28] Petrovic J J,Bhattacharya,Honnell R E,Mitchell T E.ZrO2 and ZrO2-SiC particle reinforced MoSi2 matrix composites[J].Mater.Sci.Eng, 1992,(A155):259
    [29]艾云龙,马勤,邓克明,等.ZrO2+SiC颗粒强韧化MoSi2复合材料的显微组织和性能[J].金属热处理学报,2000,21(4):18~22
    [30] Ozer Unal,Petrovic J J,Carter D H ,etal.Dislocations and plastic deformation in molybdenum disilicide[J].J.Am.Ceram.Soc,1990, 73(6):1752~1757
    [31]马勤,杨延清,康沫狂.二硅化钼及其复合材科的应用及展望[J].材料导报,1997,11(2):61~64
    [32]林育炼,刘盛秋.耐火材料与能源[M].北京:冶金工业出版社,1993
    [33] Bizzari V,Linder B,Lindskog N. Molybdenum disilicide heating element: Meeting advanced ceramics requirements[J].American Ceramic Society Bulletin,1989,68(10):1834~1841
    [34]冯培忠,曲选辉.硅化钼发热元件的研究与应用进展[J].中国钼业,2002,29(2):38~42
    [35]《现代铸造测试技术》编写组.现代测试技术[M].上海:上海科技文献出版社,1984
    [36]王零森.特种陶瓷[M].长沙:中南工业大学出版社1994
    [37] A.Newman,S.Sampath,H.Herman.Processing and properties of MoSi2-SiC and MoSi2-Al2O3[J].Mater Sci &Eng,1999,(A261):252~260
    [38]王学成,柴惠芬,王笑天.MoSi2新型高温结构材料的研究与开发[J].材料工程,1993,(11):16~22
    [39] A.Chakraborty,S.V.Kamat,R.Mitra.Effect of MoSi2 and Nb reinforcements on mechanical properties of Al2O3 matrix composites[J].J. Mater. Sci, 2000, (35):3827
    [40]马勤,杨延清,康沫狂.二硅化钼-用途广泛的金属间化合物[J].材料开发与应用,1997,12(6):27-32
    [41] J.J.Petrovic. Toughening strategies for MoSi2-based high temperature structural silicides[J]. Intermetallics,2000,(8):1175~1182
    [42]来忠红,朱景川,王丽艳,等.MoSi2及MoSi2基材料的强韧化[J].材料科学与工程,2000,8(2):108-112
    [43]曲选辉,刘绍军.新型超高温结构材料MoSi2的制备技术[J].材料导报,1998,12 (2):50~52
    [44] M.Panneerselvam, Ankur Agrawal, K.J.Rao. Microwave sintering of MoSi2-SiC composites[J].Materials Science and Engineering,2003,(A356):267~273
    [45] H.chen. New approach to MoSi2/SiC intermetallic-ceramic composite with B4C[J]. J. Mater. Sci, 2001,(36):5773~5777
    [46] S.M.Wiederhorn,R.J.G.ettings,D.E.Roberts , C.Ostertag. Tensile creep of silicide composites[J].Mater Sci &Eng,1992,(A155):209
    [47] Petrovic J J,Vasudevan A K.Key developments in high temperature structure silicides [J].Mater Sci & Eng,1999,(A261):1~5
    [48]张志杰,苏达根.纳米—纳米复相陶瓷的制备[J],中国陶瓷,2003,39(1):12-14
    [49]侯永耀,李理,蔺玉胜,等.Al2O3/[SiC+ZrO2(3Y)]纳米复合陶瓷的制备与性能研究[J],火花塞与特种陶瓷,1997,(2):38~42
    [50]马勤,阎秉钧,许广寂,等.纳米ZrO2颗粒强韧化MoSi2基复合材料[J],甘肃工业大学学报,1996,22(1):44-48
    [51]李建林,江东亮,谭寿洪.一种新的MoSi2基复合材料显微结构及其对力学性能的影响[J],无机材料学报,2000,15(1),73-78
    [52] Lu T C,Yang J,Suo Z,Evans A G,Matrix cracking in intermetallic compositescaused by thermal expansion mismatch[J]. Acta Metallurgica et Materialia,1991,39(8):1883~1890
    [53]艾云龙,程玉桂,邓克明.ZrO2颗粒强韧化MoSi2复合显微结构和性能[J],江西冶金,2001,21(5):19-21
    [54]艾云龙,邓克明,程玉桂.SiC晶须强韧化MoSi2复合材料的金相分析[J].国外金属热处理,2001,22(5):7~8
    [55]李凤生.超细粉体技术[M].北京:国防工业出版社,2000
    [56]王昕,张景德,孙康宁,等.均分散纳米复合陶瓷的制备工艺[J].复合材料学报,1999,16(3):1~6
    [57]凌律巍,吴文彪,江东亮,等.SiC晶须在Mullite浆料中的分散特性及流变学表征[J].无机材料学报,2001,16(6):1084~1088
    [58]罗伍文,黄勇.SiC晶须分散工艺及SiC晶须/Y-TZP复合材料致密化的研究[J].中国建筑材料科学研究院学报,1990,2(1):1~10
    [59] Sun Lan, Pan Jin-Sheng, Liu Ya-Jun. An improvement in processing and fabrication of SiC-whisker-reinforced MoSi2 composites[J]. Journal of Materials Science Letters.2001, 20:1421~1423
    [60]杨静漪,李理.纳米ZrO2水悬浮液稳定性的研究[J].无机材料学报,1997,12(5):665~670
    [61]邢宏龙,徐国财.纳米分体的分散及纳米复合材料的成型技术[J].材料导论, 2001,15(9):62~64
    [62]王平,郑少华.超声波对微细粉体制备的影响的研究[J].济南大学学报.2002,16(1):15
    [63]孙静,高濂,郭景坤.分散剂用量对几种纳米氢化诺粉体尺寸表征的影响[J].无机材料学报,1999,14(3):464~469
    [64]邢宏龙,徐国财.纳米粉体的分散及纳米复合材料的成型技术[J].材料导报,2001,(9):62~64
    [65]马文有,田秋.纳米颗粒分散技术研究进展—分散方法与机理(1)[J].中国粉体技术,2002,8(3):28~31
    [66]倪永红,葛学武,等.纳米材料制备研究的若干新进展[J].无机材料学报,2000,15(1):9~15
    [67]郭小龙,陈沙鸥,潘秀宏. SiC和Si3N4纳米颗粒分散中的介质因素[J].陶瓷工程. 2001(2):6~8
    [68]郭小龙,陈沙鸥.纳米SiC水悬浮液稳定性的研究[J].青岛大学学报. 2001,14(1):29~32
    [69]王昕.多相悬浮液混合法制备Al2 O3-SiC(n)纳米复合陶瓷[J].陶瓷学报, 1999,(1):5~8
    [70]聂福德,李风生.超细粉体在液相中的分散性研究进展[J].化工进展. 1996,(4):24~28
    [71]张厚安,陈平,颜建辉,等.La2O3和WSi2增强MoSi2基复合材料的摩擦磨损性能研究[J].摩擦学学报,2005,25(5):230~231
    [72] Hawk J A, Alman D E.Acomparative study of the abrasive wear behavior of MoSi2[J].Script Metall Mater,1995,31(4):473~478
    [73]刘伯威,潘进.(SiCp+C)/MoSi2复合材料的组织结构及力学性能[J].中国有色金属学报,2001,11(4):632
    [74]张厚安,梁洁萍,李颂文.MoSi2低温氧化行为的研究[J].湘潭矿业学院学报,1999,14(1):69~71
    [75]李仁增,李禾等.高温合金零厚度光栅制作方法研究[J].南昌航空工业学院学报[J],1997,(3):59~67
    [76]李禾.硅橡胶光栅在高温力学性能测试中的作用[J].力学季刊,2001,22(3):335~339
    [77]龚勇清,李禾等.激光全息云纹干涉法测定高温合金材料断裂特性的试验研究[J].江西科学,2004,22(4):250~254
    [78]李禾,傅艳军,等.球栅阵列倒装焊封装中的热应变值的测试[J].半导体学报,2002,23(6):655-659
    [79]李禾,严超华等.云纹干涉法测定高温材料弹性模量及泊松比[J].机械强度,2004,26(3):302~306
    [80]中华人民共和国国家标准,GB4161-1984,金属材料平面应变断裂韧度K1C试验法[S].中国标准出版社,1984
    [81]材料科学技术百科全书.中国大百科全书出版社.1995:1156
    [82]董艳玲,王为民.陶瓷材料抗热震性的研究进展[J].现代陶瓷技术,2004,(1):37~41
    [83] Andersson T,Rowdliffe D. Indentation thermal shock test for ceramics[J]. J Am Ceram Soc,1996,79(6):1509~1514
    [84]王刚,赵世柯,江莞.二硅化钼低温氧化的研究进展[J].无机材料学报,2001, 16(6):1041~1048
    [85]刘强,尹衍升,等. Fe3Al增韧3Y-TZP基复合材料抗热震性能研究[J].材料热处理学报,2004,25(4):15~18
    [86]尹衍升,李嘉著.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2004
    [87]金格瑞W D著.陶瓷导论[M].北京:中国建筑工业出版社,1982
    [88]陆彩飞,王秀峰,苗鸿雁.纳米硅酸锆的合成[J].硅铝化合物,2002,(2):14~16
    [89]板田修一,大野合郎等编.物理学常用数表[M].北京:科学出版社,1979
    [90]张厚安,刘心宇等. Al对MoSi2材料干摩擦磨损性能的影响[J].湘潭矿业学院学报[J],2002.17(1):43~46
    [91]张厚安,刘心宇等. WSi2/MoSi2复合材料的摩擦磨损特性[J].摩擦学学报,2002,22(3):165~169
    [92]袁涛. MoSi2及其复相材料的研究进展[J].电工材料. 2004,(4):35~38
    [93]吕晋军,王静波等. MoSi2及其复合材料摩擦学性能研究[J].摩擦学学报,2003,23(5):361-366
    [94]张厚安,刘心宇等.稀土和Mo5Si3强韧化MoSi2材料的磨粒磨损特性[J].中国有色金属学报,2002,12(1):136~139
    [95]张厚安,陈平,等.稀土-MoSi2复合材料的干摩擦磨损性能.中国稀土学报.2002,20(4):308-310
    [96]陈达谦.工程陶瓷的磨损机理与氧化铝陶瓷耐磨性的提高[J].陶瓷,2000,(4):9~11.
    [97] Evans A G,Marshall P B.Wear Mechanism in Ceramics,Proceeding of International Conference on Fundamentals of Friction and Wear of Materails[J].Pittsburgh:ASME,1980:439-452
    [98]徐立红,贾艳琴,等. SiC粒径对PTFE/SiCP复合材料耐磨性能的影响[J].河北工业大学学报,2003.32(1):48~53
    [99]新原皓一.セラミックス复合体のナノ构造制御と机械的性质[J],粉体および粉末冶金,1990,(2):348~351
    [100]Stokes A R, A numerical founer-ana1ysis method for the conection of widths and shapes of liners on X-ray power photographs Proc.Phys. Soc. London 6l,382(1948)
    [101]丛秋滋著.多晶二维X射线衍射[M].北京:科学出版杜,l997
    [102]Petrovic J J ,et al.ZrO2-Reinforced MoSi2 Matrix Composites[J]. Ceram Eng Sci Proc,1991,12(9-10):1633

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700