用户名: 密码: 验证码:
生物瓣膜瓣叶性能优化及瓣架成型加工方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自19世纪60年代以来人工心脏瓣膜被越来越多地用于治疗心脏瓣膜疾病。人工心脏瓣膜包括人工机械瓣膜和人工生物瓣膜(简称生物瓣膜或生物瓣)。生物瓣是由瓣叶和架体组成的一种人工心脏瓣膜。瓣叶是瓣膜开闭的可动部分,一般用牛或猪心包经化学处理后形成的稳定生物高分子组合材料制成。瓣架则起构型、支撑和承力的作用。生物瓣的形状与人体心瓣相似,其流型属中心流型,流场特性也接近人体心瓣。生物瓣的抗溶血和抗血栓形成的性能较好,但由于材料的原因(如产生钙化)和瓣型设计的不够合理,生物瓣只是部分地达到了改善人工心瓣性能的目的。而作为其核心部分瓣架的加工制作,还没有较为统一的标准,无论在设计还是加工制作上都还处于探索阶段。随着人心脏瓣膜流场理论和生物材料理论研究的不断深入,围绕着提高生物瓣使用寿命而展开的生物瓣膜瓣叶力学性能分析及瓣架精密成型加工方法研究表现出广阔的前景。
     论文以心脏解剖学及心瓣动力学理论为依据详细讨论了心瓣各动力学参数对其启闭性能的影响。以接近或达到人体天然心瓣的性能为目的,将传统设计理论与现代设计方法相结合,探讨构建人工生物心脏瓣膜参数化模型的新方法。本研究以采集临床心瓣动态参数为基础,通过对人体心瓣自然形态的分析导引出生物瓣膜的基本雏形,即以生物瓣膜的钢丝支架取代乳突肌腱索;以基本几何回转曲面造型取代半月瓣;以生物瓣膜的缝合环代替纤维环。本文以薄壳理论为依据对圆柱面、圆球面、抛物面、椭球面四种曲面旋转壳体应力状况理论分析,结果可知:采用球面构型的生物瓣膜瓣叶与采用圆柱面相比,瓣膜受力均匀且周向应力较小,其受力情况优于圆柱面。对旋转抛物面和椭球面,二者两个应力并不恒定,随坐标变化而发生变化,因而在有限元分析时可着重注意圆球面、旋转抛物面和椭球面三种型面瓣叶的力学性能分析。
     本文以CAD/CAM应用软件—Pro/E软件为工具对生物瓣膜的瓣叶、瓣架及缝合环进行基于特征的实体造型设计。在薄膜应力分析的基础上参考不同型面瓣叶,分别创建符合空间几何方程的圆柱面、圆球面、旋转抛物面和椭球面,随之依次与其对应的倒圆锥面相交确定边界线和重要点的空间位置,得到了一系列较为精确的尺寸参数,建立了瓣叶参数化模型,利用有限元分析软件对不同构型瓣叶进行应力分析。
     有限元分析是目前人工心脏瓣膜力学性能分析普遍采用的方法,是人工心脏瓣膜抗疲劳、防钙化设计的关键步骤。而有限元软件自身存在着建模功能薄弱的不足,CAD方法的引入为人工生物瓣膜的参数化造型提供了极大的方便,并在保证建模效果的前提下进一步提高了各参数的准确性。结合生物瓣膜瓣叶有限元模型我们依次定义材料属性及边界条件、导入几何模型、划分网格、加载数据、求解和结果分析。对不同构型、不同厚度、不同倾角以及不同材料特性的生物瓣膜瓣叶参数化模型进行线性、非线性力学性能分析。通过比较各种不同型面瓣叶应力分布情况发现:以椭球型面为基本构型瓣叶的第一主应力峰值低于其他型面瓣叶第一主应力峰值且椭球型面瓣叶较其他型面瓣叶应力分布较为均匀合理。因此论文采用椭球面作为生物瓣膜瓣叶的基本构型并用于生物瓣膜瓣架的设计、加工。
     生物瓣膜瓣架设计与加工是以生物瓣膜力学性能分析结果为依据并对生物瓣膜瓣架展开算法详细讨论而展开的。首先,我们完成了生物瓣膜支架平面成型模具、空间成型模具的设计。其次,用电火花线切割方法加工生物瓣膜支架平面成型模具并得到平面成型生物瓣膜支架;再次,用雕刻铣加工方法加工生物瓣膜支架空间成型凹凸模石墨电极;用电火花加工方法加工生物瓣膜支架空间成型凹凸模;最后,用补偿的方法预留生物瓣膜支架空间成型的回弹量,修正生物瓣膜支架空间成型凹凸模,解决生物瓣膜支架冲压成型后回弹变形问题并取得实际经验数据,最终得到与优化造型设计基本一致的生物瓣膜支架实体。生物瓣膜瓣架的构型来源于生物瓣膜瓣叶力学性能分析,而生物瓣膜瓣叶的造型取决于生物瓣膜瓣架的构型,因此生物瓣膜瓣架的精密成型与加工为延长生物瓣膜的使用寿命及更好地应用于临床奠定了良好的基础。
Prosthetic heart valve have become increasingly used in the treatment of cardiovalvular disease since their introduction in the early 1960s. These artificial heart valve may be either the mechanical heart valve or the bioprosthetic heart valve (BHV). The BHV that consists of valvular leaflets, supporting stent and sutural ring is a type of man- made heart valve. Valvular leaflets made by high molecular material of porcine or bovine pericardial can be opened or closed by ejected blood. Supporting stent not only act as supporting and bearing forces but also act as configuration function. The bioprosthetic heart valve is similar to human heart valve on flow field. Its flow pattern is central-like. Although its function is improved in antihemolysis and antithrombotic, the efficiencies in device design of the bioprosthetic heart valve is still not satisfied. The united manufacturing standard on the BHV stent hasn't been made. About the design and manufacture of the BHV, some problems have not been solven untill now. However, with the development of the flow field theory and the biomaterials theory, the research on the stress analysis on the BHV leaflet and the precision modeling on the BHV stent will give a great help to prolonging the lifetime of BHV.
     In order to reach the function of a human being's heart valve, the geometrical parametric model of bioprosthetic heart valve is established based on the heart anatomy. Based on the traditional design theory and the modern design method, we get the model of the BHV by analyzing natural shape of human valve. The wire stent of BHV is used instead of the muscle papillaris and the revolving curved surface is applied to valvular leaflets. The sutural ring of BHV replaces the annulus fibrosus. The stress distribution of curved surface with different shapes is analyzed based on Membrane theory. It is showed that the stress distribution of the spherical surface is comparatively reasonable. While the stress distribution of cylindrical surface is not uniform. The stress of the paraboloidal surface and the ellipsoid surface change in accordance with the change of coordinate points. Therefore, the stress distribution of the paraboloidal surface, the ellipsoid surface and spherical surface has been discussed in detail by the Finite Element method.
     The solid model of valvular leaflets, the supporting stent and the sutural ring of the BHV have been set up by Pro/ENGNEER software. We take turns to create the cylinder, sphere, paraboloid, ellipsoid surfaces and then make them to intersect with inverse conic surfaces to get satisfy boundary curves and important points. After constructing parametric models of BHV via Computer Aided Design, a series of accurate points are obtained. The stress distribution of leaflets with different shapes is analyzed by the Finite Element software.
     The finite element method is often applied to stress analysis, which is also crucial to the design of anti-fatigue and anti-calcification of bioprosthetic heart valve, however it has some disadvantages in modeling function. The Computer Aided Design software provides a convenient method to create the parametric model of the BHV and improve the accuracy of parametric models. The properties of material of the valve leaflet with the Finite Element model is defined and geometrical model of the valve leaflet with the Finite Element feature are established. After the valve leaflet with the Finite Element feature has been loaded, the result of the Finite Element analysis can be got. Not only the linear stress but also the non-linear stress of leaflets with different shapes, different thickness, different inclination and different properties of material are analyzed. It is showed that the maximal primary stress of the valve leaflet with elliptic sphere is low than that of the other valve leaflet and the stress distribution of the valve leaflet with elliptic sphere is comparatively reasonable. So, the ellipsoid surface should be applied in the design and machining of the BHV stent.
     Based on the result of the stress analysis on the BHV, we finished the design and the manufacture of the BHV stent. Firstly, the unfolded algorithm of the BHV stent is discussed in detail. The casting mould of two dimensions and the casting mould of three dimensions are designed by the Pro/ENGNEER software. The casting mould of two dimensions is worked by the wire cut electrical discharge machine and the BHV stent of two dimensions was got. Secondly, the graphite electrode of three dimensions is machined by the carving miller and the casting mould of three dimensions was got by electric spark machining method. And then we solve the problem of the elastic deformation of the valvular stent and gain the experimental data by compensative method. Finally, we obtained the finished production the BHV stent which is consistent with the theoretical design. The manufacture of the BHV stent was based on the stress analysis on the BHV leaflet, on the other hand the shape of the BHV leaflet depends on the manufacture of the BHV stent. The precision modeling and machining of the BHV stent is very useful to prolong the lifetime of the BHV and to improve clinical practice of the BHV.
引文
1.柏树令,应大君.系统解剖学.北京:人民卫生出版社:2004
    2.樊庆福.人工心脏瓣膜.上海生物医学工程.2004,25(4):47-51
    3.许建屏.生物心脏瓣膜应用现状.实用医院临床杂志.2004,1(4):1-3
    4.Lutter G.,Ardehali R.,Cremer J.Percutaneous valve replacement:current state and future prospects.Ann.Thorac.Surgery.2004,78:2199-2206
    5.I.Vesely.The evolution of bioprosthetic heart valve design and its impact on durability.Cardiovascular Pathology,2003,12:277-286
    6.Peter Zilla,Paul Human,Deon Be.Bioprosthetic Heart Valves:the Need for a Quantum Leap Biotechnol.Appl.Biochem.,2004,40:57-66
    7.徐秀林,张京航,梁伟.人工心脏瓣膜质量及安全性分析.中国医疗器械杂志.2004,28(5):360-362
    8.Kvidal P.,Bergstrom R.,Horte L.Observed and relative survival after aortic valve replacement.J.Cardiothorac Surgery.2000,35:747-56
    9.Aquilino Hurlé,J Francisco Nistal,José M Re.Poor Clinical Performance of the Wessex Porcine Heart Valve Bioprosthesis at Nine Years'Follow up.Heart,1997,77:319-324
    10.Pibarot P.,Dumesnil J.G.Patient-prosthesis mismatch and the predictive use of indexed effective orifice area:Is it relevant?.Cardiac Surgery Today,2003,2:43-51
    11.Bruce Z.Gao,Sam.Pandya,Car.Arana,et al.Bioprosthetic Heart Valve Leaflet Deformation Monitored by Double-Pulse Stereo Photogrammetry.Annals of Biomedical Engineering,2002,2:11-18
    12.李河,郭兰,孙家珍.广东Ⅰ型心脏生物瓣膜置换术后瓣膜生存分析.中山大学学报.2004,25(4):381-384
    13.王东,王春祥,刘天起.心脏瓣膜置换术后再手术治疗.中国心血管病研究杂志.2005,(2):148-151
    14.Pascal Schroeyers,Francis Wellens,Raf De Geest,Ivan Degrieck,Frank Van Praet,et al.Minimally Invasive Video-Assisted Mitral Valve Surgery:Our Lessons After a 4-Year Experience.Ann.Thorac.Surg.,2001,72:1050-1054
    15.Gillinov AM,Blackstone EH,Rodriguez LL.Prosthesis-patient size:measurement and clinical implications.J.Thorac.Cardiovasc Surgery,2003,126:313-316
    16.胡艳艳,宋红深,孙永达.用流体双折射方法研究人工心脏瓣膜的脉动流场.实验力学.2004,19(1):24-28
    17.陈如坤,吴明,杨明亮.国产新型人造心脏瓣膜--全热解碳双叶瓣的研制和植入研究.中国生物医学工程学报.2003,22(5):453-460
    18.Ran Gilad,Ron Somogi.Percutaneous Heart Valves:The Emergence of a Disruptive Technology.Technology Review,2005,82:84-93
    19.Abdelmeguid Ibrahim,Ali Ashraf Abdel Maguid.Non-Invasive Comparative Study of Transvalvular Gradient Between Stentless Bioprosthetic Valve and Bileaflet Mechanical Valve in the Aortic Position During Rest and Exercise.J.of Egypt Society of Cardiothorac Surgery,2002,10:179-189
    20.Hiromitsu Takakura,Tatsuumi Sasaki,Kazuhiro Hashimoto,Takashi Hachiya,Katsuhisa Onoguchi,et al.Hemodynamic Evaluation of 19-mm Carpentier-Edwards Pericardial Bioprosthesis in Aortic Position Ann.Thorac.Surg.,2001,71:609-613
    21.A.Dela Fuente,R.Sanchez,A.Imizcoz,et al.Intact Medtronic and Carpentier Edwards:clinical and hemodynamic outcomes over 13 years.Cardiovascular Surgery,2003,11:139-144
    22.D.R.Boughner,M.Thornton,J.Dunmore Buyze,et al.The radiographic quantitiation of aortic valve calcification:implications for assessing bioprosthetic valve calcification in vitro.Physiological Measurement,2000,21:409-416
    23.D.Mavrilas,A.Apostolak,J.Kapolos,et al.Development of bioprosthetic heart valve calcification in vitro and in animal models:morphology and composition.Journal of crystal growth,1999,205:554-562
    24.V.yavahare,Narendra R.,Chen Weiliam,et al.Current Progress in Anticalcification for Bioprosthetic and Polymeric Heart Valve.Cardiovascular Pathology,1997,6:219-229
    25.Srivatsa S.,Harrity P.,Macreklein P.,et al.Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves.J.Clin.Invest.1997,99:996-1009
    26.Gaetano Thiene,Marialusia Valente.Bioprosthetic Valves-How to Improve Long-term Durability.Cardiothoracic Surgery,2004,22:52-56
    27.Arlen G.Fleisher,Roeeo J.Lafaro,Richard A.Moggio.Immediate Structural Valve Deterioration of 27-ram Carpentier-Edwards Aortic Perieardial Bioprosthesis.Ann.Thorac.Surgery,2004,77:1443-1445
    28.Fish R.Pereutaneous heart valves replacement:enthusiasm tempered.Circulation.2004,110:1976-1988
    29.卢永要,崔振铎,杨贤金等.各种材料在人工心脏瓣膜中的应用.金属热处理.2004,29(9):23-26
    30.T.G.Mackay,D.J.Wheatley,G.M.Bemacca,A.C.Fisher,et al.New polyurethane heart valve prosthesis:design,manufacture and evaluation.Biomaterials,1996,171857-1863
    31.Butehart E.,Payne N.,Li H.,et al.Better antieoagulation control improves survival after valve replacement.J.Thorae.Cardiovase Surgery.2002,123:715-723
    32.Cribier A.,Eltchankinoff H.,et al.Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis:First human ease description.Circulation.2002,106:3006-3018
    33.Vasudev S.C.,T.Chandy,C.P.Sharma,et al.Synergistic effect of released aspirin/heparin for preventing bovine pericardial calcification.Artif.Org.2000,2:129-136
    34.吴国伟,龚光甫.异种生物瓣材料防钙化抗衰坏研究新进展.中国医师杂志.2005,(8):97-101
    35.杨学永,胡素平,刘兵等.生物心脏瓣膜钙化及预防.武警医学.2004,15(8):629-630
    36.王雪梅,许莉,王春祥.牛心包生物瓣膜羟基含量的测定与抗钙化研究.中国现 代医学杂志.2001,(11):131-136
    37.Dumesnil J.G.,Pibarot P.Prosthesis size and prosthesis-patient size are unrelated to prosthesis-patient mismatch.J.Thorac Cardiovasc Surgery,2004,127:1852-1854
    38.Berg G.,M.Laughlin,Akar R.,et al.A three years experience with Toronto Stentless Porcine Valve.Ann.Thorac.Cardiovasc.1998,4:138-145
    39.J.W.Fenner,T.G.Mackay,W.Martin,et al.Laser profiling:a technique for the study of prosthetic heart valve leaflet motion.Physiological Measurement,1995,16:181-193
    40.龚光甫,胡建国,周新民,刘锋,李建民,张伟,王翔,胡野荣,陈晓凤.CS无支架心包二尖瓣应用研究.生物医学工程与临床.2005,9(4):185-188
    41.杨岷,陈长志,组织工程心脏瓣膜建构的机遇与挑战.国外医学:心血管疾病分册.2005,32(2):65-68
    42.Bouma B.,Van Den.,Van Der.,et al.To operate or not on elderly patients with aortic stenosis:the decision and its consequences.Heart.1999,82:143-148.
    43.Brien M.,Gardner M.,Garlick R.,et al.The Cryolife-O'Brien stentless aortic porcine xenograft valve.J.Card.Surgery 1998,13:376-385.
    44.David T.,C.Feindel,H.Scully,et al.Aortic valve replacement with stentless porcine aortic valves:a ten-year experience.J.Heart Valve Disease.1998,103:2504-2515
    45.Bloomfield P.Choice of heart valve prosthesis.Heart.2002,87:583-589
    46.叶晓峰,董念国,孙宗全等.组织工程心脏瓣膜细胞生物学研究进展.国外医学:生物医学工程分册.2005,28(4):222-226
    47.Eriksson M.,L.Brodin,G.Dellgren,et al.Rest and exercise hemodynamics of an extended stentless aortic bioprosthesis.J.Heart Valve Disease.1997,6:653-660
    48.周栋,黄维坤.组织工程心脏瓣膜研究近况.中国心血管杂志.2002,7(5):359-361
    49.林琳,周宁,常瑞等.异体生物瓣膜的化学交联法--人工心脏瓣膜研究进展.中国医学科学院学报.2003,25(6):735-737
    50.Sedrakyan A.,Hebert P.,Vaccarino V.,et al.Quality of life after aortic valve eplacement with tissue and mechanical implants.J.Thorac Cardiovasc Surgery.2004,128:266-272
    51.Kevin Barton,Andy Campbell,Charles D.Griffin,et al.Prosthetic Heart Valves:Current and Future Perspectives.Biomedical Engineering Society News letter.2001,25(1):1-7
    52.De.Kruyk,Van.Meulen,van.Herwerden.Use of Markov series and Monte Carlo simulation in predicting replacement valve performances.J.Heart Valve Disease,1998,7:4-12
    53.Stahle E.,Kvidal P.,Nystrom S.Long-term relative survival after primary heart valve replacement.J.Cardiothorac Surgery.1997,11:81-91
    54.Mohr F.,Falk V.,Diegeler A.,et al.Minimally invasive port-access mitral valve surgery.J.Thorac.Cardiovasc Surgery 1998.115:567-576
    55.石应康,郭应强.心脏瓣膜外科的流体力学研究进展与展望.中华外科杂志.2005,43(2):73-75
    56.De Paulis R.,L.Sommariva,L.Colagrandeet.Regression of left ventricular hypertrophy after aortic valve replacement for aortic stenosis with different valve substitutes.J.Thorac.Cardiovasc Surgery.1998,116:590-598
    57.Schoen F.,Levy R.Tissue heart valves:current challenges and future research perspectives.J.Biomedical Material Re.1999,47:439-65
    58.黄劲松,吴若彬,肖学钧,张镜芳.近期人造心脏生物瓣膜在瓣膜外科的应用.岭南心血管杂志.2001,7(2):32-38
    59.Ruiz C.Transcatheter cardiac valve implantation.Pediatric Cardiology Today.2005,3:9-14
    60.Senthilnathan V,Treasure T,Grunkemeier G.,et al.Heart valves:Which is the best choice? Cardiovasc Surgery.1999,7:393-397
    61.Takkenberg J.,Eijkemans M.,van Herwerden L.,Steyerberg E.,et al.Estimated event-free life expectancy after autograft aortic root replacement in adults.Ann. Thorac.Surgery.2001,7:344-348
    62.魏旭峰,易定华等.新型防钙化无支架生物心脏瓣膜的毒性试验研究.第四军医大学学报.2002,23(20):1884-1887
    63.黄思远,徐志云,张宝仁等.不同脱细胞方法对猪主动脉瓣的组织学及生物力学特性的影响.第二军医大学学报.2003,24(12):1293-1296
    64.金振晓,刘维永.去细胞猪主动脉瓣膜的生物力学和组织相容性研究.解放军医学杂志.2002,27(4):310-311
    65.王建宇,汤京龙,陆颂芳等.人工生物瓣膜的血液动力学实验研究.中华中西医杂志.2004,5(15):21-25
    66.许劲飞,祝鸿飞,杜全兴.CAN现场总线在人工心脏瓣膜疲劳实验系统中的应用.计算机应用.2002,(9):39-42
    67.Jamieson W.,Aupart M.,Germann E.,et.al.Clinical performance comparison of Carpentier-Edwards SAV Porcine and Perimount Pericardial bioprostheses to 15years in aortic valve replacement.Bodnar E.The Society for Heart Valve Disease Second Biennial Meeting.Paris,France.2003
    68.David T.,Armstrong S.,Sun Z.The Hancock Ⅱ bioprosthesis at 12 years.Ann.Thorac.Surg.1998,66:95-98
    69.Coh.L.,Collins J.,Rizzo R.,et al.fifteen-years follow-up of the Hancock modified orifice porcine aortic valve.Ann.Thorac.Surgery.1998,66:30-34.
    70.Nakajima H.,Aupart M.,Neville P.,et al.Twelve-year experience with the 19mm Carpentier-Edwards pericardial aortic valve.J.Heart Valve Disease.1998,7:534-539
    71.Puvimanasinghe J.,Steyerberg E.,Takkenberg J.,Eijkemans M.,et al.Prognosis after aortic valve replacement with a bioprosthesis:predictions based on meta-analysis and microsimulation.Circulation.2001,103:1535-1541.
    72.文福安.最新计算机辅助设计.北京:北京邮电大学出版社.2000
    73.Hiroyuki,F.,H.Kano,M.Egerstedt,et al.Smoothing Spline Curves and Surfaces for Sampled Data.International Journal of Innovative Computing,Information and Control.2005,21:429-449
    74.田兴丽,杜全兴,黄楠.CAD在人工心脏瓣膜设计制造中的应用.CAD/CAM与制造业信息化.2002,(2):13-18
    75.胡红舟,钟志华,杨旭静.Mechanical engineefing CAD/CAM.Wuhan University of Technology Press.2004
    76.练章华.现代CAE技术与应用教程.北京:石油工业出版社:2004
    77.Vesely I.Aortic root dilation prior to valve opening explained by passive hemodynamics.J.Heart Valve Disease.2000,9:16-20
    78.Blackstone E.The choice of a prosthetic heart valve.J.Heart Valve Disease.1998,7:1-3
    79.冯元桢.生物力学.长沙:湖南科学技术出版社:1986
    80.Ja He.Medtronic无损伤型猪主动脉瓣的早期随访[J].国外医学杂志.2001(3):86-89.
    81.王鸿儒,文宗曜.血液循环力学.北京医科大学,中国协和医科大学联合出版社:1990.7
    82.席葆树,Ned H.C.Hwang,吴嘉.人工心脏瓣膜体外加速疲劳试验.医用生物力学.2003,(21):10-15
    83.Simoons M.,Van der.,Boersma E.,et al.The Cardiology Information System:the need for data standards for integration of systems for patient care,registries and guidelines for clinical practice.European Heart J.2002,23:1148-1152
    84.柳兆荣,尹永义,心脏后负荷对瓣膜功能影响的数值模拟.应用数学和力学.10(1989),145-154
    85.Jamieson W.,Janusz M.,MacNab J.,et al.Hemodynamic comparison of second-and third-generation stented bioprostheses in aortic valve replacement.Ann.Thorac.Surg.2001,71:282-294
    86.Adamczyk M.,Lee T.,Vesely I.Biaxial strain properties of elastase-digested porcine aortic valves.J.Heart Valve Disease.2000,19:445-453
    87.Billiar K.,Sacks M.Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp:part Ⅱ.A structural constitutive model.J.Biomechanical Engineering.2000,122:327-335
    88.刁颖敏.组织工程瓣的拉伸试验及力学参数的选取.力学季刊.2004,25(1):140-144
    89.赵乐军,陆颂芳,奚廷斐.人工心脏瓣膜脉动流检测技术研究.透析与人工器官.2002,(3):40-43
    90.王坚刚,龚光甫,蒯行成,孟旭.人工心脏瓣膜与机械应力.北京生物医学工程.2003,22(3):232-235
    91.Unger F.,Serruys P.,Yacoub M.,et al.Revascularization in multivessel disease:comparison between two-year outcomes of coronary bypass surgery and stenting.J.Thorac.Cardiovasc Surg.2003,125:809-820
    92.刘济全,段会龙.真实心脏模型上兴奋时序图仿真数据的可视化.生物医学工程学杂志.2004,21(3):464-468
    93.Grunkemeier G.,Wu Y.Statistical critique of heart valve comparisons.J.Thorac Cardiovasc Surgery.2003,71:290-300
    94.Shi Y.,Vesely I.Dynamic loading increases strength of tissue-engineered chordae tendineae.Second Joint EMBS-BMES Conference 2002.Houston,USA.Institute of Electrical and Electronic Engineers Inc.,2002,205-210
    95.Grunkemeier G.,Li H.,Naftel D.,et al.Long-term performance of heart valve prostheses.Curr.Probl.Cardiology.2000,5:73-84
    96.Gao,Z.,S.Pandya,N.Hosein,et al.Bioprosthetic heart valve leaflet motion monitored using dual camera stereophotogrammetry.J.Biomechanical Engineering.2000,33:199-207
    97.陈炜生,李中学.风湿性病变二尖瓣瓣膜的一维力学性能.中国临床解剖学杂志.2002,20(3):224-226
    98.朱承,龙勉.生物力学的最新进展.北京:高等教育出版社,2001
    99.薛大为.板壳理论.北京:北京理工大学出版社,1988
    100.黄克智.板壳理论.北京:清华大学出版社,1987
    101.柴舜连,姚德淼,毛钧杰,陈国强.旋转抛物面共形阵单元互耦的计算.电子学报.1998,(9):78-81
    102.Ta-Shi Lai.Geometric Design of Roller Drives with Cylindrical Meshing Elements.Mechanism and Machine Theory,2005,4:55-67
    103.Quan Yuan,Chengrui Zhang,Xiaowei Wang.Geometrical Design and Finite Element Analysis on the Bioprosthetic Heart Valve.International Journal of Innovative Computing,Information and Contro,2007,3(5):1289-1299
    104.雷达,邬露蕾.计算机辅助产品设计.中国美术学院出版社,2005
    105.周俊辰.Pro/ENGINEER中文野火版曲面.中国青年出版社,2007
    106.二代龙震工作室.Pro/ENGINEER Wildfire 2.0高级设计.电子工业出版社,2005
    107.赵经文,王宏钰.结构有限元分析.北京:科学出版社,2001
    108.Wenbin Song,Andy Keane,Janet Rees,Atul Bhaskar,Steven Bagnall.Turbine Blade Fir-Tree Root Design Optimisation Using Intelligent CAD and Finite Element Analysis.Computers and Structures,2002(80):1853-1867
    109.Makhijani V.,H.Q.Yang,P.J.Dionne,et al.Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function.ASAIO J.1997,43:387-392
    110.荣先成.有限元法.成都:西南交通大学出版社,2007
    111.许静,王铁.Pro/E和ANSYS集成方法的比较.现代制造工程.2005,(1):64-66
    112.刘相新,孟宪颐.ANSYS基础与应用教程.北京:科学出版社,2006
    113.周长城,胡仁喜,熊文波.ANSYS11.0基础与典型范例.北京:电子工业出版社,2007
    114.张朝晖.ANSYS11.0结构分析工程应用实例解析.北京:机械工业出版社,2008
    115.贾祥敏,江晓红.将复杂机械结构Pro/E模型导入到ANSYS中的方法.煤矿机械,2006,27(3):433-435
    116.马晓明,张冰蔚.对用Pro/E建模ANSYS做分析时导入模型问题的研 究.机械研究与应用.2004,17(6):93-94
    117.杨萍,贺小明.ANSYS与Pro/E间无缝连接的应用研究.机械设计与制造,2006,1(1):58-60
    118.张敏,郑稼骧.生物瓣膜应力的数值模拟.应用力学学报.2004,21(2):119-121
    119.宋卫卫,郑家骧,周咏辉.生物瓣膜计算机几何造型设计.计算机辅助设计与图形学学报.2002,14(5):425-428
    120.P.N.Watton,X.Y.Luo,X.Wang,G.M.Bemacca,P.Molloy,D.J.Wheatley.Dynamic Modelling of Prosthetic Chorded Mitral Valves Using the Immersed Boundary Method.Journal of Biomechanics,2007,(40):613-626
    121.刘锋,龚光甫,任毕乔.CS无支架四叶心包二尖瓣设计优化与有限元应力研究.中国医学工程杂志.2005,13(3):280-283
    122.曹震,邹盛铨,廖宏艳等.三种生物瓣型面应力的有限元计算.重庆大学学报(自然科学版).1996,19(1):46-52
    123.宿学家,刘维永.活性人工心脏瓣膜研究和应用现状.实用医药杂志.2004,21(9):847-850
    124.王韧,翁国星,陈英玉等.激光心脏瓣膜成形及内皮细胞种植的实验研究.中国激光医学杂志.2003,12(4):213-217
    125.李珏,匡震邦,刘维永.生物心脏瓣膜钙化前后的应力分析.中国生物医学工程学报.1998,17(2):183-186
    126.李钰,匡震邦.采用瓣叶复合材料的生物心脏瓣膜的力学分析.力学学报,2000,(3):111-116
    127.王坚刚,龚光甫,蒯行成等.人工心脏瓣膜与机械应力.北京生物医学工程.2003,22(3):232-235
    128.Lo D.,Vesely I.Biaxial strain analysis of the porcine aortic valve.Ann.Thorac.Surgery,1997,60:374-378.
    129.Alan D.Freed,Daniel R.Einstein,Ivan Vesely.Invariant Formulation for Dispersed Transverse Isotropy in Aortic Heart Valves.Biomechan Model Mechanobiol,2005(4):100-117
    130.W.David Merryman,George C.Engelmayr Jr.,Jun Liao,Michael S.Sacks,Defining Biomechanical Endpoints for Tissue Engineered Heart Valve Leaflets from Native Leaflet Properties.Progress in Pediatric Cardiology,2006,21:153-160
    131.J.Li,X.Y.Luo,Z.B.Kuang.A Nonlinear Anisotropic Model for Porcine Aortic Heart Valves.Journal of Biomechanics,2001,(34):1279-1289
    132.X.Y.Luo,W.G.Li,J.Li.Geometrical Stress-Reducing Factors in Anisotropic Porcine Heart Valves.Journal of Biomechanical Engineering,2003,125:735-743
    133.肖祥芷,王孝培.中国模具设计大典(3) 冲压模具设计.南昌:江西科学技术出版社,2003.
    134.Fatos Xhafa,Javier Carretero and Ajith Abraham.Genetic Algorithm Based Schedulers for Grid Computing Systems.International Journal of Innovative Computing,Information and Control,2007,3(5):1053-1071
    135.肖景容,姜奎华.冲压工艺学.机械工业出版社,1990
    136.王孝培.实用冲压技术手册.机械工业出版社,2001
    137.高军,李熹平,修大鹏等.冲压模具标准件选用与设计指南.化学工业出版社,2007
    138.田嘉生,马正颜.冲模设计基础.航空工业出版社,1994
    139.何满才,电火花线切割.北京-人民邮电出版社,2004
    140.张德强等.CAXA数控铣CAD/CAM技术.机械工业出版社,2005
    141.梁庆,田佩林,金祖峰.模具数控铣削加工工艺分析与操作案例.化学工业出版社,2007.9
    142.周宏甫.数控技术.华南理工大学出版社,2003
    143.余承业等.特种加工新技术.国防工业出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700