用户名: 密码: 验证码:
预测环境因子潜在致癌性方法的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症已是人类健康的最大威胁之一,尽管其发生、形成机理仍未被完全阐明,但大部分癌症由环境因子引发已属共识。某些环境因子引起细胞生长因子及其受体表达水平的改变,从而激发、增加DNA突变率并导致癌细胞的发生。因此,通过检测环境因子对DNA突变率的激发结果来估计其诱发癌症的可能性已成为一项重要的研究内容。从数学分析方法上来看,它属于统计推断范畴,即由一系列实验结果、数据来估计、推断随机事件发生的可能性;而正确的检测、分析方法则是降低推断分析中“以真作假”和“以假作真”等错误机率的关键。
     Ames测试是通过检测化合物能否增加组氨酸缺陷型沙门氏菌的回复突变来推测其潜在致癌性,该测试对化合物的致突变性、潜在致癌性易于测试、判断;但对于含组氨酸的复杂混合物,经典的Ames测试并不适合,检测、分析方法的不当即会造成“以假作真”的错误推断。近年来,在检测中药制剂的致突变性时,这一问题又恰恰发生了;当然,这类问题同样存在于用Ames测试来检测其它复杂混合物的致突变性时。
     不久前,国家发展改革委发布了《高技术产业化“十一五”规划》,规划提出在“十一五”期间我国将实施16个高技术产业化重大专项,其中包括“现代中药”重大专项。然而,能否准确地检测、评定中药的致突变性、潜在致癌性会直接影响国家对中药产业的政策,同时也关系到中药能否被充分利用,更是关系到人类健康的头等大事。因此,建立一个适于分析复杂混合物致突变性的方法就显得尤为迫切和重要。
     以表型为检测指标的突变检测方法往往会受到多种因素的影响,同时环境因子对DNA的致突变作用也绝不仅仅局限于某个特定的基因(如Ames测试中组氨酸操纵子的某个基因),这涉及到随机性还是特异性的问题,这一点在理论上至今还没有确切的答案;而直接以DNA为检测指标的突变检测方法应是解决这类问题的关键所在。本论文的相关研究工作即在上述背景下展开,三年来取得了以下研究成果。
     一、对影响Ames测试结果不确定性因素的分析
     Ames测试是目前各个实验室普遍采用的检测环境来源的致突变物、潜在致癌物的通用初筛方法之一,但该测试在实验设计、实验过程及实验结果的分析上仍存在一些不确定性的因素和疑问。评估一个微生物群体的自发突变率和诱发突变率在遗传理论和实验技术上都是一个涉及多方面因素的复杂性难题,估计诱发突变率时涉及到对两个正态分布的混合分布参数的估计,它需要大量的样本,但Ames测试中样本数均较小,无法用条件矩等方法估计混合分布的参数;DNA发生突变的随机性和诱发因素的相关性也是尚未阐明的难题之一。
     1.1总体上来说,Ames测试菌株只能检测出导致小规模突变的致突变物和理化因子,对于更多其它类型的致突变物和理化因子则无法检出,这就导致了该测试在有效检出的致突变物类型及种类上存在较大的局限性,且易出现假阴性结果。
     1.2 Ames测试菌株只能检测出发生在特定位点上的突变,发生在其它位点上的突变则无法检出。
     1.3 Ames测试建立在营养贫瘠的培养基上,当用其检测复杂混合物如中药的致突变性时,可能产生假阳性结果,适应性突变更加剧了这种可能性。
     1.4 Ames测试中可统计的回复子菌落数是培养时间的函数,肉眼可见的回复子菌落数随培养时间的延长而增多,人为规定的48 h或其它时间是一个“约定俗成”的惯例,缺乏其应具有的科学内涵。
     1.5 Ames测试中各类型的回复子在选择培养基上的生长速率各不相同。在统计时,相当数量的生长慢的回复子因未能形成肉眼可见的回复子菌落而不能被统计,这也是Ames测试这类基于试验组与对照组间回复子菌落数差异的大小来判定物质致突变性的检测方法的致命缺陷之一。
     分子生物学技术的发展使直接以DNA为检测指标的物质致突变性检测方法得以实现,其可避免Ames测试中较多不确定性因素和结果。
     二、建立了一个检测中药制剂潜在致癌性的方法
     Ames测试建立在含微量组氨酸的固体培养基上,要求试验组与对照组中组氨酸含量相同,以使得试验组与对照组中测试菌的分裂次数、生长量均趋于相同。该测试在检测中药致突变性时,因受中药中组氨酸含量的影响,试验组中组氨酸含量高于对照组而使对照组失去了可比性,致使多种中药在该测试中呈阳性。本研究用Ames测试检测了7种中药的致突变性,所有测试的中药均呈阳性。
     Ames测试菌株在LB培养基中培养时,其生长量及瞬时生长速率不受培养基中组氨酸浓度的影响;处于衰亡期的Ames测试菌株TA100和TA98的相对回复突变频率与测试体系中诱变剂的浓度间存在剂量效应关系。基于上述的结果,建立一个根据试验组与对照组中衰亡期的测试菌的相对回复突变频率的差异性来评定物质致突变性的方法。中药所含的组氨酸不会影响该测试结果的准确性,因而适于检测中药的致突变性,进而推断中药的潜在致癌性。
     通过测定中药中组氨酸含量并结合统计学分析,证实这些中药的“致突变性”源于中药所含组氨酸导致的假阳性结果。应用新建方法测定了在Ames测试中呈“阳性”中药的致突变性,在该测试中试验组中测试菌的相对回复突变频率与中药浓度间不存在剂量效应关系,并且试验组与阴性对照组中测试菌的相对回复突变频率无显著性差异(t-test;p<0.05),说明这些中药在该测试中呈阴性,即没有致突变性,进而推断这些中药没有潜在致癌性。
     三种中药(银杏叶、猫眼草、三棱)进行了哺乳动物骨髓细胞染色体畸变试验,结果显示所测试中药均无致突变性,该测试结果进一步佐证了新建方法检测中药致突变性的有效性,也说明该方法适于评价中药的潜在致癌性。
     三、改进了应用MutS蛋白检测突变的方法
     MutS蛋白在体外能识别并结合含有错配碱基的DNA片段,多种基于此属性的突变检测方法应运而生。本文中实验结果证实,MutS蛋白在高剂量下亦能很好地结合纯合双链DNA,并且这种结合具有剂量依赖性;在低剂量下,MutS蛋白结合杂合双链DNA的能力显著强于其对纯合双链DNA的结合。
     本研究中摒弃了测序法和代表性差异分析法,而采用能有效区别样品间DNA量的微小差异的实时荧光定量PCR技术来检测突变,直接比较实验样品与对照样品的Ct值的差异来判断、检测突变。实时荧光定量PCR技术的应用大大简化了检测突变的过程。
     另外,证实了用此种方法能够检测在背景细胞中低至2%的突变体,是一种改进的、简便的、在DNA水平上检测突变的方法。
     四、极低比例的未知突变体检测方法的探讨及初步建立
     多种检测DNA片段多态性和突变的方法例如测序法及单链构象多态性(SSCP)只能检测出群体中高比例的突变体(>9%),对于更低比例的突变体则无法有效检出。
     用于检测低比例的突变体的方法需要具有高分辨力和高灵敏度,目前满足这两个条件的检测方法如芯片、生物电极等又因成本过高而难以被普遍地应用。本文设计了一个可提高群体中极低比例的突变体的相对及绝对含量的PCR程序,应用此程序提高了突变体的相对及绝对含量后,用激光诱导荧光毛细管电泳-单链构象多态性分析了实验样品及对照样品经PCR扩增后的产物。实验结果显示,在毛细管电泳谱图中,实验样品的扩增产物比对照样品明显地多出了一个峰,此峰是实验样品中极低比例的未知突变体(10~(-5))经扩增后被检测到。此方法具有一定的可行性,但还需进一步优化条件以提高突变体的检出效率,在此基础上建立能直接根据DNA的变化来检测物质致突变性的方法。
Cancer has been one of the greatest threats to human health;despite the mechanism of its occurrence and formation has not yet been fully explained,a consensus has been already obtained that most cancers are caused due to some environmental factors. Some environmental factors can change the expression levels of some cell growth factors and their receptors,which leads to the increase in mutation rates of DNA and occurrence of cancer cells.Therefore,the investigation on the ability of environmental factors to induce gene mutation is an effective way to estimate their potential to cause cancer.From the mathematical point of view,this involves the probability and statistical inference,that is,the possibility of an incident is estimated based on a seriety of experiment results and data.It is crucial for decreasing the chance of misjudgment to adopt the appropriate detection and analysis methods,and the results from inappropriate methods will inevitably lead to wrong misjudgments.
     The Ames test is based on the principle that mutagenic compounds can increase the reversion frequencies of histidine-deficient strains,thereby speculating their potential carcinogenicity.The potential carcinogenicity of pure compounds can be well estimated with the Ames test;however,as to complex mixtures,it is inappropriate to adopt the Ames test to monitor their potential carcinogenicity.Similarly,it is inappropriate to adopt the Ames test to monitor the potential carcinogenicity of traditional Chinese medicine because traditional Chinese medicine is a mixture,too.
     Not long ago,the National Development and Reform Commission issued the high-tech industries development during 11th five-year plan,16 major projects including the 'modem traditional Chinese medicine' project will be implemented.So, whether the mutagenicity of traditional Chinese medicine can be accurately determined will have direct affects on not only the national policy on the traditional Chinese medicine industry,but also the utilization of traditional Chinese medicine. Therefore,it is necessary to develop a novel mutagenicity detection method for the complex mixtures including traditional Chinese medicine.
     The bacterial reversion assays such as the Ames test were affected by multiple factors;at the same time,the environmental factors can change not only a specific gene but also many other genes,which is related to specificity or random.Therefore, the mutation detection method at DNA level may be a way to solve the above issues.
     The study in this paper started with these problems mentioned above,and the following results were obtained in the past three years.
     1.Analysis of the factors leading to uncertainty of Ames test results
     The Ames test is used world-wide as an initial screen to determine the mutagenic potential of new chemicals and drugs;however it involves many uncertain factors. The estimation of the spontaneous and induced mutation rate of a microbial group is complex from the point of view of the genetic theory and experimental technique, which involves a number of factors.The estimation of induced mutation rate is related to the mixing of two normal distributions,which needs lots of samples;unfortunately, the number of samples in the Ames test is small,as a result the parameter of the mixed distribution can not be estimated with conditional moment closure model.
     1.1 Only small-scale mutations such as base substitution and one or two nucleotides
     insertion or deletion can be detected by the tester strains used in the Ames test,as a result many other types of mutation can not be monitored.
     1.2 Only the mutations occurring at specific locuses such as hiG46 locus can be monitored,many more mutations occurring at other locuses can not be detected with the Ames test.
     1.3 The Ames test is based on the minimal medium,which made this method unsuitable for the detection of mutagenicity of nutrient-rich materials. Additionally,this barren environment might also lead to the adaptive mutation, which much more enhanced the uncertainty of test results.
     1.4 The revertant colony numbers are the function of incubation time,so the time to count the revertant colony numbers(48 h) is relatively arbitrary,lacking of scientific connotation.
     1.5 Various types of revertants grew at different rates in the selective medium; thereby the revertants with a higher growth rate were probably counted compared with those with lower growth rates.That is to say,not all the revertants could be counted,which was a vital defect to the Ames test.
     2.A novel potential eareinogenieity detection method for traditional Chinese medicine
     The Ames test is based on the test system that contains trace amounts of histidine (15.52μg/plate),and the amounts ofhistidine in the test groups and the control groups are same.Many traditional Chinese medicines were estimated to be mutagenic with the Ames test,but these results on the mutagenicity of these traditional Chinese medicines might be questionable due to considerable amounts of histidine in them. Several traditional Chinese medicines were estimated with the Ames test,and all of them were found to be mutagenic.However,these samples were nonmutagenic after deducting the revertant numbers resulting from the histidine in the samples.
     Additional excessive external histidine did not affect the growth of TA100 when TA100 was cultured in LB broth;furthermore,dose-response relationships occurred between the mutagen concentrations and the relative reversion frequencies of the tester strains during the declining phase.According to these results,a novel strategy based on liquid LB broth to estimate the mutagenicity of samples containing much free and/or protein-bound histidine was developed.This strategy could be expected to avoid the false-positive results when adopting the Ames test or other methods to estimate the mutagenicity of these samples containing considerable amounts of histidine.
     The mutagenicity of these traditional Chinese medicines was assayed with the new method.The RRFs of tester strains in all test groups were not significantly beyond those in the negative control groups(t test;p>0.05);furthermore,no dose-response relationships appeared between the RRFs of tester strains and the concentrations of traditional Chinese medicine.Thus,the results in the new method indicated that all these traditional Chinese medicines were nonmutagenic.
     These traditional Chinese medicines were also proved to be nonmutagenic with mammalian bone marrow chromosome aberration test.These results were in accordance with the results in the new method,which suggested that the new method was effective to monitor the mutagenicity of traditional Chinese medicine.
     3.A novel mutation detection assay based on MutS and real-time fluorescent quantitative PCR assay
     MutS is known to be an important component of mismatch repair(MMR) systems and play a vital role in maintaining the fidelity of genetic information in living cells. In vivo,it specifically recognizes and binds all the base pair mismatches and some small-scale insertion/deletion mutations.However,under in vitro conditions,MutS does not bind specifically to heteroduplex DNA.Whether MutS binds to homoduplex DNA or not is closely correlated with the molar ratio of MutS to DNA.
     A novel,sensitive mutation detection strategy was developed by performing real-time fluorescent quantitative PCR assay and utilising the binding property of MutS.The mutants as low as 2 percent among the normal cells can be detected with this method and this method can be applied to detect the unknown mutations within the whole genome.
     4.Establishing a detection method for low-proportion mutants
     A variety of methods such as DNA sequencing and SSCP for detecting DNA fragment polymorphism and mutation were established,but these methods can not be adopted to detect low-proportion mutants for lacking of high sensitivity.
     Some other methods such as DNA chip can be used to detect the low-proportion mutants,but these methods are not widely adopted because of high costs.In this study, based on the difference in the denaturation temperatures between heteroduplex DNA and homoduplex DNA,a novel PCR procedure was proposed to improve the relative and absolute contents of mutant.Afterwards,samples were analyzed by single-strand conformation polymorphism with capillary electrophoresis and laser-induced fluorescence detector(CE-LIF-SSCP).Some low-proportion mutants were believed to be monitored by this method.
引文
Adler ID, Venitt S and Parry JM (1984). Cytogenetic tests in mammals in mutagenicity testing: a practical approach. IRL Press, Oxford, Washington DC, pp. 275-306.
    Aems BN, Mccann J and Yamasaki E (1975). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test. Mutat Res, 31:347-364.
    Aeschbacher H, Finot PA and Wolleb U (1983). Interactions of histidine-containing test substances and extraction methods with the Ames mutagenicity test. Mutat Res, 113:103-116.
    
    Albertini S and Gocke E (1993). Renin inhibitors as an example of presumptive irrelevant positive findings in the Salmonella/mammalian microsome assay (Ames test). Mutat Res,298: 237-46.
    Ames BN (1971). The detection of chemicals mutagens with enteric bacteria. In Chemical Mutagens: principles and methods for their Detection (A. Hollaender, Ed). Plenum Press, New York, 1: 267-282.
    Ames BN and Whitfield HJ (1966). Frameshift mutagenesis in Salmonella. Cold Spring Harb Symp Quant Biol, 23: 221-225.
    Ames BN, Durston WE, Yamasaki E and Lee FD (1973). Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA, 70: 2281-2285.
    Ames BN, Lee FD and Durston WE (1973). An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA, 70:782-786.
    Ames BN, McCann J and Yamasaki E (1975). Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat Res, 31:347-364.
    Arakawa H, Tsuji A, Maeda M, Kamahori M and Kambara H (1997). Analysis of single-strand conformation polymorphisms by capillary electrophoresis with laser induced fluorescence detection. J Pharm Biomed Anal, 15: 1537-1544.
    Auerbach C and Robson JM (1 946). Chemical production of mutations. Nature, 57: 302-302.
    Auerbach C and Robson JM (1947). The chemical production of mutations. Science, 105(2723): 243-247.
    Aufderheide M and Gressmann H (2007). A modified Ames assay reveals the mutagenicity of native cigarette mainstream smoke and its gas vapor phase. Exp Toxicol Pathol, 58:383-392.
    Baba Y (1996). Analysis of disease-causing genes and DNA-based drugs by capillary electrophoresis. Toward J Chromatogr B Biomed Appl, 687: 271-302.
    Barrett JC (1993). Mechanisms of multstep carcinogenesis and carcinogen risk assessment.Environ Health Perspect, 100: 9-12.
    Bauer J, Krammer G and Knippers R (1981). Asymmetric repair of bacteriophage T7 heteroduplex DNA. Mol Gen Genet, 181: 541-547.
    Behrensdorf HA, Pignot M, Windhab N and Kappel A (2002). Rapid parallel mutation scanning of gene fragments using a microelectronic protein-DNA chip format. Nucleic Acids Res, 30: e64.
    Bellini MF, Cabrioti LN, Terezan NP, Jordao BQ, Ribeiro LR and Mantovani MS (2008).Cytotoxicity and genotoxicity of Agaricus blazei methanolic extract fractions assessed using gene and chromosomal mutation assays. Genet Mol Biol, 30: 122-127.
    Butler WH, Greenblatt M and Lijinsky W (1969). Carcinogenesis in Rats by Aflatoxins B1,G1, and B2. Cancer Res, 29: 2206-2211.
    Cariello NF and Piegorsch WW (1996). The Ames test: the two-fold rule revisited. Mutat Res,369:23-31.
    Cha TA, Zhao J, Lane E, Murray MA and Stec DS (1997). Determination of the genome composition of influenza virus reassortants using multiplex reverse transcription-polymerase chain reaction followed by fluorescent single-strand conformation polymorphism analysis. Anal Biochem, 252: 24-32.
    Chen YC, Kao SC, Chou HC, Lin WH, Wong FH and Chow WY (2008). A real-time PCR method for the quantitative analysis of RNA editing at specific sites. Analytical Biochemistry, 375: 46-52.
    Chung KT, Ssu-Ching Chen, and Larry D Claxton (2006). Review of the Salmonella typhimurium mutagenicity of benzidine,benzidine analogues and benzidine-based dyes.Mutat Res, 12:58-76.
    
    Croce CM (2001). How can we prevent cancer? Proc Nat Acad Sci USA, 98: 10986-10988.
    Demura R, Tsukada S, Kotani N, Tateoka Y, Narimatsu S and Yamamoto I (1990). Mutagenic activity of pyrolysates of cyanocobalamin and some other water-soluble vitamins in the model system with the Salmonella/mammalian microsomes. Mutat Res, 244: 37-42.
    Elgorashi EE, Taylor JL, Maes A, van Staden J, De Kimpe N and Verschaeve L (2003).Screening of medicinal plants used in South African traditional medicine for genotoxic effects. Toxicol Lett, 143 (2): 195-207.
    Ellis L A, Taylor GR, Banks R and Baumberg S (1994). MutS binding protects heteroduplex DNA from exonuclease digestion in vitro: a simple method for detecting mutations.Nucleic Acids Res, 2: 2710-2711.
    Fairbaim DW, Olive DL and O'Neill KL (1995). The comet assay: a comprehensive review. Mutat Res, 339: 37-59.
    Fajardo V, Gonza'lez I, Mart(?)'n I, Rojas M, Herna'ndez PE, Garc(?)'a T and Mart(?)'n R (2008).Real-time PCR for detection and quantification of red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) in meat mixtures. Meat Science,79: 289-298.
    Feligini M, Alim N, Bonizzi I, Enne G and Aleandri R (2007). Detection of cow milk in water buffalo cheese by SYBR Green real time PCR: sensitivity test on governing liquid samples. Pakistan Journal of Nutrition, 6: 94-98.
    Fluckiger-Isler S, Baumeister M, Braun K, Gervais V, Hasler-Nguyen N, Reimann R,Van-Gompel J, Wunderlich HG and Engelhardt G (2004). Assessment of the performance of the Ames II? assay: a collaborative study with 19 coded compounds.Mutat Res, 558: 181-197.
    Foster PL (1999). Mechanisms of stationary phase mutation: a decade of adaptive mutation.Annu Rev Genet, 33: 57-88.
    Friedberg EC, Walker GC and Siede W (1995). DNA Repair and Mutagenesis. ASM Press,Washington DC.
    Gooderham NJ, Murray S, Lynch AM, Yadollahi-Farsani M, Zhao K, Boobis AR and Davies DS (2001). Food-derived heterocyclic amine mutagens: variable metabolism and significance to humans. Drug Metab Dispos, 9: 529-534.
    Gotoh K, Hata M, Miyajima M and Yokota H (2000). Genome-wide detection of unknown subtle mutations in bacteria by combination of MutS and RDA. Biochem Biophys Res Commun, 268: 535-540.
    Gotoh M, Hasebe M, Ohira T, Hasegawa Y, Shinohara Y, Sota H, Nakao J and Tosu M (1997). Rapid method for detection of point mutations using mismatch binding protein (MutS) and an optical biosensor. Genet Anal, 14: 47-50.
    Green MH and Muriel WJ (1976). Mutagen testing using TRP+ reversion in Escherichia coli.Mutat Res, 38: 3-32.
    Guadano A, pena EDL, Coloma AG and Alvarez JF (1999). Development of a new bioluminescent mutagenicity assay based on the Ames test. Mutagenesis, 14:411-415.
    Gupta M, Song P, Yates CR and Meibohm B (2004). Real-time PCR-based genotyping assay for CXCR- polymorphisms. Clin Chim Acta, 341: 93-100.
    Harfe BD and Jinks-Robertson S (2000). DNA mismatch repair and genetic instability. Annu Rev Genet, 34: 359-399.
    Haworth S, Lawlor T, Mortelmans K and Zeiger E (1983). Salmonella mutagenicity results for 250 chemicals. Mutagen, 5: 3-142.
    Hayashi K (1991). PCR-SSCP: A simple and sensitive method for detection of mutations in genomic DNA. PCR Methods Appl, 1: 34-38.
    Hebenbrock K, Williams PM and Karger BL (1995). Single strand conformational polymorphism using capillary electrophoresis with two-dye laser-induced fluorescence detection. Electrophoresis, 16: 1429-1436.
    Henderson L, Brusick D, Ratpan F and Veenstra D (2007). A review of the genotoxicity of ethylbenzene. Mutat Res, 635: 81-89.
    Howard RL (2005). Refolding and characterization of a heterologous expressed Phanerochaete chrysosporum cellobiohydrolase (CBHI.2). Afr J Bitechnol, 4:1185-1188.
    Ioannou Y, Giles I, Lambrianides A, Richardson C, Pearl LH, Latchman DS, Isenberg DA and Rahman A (2006). A novel expression system of domain I of human beta-glycoprotein I in Escherichia coli. BMC Biotech, 68: 1-11.
    Iyer RR, Pluciennik A, Burdett V and Modrich PL (2006). DNA mismatch repair: 325 functions and mechanisms. Chem Rev, 106: 302-323.
    Iyer VN and W Szybalski (1958). Two simple methods for the detection of chemical mutagens. Appl Microbiol, 6: 23-29.
    Joe S and David WR (2001) Molecular Cloning: A laboratory manual (Chinese version),Science Press, Beijing, pp.116-188.
    Kensese SM, Teng JI and Smith LL (2005). Mutagenic lipid peroxides from edible oils. Teratogenesis Carcinogenesis and Mutagenesis, 9: 133-145.
    Kosuge T, Tsuji K, Wakabayashi K, Okamoto T, Shudo K, Iitaka Y, Itai A and Sugimura T (1978). Isolation and structure studies of mutagenic principles in amino acid pyrolysates. Chem Pharm Bull, 26: 611-619.
    Lane DP (1999). Exploiting the p53 pathway for cancer diagnosis and therapy. Br J Cancer,80: 1-5.
    Laqueur GL (1964). Carcinogenic effects of cycad meal and cycasin, methylazoxymethanol glycoside, in parts and effects of cycasin in germ free rats. Fed Proc, 23: 1386-1388.
    Lin MQ, Chang CJ and Green NS (1996). A New method for estimating high mutation rates in cultured cells. Mutat Res, 351: 105-116.
    Lishanski A, Ostrander EA and Rine J (1994). Mutation detection by mismatch binding protein MutS in amplified DNA application to the cystic fibrosis gene. Proc Natl Acad Sci USA,91: 2674-2678.
    Liu JB and Zhang Z (2008). Development of SYBR Green I based real-time PCR assay for detection of drug resistance mutations in cytomegalovirus. Journal of Virological Methods, 149: 129-135.
    
    Liu TY (1983). Estimation of the microbial mutation rate. Sci China Series B, 7: 625-633.
    Liu YQ, Zhang HQ, Shen JZ and Gao PJ (2007). Effect of physiological heterogeneity of E.coli population on antibiotic susceptivity test. Sci China ser C, 37: 524-529.
    Luria SE and Delbruck M (1943). The distribution of the numbers of mutants in bacterial populations. Genetics, 28: 491-511.
    Macgregor JT, Casciano D and Muller L (2000). Strategies and testing methods for identifying mutagenic risks. Mutat Res, 455: 3-20.
    Matsumoto T, Y oshida D, Mizusaki S and Okamoto H (1977). Mutagenic activity of amino acid pyrolysates in Salmonella typhimurium TA 98. Mutat Res, 48: 279-286.
    McCann J and Ames BN (1976). Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals, Discussion. Proc Nat Acad Sci USA, 73: 950-954.
    McCann J, Choi E, Yamasaki E and Ames BN (1975). Detection of Carcinogens as mutagens in the Salmonella/Microsome Test: Assay of 300 Chemicals. Proc Nat Acad Sci USA,72:5135-5139.
    McCann J, Spingarn NE, Kobori J and Ames BN (1975). Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc Natl Acad Sci USA, 72:979-983.
    Michael HL, Patrick J, O'Neill JP and Cole J (1995). Suggestions concerning the relationship between mutant frequency and mutation rate at the hprt locusin human peripheral T-lymphocytes. Mutat Res, 334: 323-339.
    Miyazaki M, Ohno S, Futatsugi M, Saeki H, Ohga T and Watanabe M (2002) .The relation of alcohol consumption and cigarette smoking to multiple occurrence of esophageal dysplasia and squamous cell carcinoma. Surgery, 131: 7-13.
    Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet,25: 229-253.
    Moffatt BA and Studier FW (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol, 189: 113-130.
    Moreau P, Bailone A and Devoret R (1976). Prophage X induction in Escherichia coli K12 envA uvrB: A highly sensitive test for potential carcinogens. Proc Natl Acad Sci USA,73: 3700-3704.
    Mortelmans K and Zeiger E (2000). The Ames Salmonella/microsome mutagenicity assay.Mutat Res,455: 29-60.
    Mortelmans K, Haworth S, Lawlor T, Speck W, Tainer B and Zeiger E (1986). Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen, 8: 1-119.
    Mukai FH and GoldsteinBD (1976). Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science, 191: 868-869.
    Muller L, Kikuchi Y, Probst G, Schechtman L, Shimada H, Sofuni T and Tweats D (1999).ICH-harmarmonised guidances on genotoxicity testing of Pharmaceuticals: evolution,reasoning and impact. Mutat Res, 436: 195-225.
    Nagao M, Honda M, Seino Y, Yahagi T and Kawachi T (1977). Mutagenicities of protein pyrolysates. Cancer Lett, 2: 335-340.
    Nelson SF, McCusker JH, Sander MA, Kee Y, Modrich P and Brown PO (1993). Genomic mismatch scanning: a new genomic mismatch scanning: a new approach to genetic linkage mapping. Nat Genet, 4: 11-18.
    Nevers P and Spatz HC (1975). Escherichia coli mutants uvrD and uvrE deficient in gene conversion of X-heteroduptexes. Mol Gen Genet, 139: 233-243
    Nylund L and Einisto P (1992). Mutagenicity testing of protein-containing and biological samples using the Ames/Salmonella plate incorporation test and the fluctuation test.Mutat Res,272: 205-214.
    Obmolova G, Ban C, Hsieh P and Yang W (2000). Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature, 407: 703-710.
    Oliver DH, Thompson RE, Griffin CA and Eshleman JR (2000). Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J Mol Diagn, 2: 202-208.
    Orita M, lwahana H, Kanazawa H, Hayashi K and Sekiya T (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA, 86: 2766-2770.
    Papanikolau Y, Tsigos I, Papadovasilaki M, Bouriotis V and Petratos K (2005).Crystallization and preliminary X-ray diffraction studies of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Acta Cryst, 61: 246-248.
    Parsons B and Heflich RH (1997). Evaluation of MutS as a tool for direct measurement of point mutations in genomic DNA. Mutat Res, 374: 277-285.
    Patrineli A, Clieford MN, Walker R and Ioannides C (1996). Mutagenicity of white grape juice in the Ames test. Food and Chemical Toxicoloty, 34: 559-562.
    Preston RJ, Dean BJ, Galloway S, Holden H, McFee AF and Shelby M (1987). Mammalian in vivo cytogenetic assays: analysis of chromosome aberrations in bone marrow cells.Mutat Res, 189: 157-165.
    Prival M, Simmon VF and Motelmans KE (1991). Bacterial mutagenicity testing of 49 food ingredients gives very few positive results. Mutat Res, 260: 321-329.
    Quillardet P, Huismant 0, Dyarit R and Hofhung M (1982). SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity.Proc Natl Acad Sci USA, 79: 5971-5975.
    Ririe KM, Rasmussen RP and Wittwer CT (1997). Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem, 245:154-160.
    Rydberg B and Johanson KJ (1978). Estemation of DNA strand breaks in single mammalian cells. Academic Press, New York, pp.465-468.
    Sachadyn P, Stanisawska A and Kur J (2000). One tube mutation detection using sensitive fluorescent dyeing of MutS protected DNA. Nucleic Acids Res, 28: 28-36.
    Sachadyn SA, Sachadyn P, Jedrzejczak R and Kur J (2003). Construction and purification of his6-Thermus thermophilus MutS protein. Protein Expr Purif, 28: 69-77.
    Shanabruch WG and Walker GC (1980). Localization of the plasmid (pKM101) gene(s) involved in recA+lexA dependent mutagenesis. Mol Gen Genet, 179: 89-97.
    Shigemori Y and Oishi M (2005). Stable Triple-stranded DNA formation and its application to the SNP detection. DNA Research, 12: 441-449.
    Singer VL, Lawlor TE and Yoe S (1999). Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in salmonella/mammalian microsome reverse mutation assay. Mutat Res, 439: 37-39.
    Smith J and Modrich P (1996). Mutation detection with MutH, MutL, and MutS mismatch repair proteins. Proc Natl Acad Sci USA, 3: 4374-4379
    Stoltz DR, Poirier LA, Irving CC, Stich FF, Weisburger JH and Grice HC (1974). Evaluation of short-term tests for carcinogenicity. Toxicol Appl Pharmacol, 29: 157-180.
    Studier FW, Rosenberg AH, Dunn JJ and Dubendorff JW (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol, 185: 60-89.
    Su SS and Modrich P (1986). Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci, 83: 5057-5061.
    Su X, Robelek R, Wu Y, Wang G and Knoll W (2004). Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, mismatch binding protein. Anal Chem, 76: 489-94.
    Szybalski W (1958). Special microbiological systems: Observations on chemical mutagenesis in microorganisms. Ann NY Acad Sci, 76: 475-489.
    Taglinger K, Nguyen NV, Helps CR, Day MJ and Foster AP (2008). Quantitative real-time RT-PCR measurement of cytokine mRNA expression in the skin of normal cats and cats with allergic skin disease. Veterinary Immunology and Immunopathology, 122:216-230.
    Takahashi SHM, Furukawa F, Miyakawa Y, Hasegawa R, Toyoda K and Hayashi Y (1987).Initiating activity in a two-stage mouse skin model of nine mutagenic pyrolysates of amino acids, soybean globulin and proteinaceous food. Carcinogenesis, 6: 1231-1234.
    Takanashi H and Urano K (1998). Statistical procedures for estimating the detection limit and determination limit of the Ames Salmonella mutagenicity assay. Sci Environ, 221:31-42.
    Thompson C (2005). Modified bacterial mutation test procedures for evaluation of peptides and amino acid-containing material. Mutagenesis, 20: 345-350.
    Tice RR, Hayashi M, MacGregor JT, Anderson D, Blakey DH, Holden HE, Kirsch-Volders M, Oleson FB Jr, Pacchierotti F and Preston RJ (1994). Report from the Working Group on the In Vivo Mammalian Bone Marrow Chromosomal Aberration Test. Mutat Res,312: 305-312.
    Tsuda S, Matsusaka N, Madarame H, Ueno S, Susa N, Ishida K, Kawamura N, Sekihashi K and Sasaki YF (2000). The comet assay in eight mouse organs: results with 24 azo compounds. Mutat Res, 465: 11-26.
    Verhagen H, Bruijntjes-Rozier GC, Coenen TM and Oosterom J (1994) Modified suspension Ames test for testing proteinaceous substances: an initial step. Food Chem Toxicol, 32(12): 1161-1166.
    Wagner R and Debbie P(1995).Radman M.Mutation detection using immobilized mismatch binding protein(MutS).Nucleic Acids Res,23(19):3944-3948.
    Walker GC and Dobson PP(1979).Mutagenesis and repair deficiencies of Escherichia coli umuC mutants are suppressed by the plasmid pKM101.Mol Gen Genet,172:17-24.
    Wang J and Liu JH(2004).Directly fishing out subtle mutations in genomic DNA with histidine-tagged Thermus thermophilus MutS.Mutat Res,547:41-47.
    Wassom JS(1989).Origins of genetic toxicology and the Environmental Mutagen Society.Environ Mol Mutagen,14(16):1-6.
    Watano Y,Imazu M and Shimizu T(1995).Chloroplast DNA typing by PCR-SSCP in the Pinus pumila-P parviflora var pentaphylla complex(Pinaceae).J Plant Res,108:493-499.
    Wong JJ and Hsieh DP(1976).Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential.Proc Nat Acad Sci USA,73:2241-2250.
    Yahagi T,Degawa W,Seino Y,Matsushima T,Nagao M,Sugimura T and Hashimoto Y (1975).Mutagenicity of carcinogenic azo dyes and their derivatives.Cancer Lett,1:91-97.
    Yin XJ,Liu DX,Wang HC and Zhou Y(1991).A study on the mutagenicity of 102 raw pharmaceuticals used in Chinese traditional medicine.Mutat Res,260(1):73-82.
    Zeiger E(1985).The Salmonella mutagenicity assay for identification of presumptive carcinogens,in:HA Milman,EK Weisburger(Eds),Handbook of Carcinogen Testing,Noyes Publishers,Park Ridge,NJ,83-99.
    Zinger L,Gury J,Alibeu O,Rioux D,Gielly L,Sage L,Pompanon F and Roberto A(2008).Geremia,CE-SSCP and CEoFLA,simple and high-throughput alternatives for fungal diversity studies.Journal of Microbiological Methods,72:42-53.
    查捷,孙建荣,俞国强,袁振华(2004).腌制和发酵食品的致突变性研究.中国公共卫生.20:326-327.
    陈秋林,姚成(2003).中药薄荷草中氨基酸的测定.南京体育学院学报(自然科学版),2:60-61.
    陈世伟,张杰(1999).银杏叶提取物致突变研究.河南预防医学杂志,10:151-152.
    陈希孺(2000).机会的数学.清华大学出版社,北京.
    陈祖辉,张湘桥(1982).生物学短期试验.人民卫生出版社,北京.
    崔之贵,黄衡,宋永田(1982).冬虫夏草及人工虫草菌的药理研究.中草药,13:17-17.
    窦昌贵(2003).中药学.上海科学技术出版社,上海.
    高培基(1983).关于检测环境致变物的Ames试验的几个问题.环境科学,8:81-83.
    高晓奇,王蕊,李厚勇(1995).天生素灵芝胶囊对大鼠致畸性的研究.癌变畸变突变,7:244-244.
    韩玉英,丰平,文朝阳(2003).抗癌中草药研究进展.北京中医杂志,22:45-48.
    贾天柱,周鹤,解世全,王延年,王忠海(2000).中药狗脊及其炮制品中氨基酸和总糖的比较分析.中成药,22:700-701.
    李伟民,孙峰,米琴,景奉香,朱文杰(2006).采用生物发光检测法进行Ames试验的研究.应用与环境生物学报,12:722-725.
    梁海鹰,张晓元,梁宋平(2001).化学物质致突变性的检测方法研究进展.生命科学研究,5:82-85.
    林明雄,王发渭,窦永起(2002).中药拮抗肿瘤多药耐药机制研究近况.安徽中医学院学报,21:60-61.
    刘冰,庞慧良,无光恒(1999).几味抗癌中药致突变性研究.白求恩医科大学学报,25:8-10.
    刘超,陈光亮,王钦茂(1998).中药妊娠毒性研究进展(综述).北京中医药大学学报,21:37-39.
    刘萍,杜娟,于丽华,崔日希,郝丽娜,王淑娥(2000).狼毒大戟水提物对小鼠致突变作用的实验研究.山东医科大学学报,38:26-27.
    苗明三,杨桂芳(2002).中药的三致作用.河南中医药学刊,17:1-5.
    任吉存,邓锡云,曹亚,姚开泰(1996).毛细管电泳—激光诱导荧光法分离检测DNA 片段及基因扩增产物,高等学校化学学报,17:362-366.
    任娇蓉,李璐,郝洪文,徐亚同(2007).MTT-四氯化碳萃取吸光光度法测定活菌数.环境科学与技术,30:48-50.
    佘素贞,王家骥,缪世廉,杨辉(1995).银杏总黄酮甙毒理学和药效学作用.癌变畸变突变,7:281-281.
    施蕴渝(2000).蛋白质结构分析:制备、鉴定与微量测序.科学出版社,北京.
    王钦茂,李莉,方华武,苏翠梅(2001).中药致癌、致突变和生殖毒性研究概况.安徽中医学院学报,20:64-67.
    王学工,李守素(1993).土豆类生物碱的提取及其对小鼠胚胎致畸作用的研究.中华妇产科杂志,28:73-75.
    魏丽珍,赵泽贞(1997).SOS原噬菌体诱导试验检测三种天然调味品的致突变性.癌变畸变突变,9:229-230.
    吴金龙,王丽云,宋凌浩,沈逵,张惠菊(1996).银杏叶提取物致突变性研究.癌变畸变突变,8:217-220.
    吴佩君,陈活彝,吴子斌,杨显荣(1994).天花粉蛋白对小鼠胚胎早期发育的影响.生殖与避孕,14:8-12.
    姚成,陈军,欧阳平凯(2003).中药猫爪草氨基酸的测定.林产化学与工业,23:97-98.
    于仲波,吴南翔,金锋,金勇,陶核,谭玉凤,娄金萍(2007).1485种化学物的致突变试验和致癌试验结果一致性比.毒理学杂志,21:320-320.
    袁惠南,王秀文,林飞(1990).某些天然药物或其所含的化学成分的致突变、致癌及致畸胎作用(中).中成药,10:37-38.
    张春颖,周钟鸣(2001).常见中药的致突变性研究进展.中国中医药信息杂志,8:20-24.
    张辉(2004).山东大学硕士论文.
    张建清,苏诚玉,权玉玲,刘春来,蓝弘(1999).四种补益中药的急性毒性和致突变性研究.现代预防医学,26:26-28.
    张世敏(2003).中药抗突变实验研究进展.中国中医药信息杂志,10:83-85.
    赵军宁,王小东(1990).大黄毒理学研究进展.中医药学报,5:48-50.
    赵泽贞,刘勖,张彩雪,星一(1995).三种天然调味品致突变和抗突变研究简况及建议.癌变畸变突变,7:118-120.
    赵泽贞,魏丽珍(2000).22种可食性中药材的抗突变和致突变同步快速试验报告.癌变畸变突变,12:87-90.
    周帮靖(1986).常用中药的抗菌作用及其测定方法.科学技术文献出版社重庆分社,重庆.
    周晓园,陶凯,赵海霞,高晓奇,王蕊,王晓芬,陶玉珍(1998).中药石菖蒲、九节菖蒲致畸、致突变的研究.中草药,29:110-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700