用户名: 密码: 验证码:
切换系统的最优控制和稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切换系统是一类非常重要的混合系统,它是由若干个连续时间或离散时间或连续和离散时间子系统及一个作用在其上的切换规则组成。在过去的近四十年中,切换系统以其广泛的实际应用背景和重大的理论研究意义而受到人们极大的关注,一直是控制界研究的热点之一。
     本文研究了切换系统的最优控制、稳定性和吸引域的估计等问题。主要研究内容及创新点如下:
     (1)在本文中我们提出了一种新的嵌入方法来研究带m个模态的切换系统的最优控制问题。用这种新的嵌入方式我们先把切换系统嵌入到一族新的更大的系统中,对这族系统建立起相应的最优控制问题,接着直接根据李雅普诺夫定理证明如下关键结论:由切换系统轨线组成的集合在由嵌入系统轨线组成的集合中是稠密的,最后基于这个结论通过研究嵌入系统的最优控制问题,我们获得了切换系统最优控制问题的最优解和次优解。
     (2)对一类新的切换系统-由连续时间子系统和离散时间子系统构成的切换系统我们研究其稳定性和镇定问题。目前这类由连续子系统和离散子系统构成的切换系统的稳定性结果都是针对线性情形的。于是在本文中对这类切换系统的一个非线性情形我们给出了其状态的估计,获得其全局指数稳定的充分条件。此外,当该切换系统存在不稳定的子系统时我们还设计了使其渐近稳定的切换信号。
     (3)我们对一类具有三角结构的连续切换系统的稳定性和吸引域的估计进行了讨论,先给出这类连续切换系统在任意切换下全局渐近稳定的充分条件,然后给出了该切换系统吸引域的估计,并把这些估计应用到几个具体的例子中。
     (4)我们研究了一类具有三角结构的离散切换系统的稳定性和吸引域估计,先给出这类离散切换系统在任意切换下全局渐近稳定性的一般结果,接着对该离散切换系统的全局渐近稳定性又给出了更易于验证的充分条件,最后对该离散切换系统的吸引域进行了讨论,给出了其吸引域的估计,并用具体的例子进行了说明。
Switched systems are an important class of hybrid systems, which consist of several subsystems (continuous-time subsystems or discrete-time subsystems or continuous-time and discrete-time subsystems) and a rule that orchestrates the switching among them. In the last four decades a study of switched systems has received much attention due to signaficance in theory and broad practical applications, and it is one of hotspot of research of control science at all times.
     In this dissertation we study optimal control, stability and estimates of the region of attraction of switched sytems. The main contributions are as follows.
     (1) In this dissertation we propose a new embedding approach to investigate the optimal control problem of the switched system with m modes. By means of the new embedding approach the switched systesm is embedded into a new larger family of systems and the corresponding optimal control problem is formulated for the new embedded system, and we directly use the Lyapunov theorem to prove the following key result: the set of trajectories of the switched system with m modes is dense in the set of trajectories of the embedded system. Based on the above key result we obtain optimal solutions and suboptimal solutions of the optimal control problem of the switched system with m modes by studying the embedded optimal control problem.
     (2)We study stability and stabilization of a new type of switched systems (switched systems with continuous-time and discrete-time subsystems) proposed in the literature. Up to now, for stability of such type of nonlinear switched systems there are not any available results. Therefore for a specific class of switched systems composed of continuous-time nonlinear subsystems and discrete-time uncertain subsystems we give an estimation of state of this class of switched systems, and from the estimation we present sufficient conditions for global exponential stability. Moreover, when there are unstable subsystems in this class of switched systems, we obtain some results on stabilization of this class of switched systems.
     (3)Stability and estimates of the region of attraction of a class of continuous-time switched systems with triangular forms are addressed. We first give sufficient conditions for global asymptotic stability under arbitrary switching signals of switched systems with triangular forms, and then we estimate the region of attraction of switched systems with triangular forms. Various examples are presented to illustrate these estimates.
     (4)Stability and estimates of the region of attraction of a class of discrete-time switched systems with triangular forms are also studied. We first give a result on global asymptotic stability of switched systems under arbitrary switching signals with triangular forms, on the basis of the result we also present suffiecient conditions which are easily checked for its global asymptotic stability under arbitrary switching signals, and then we estimate the region of attraction of this class of switched systems with triangular forms. Some examples are presented to illustrate these estimates.
引文
[1]郑钢,谭民,宋永华.混杂系统的研究进展.控制与决策, 2004, 19 (1): 7-11
    [2] Witsenhausen H.S. A class of hybrid-state continuous-time dynamic systems. IEEE Transactions on Automatic Control, 1966, 11(6):665-683
    [3] Grossman R.L., Nerode A. and Ravn A.P., et al. Hybrid Systems. Lecture Notes in Computer Science, Springer-Verlag, 1993, 736:1-474
    [4] Antsaklis P.J., Kohn W., Nerode A., Sastry S., et al. Hybrid Systems II. Lecture Notes in Computer Science, Springer-Verlag, 1995, 999:1-552
    [5] Alur R., Henzinger T.A., Sontog E.D. Hybrid Systems III: Verification and Control. Lecture Notes in Computer Science, Springer-Verlag, 1996, 1066:1-604
    [6] Antsaklis P. J., Kohn W., Nerode A. and Sastry S., et al. Hybrid Systems IV. Lecture Notes in Computer Science, Springer-Verlag, 1997, 1273:1-404
    [7] Antsaklis P.J., Kohn W., Lemmon M., Nerode A. , Sastry S., et al. Hybrid Systems V. Lecture Notes in Computer Science, Springer-Verlag, 1999, 1567:1-445
    [8] Antsaklis P.J. , Nerode A. (Guest Editors). Special Issue on Hybrid Systems. IEEE Transactions on Automatic Control, 1998, 43 (4): 455-579
    [9] Morse A., Pantelides C., Sastry S. and Schumacher J. (Guest Editors). Special Issue on Hybrid Systems. Automatica, 1999, 35 (3): 347-535
    [10] Evans R., Savkin A.V. (Guest Editors). Special Issue on Hybrid Systems. System & Control Letters, 1999, 38 (3): 139-207
    [11] Johansen T.A., Molengraft R.V., Nijmeijer H. (Guest Editors). Special Issue on Switched Systems, Piecewise and Polytopic Linear Systems. International Journal of Control, 2002, 75 (16-17): 1241-1434
    [12] Henzinger T.A., Sastry S. Proceedings of Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, Vol. 1386, Springer-Verlag, 1998
    [13] Decarlo R.A., Branicky M.S., Pettersson S., Lennartson B. Perspectives andResults on the Stability and Stabilizability of Hybrid Systems. Proceedings of the IEEE, 2000, 88(7): 1069-1082
    [14] Michel A.N., Bo Hu. Towards a stability theory of general hybrid systems. Automatica, 1999, 35(3):371-384
    [15] Branicky M.S. Stability of hybrid systems: state of the art. Proceedings of the 36th Conference on Decision and Control, 1997, 1: 120-125
    [16] Demenico M., Giancarlo F.T., Manfred M. Stability and stabilization of piecewise affine and hybrid systems: An LMI approach. Proceedings of the 39th IEEE Conference on Decision and Control,Sydney, NSW, 2000, 1:504-509
    [17] Ezzine J., Haddad A.H. Controllability and observability of hybrid systems. International Journal of Control, 1989, 49(6): 2045-2055
    [18] Bemporad A., Ferri-Trecate G. and Morari M. Observability and controllability of piecewise affine and hybrid systems. IEEE Transactions on Automatic Control, 2000, 45(10):1864-1867
    [19] Pettersson S. Analysis and Design of Hybrid Systems. Sweden: PHD Thesis, Chalmers University of Technology, Goteborg, 1999
    [20] Pettersson S., Lennartson B. Stability and robustness for hybrid systems. Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Jpn, 1996, (2): 1202-1207
    [21] Brockett R.W. Asymptotic stability and feedback stabilization, Differential Geometric Control Theory. Boston: Birkhauser, 1983, 181-191
    [22] Kolmanovsky I.V., McClamroch N.H. Developments in nonholonomic control problems. IEEE Control Systems Magazine, 1995, 15(6): 20-36
    [23] Chase C., Serrano J., Ramadge P. J. Periodicity and chaos from switched flow systems: Contrasting examples of discretely controlled continuous systems. IEEE Transactions on Automatic Control, 1993, 38(1):70-83
    [24] Skafindas S., Evans R. J., Savkin A.V. and Petersen I.R. Stability results forswitched controller systems. Automatica, 1999, 35(4): 553-564
    [25] Morse A.S. Supervisory control of families of linear set-point controllers-part 1: Exact Matching. IEEE Transactions on Automatic Control, 1996, 41(10):1413-1431
    [26] Morse A.S. Supervisory control of families of linear set-point controllers-part 2: Robustness. IEEE Transactions on Automatic Control, 1997, 42(11):1500-1515
    [27] Alur R.,Courcoubetis C., Halbwachs N., et al. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 1995, 138(1): 3-34
    [28] Yang X.S., Li Q.D. Horseshoes in a new switching circuit via Wien-Bridge oscillator. International Journal of Bifurcation and Chaos, 2005, 15(7): 2271-2275
    [29]蔡自兴.机器人学.北京:清华大学出版社,2000
    [30] Shtessel Y.B., Raznopolov O.A., Ozerov L.A. Control of multiple modular dc-to-dc power converts in conventional and dynamic sliding surfaces. IEEE Transactions on Circuits and Systems, 1998, 45(10): 1091-1100
    [31] Szentirmai G., Temes Gabor C. Switched-capacitor building blocks. IEEE Transactions on Circuits and Systems, 1980, 27(6): 492-501
    [32] Gollu A., Varaiya P.P. Hybrid Dynamic Systems. Proceedings of the 28th Conference on Decision and Control, Florida, USA, 1989, 3: 2708-2712
    [33] Zhai G.S., Lin H., Michel A.N., and Yasuda K. Stability Analysis for Switched systems with Continuous-Time and Discrete-Time Subsystems. Proceedings of the 2004 American Control Conference, Boston, Massachusetts, USA, 2004, 5: 4555-4560
    [34] Yang X.S., Li Q.D. Chaotic attractors in a simple hybrid system. International Journal of Bifurcation and Chaos, 2002, 12(10): 2255-2256
    [35] Liberzon D., Morse A.S. Basic problems in stability and design of switched systems. IEEE Control Systems Magazine, 1999, 19(5): 59-70
    [36] Narendra K.S., Balakrishnan J. Common Lyapunov functions for stable LTIsystems with commuting A-matrices. IEEE Transactions on Automatic Control, 1994, 39(12): 2469-2471
    [37] Liberzon D., Hespanha J.P., Morse A.S. Stability of switched systems: A Lie-algebra condition. Systems and Control Letters, 1999, 37(3): 117-122
    [38] Agrachev A.A., Liberzon D. Lie-algebraic stability criteria for switched systems. SIAM Journal on Control and Optimization, 2002, 40(1): 253-269
    [39] Mancilla-Aguilar J.L. Condition for the stability of switched nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(11): 2077-2079
    [40] Margaliot M., Liberzon D. Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions. Systems and Control Letters, 2006, 55(1): 8-16
    [41] Sasane A. Stability of switching infinite-dimensional systems. Automatica, 2005, 41(1): 75-78
    [42] Hespanha J.P., Morse A.S. Stability of switched systems with average dwell-time. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 1999, 3:2655-2660
    [43] Hu Bo, Xu X.P., Michael A.N., Antsaklis P.J. Stability analysis for a class of nonlinear switched systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 1999, 5:4374-4379
    [44] Zhai G.S., Hu Bo, Yasuda K., Michal A.N. Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach. International Journal of Systems Science, 2002, 32(8): 1055-1061
    [45] Zhai G.S., Hu Bo, Yasuda K., Michal A.N. Qualitative analysis of discrete-time switched systems. Proceedings of the American Control Conference, Anchorage, AK, US, 2002, 3: 1880-1885
    [46] Peleties P.A., Decarlo R.A. Asymptotic stability of m-switched systems using Lyapunov-like functions. Proceedings of the American Control Conference, Boston, MA, 1991, 2:1679-1684
    [47] Peleties P.A. Modeling and design of interacting continuous-time/discrete event systems. PHD. Dissertation, School of Electrical Engineering, Purdue University, West Lafayette, IN, Dec.1992
    [48] Chatterjee D., Liberzon D. Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions. SIAM Journal on Control and Optimization, 2006, 45(1): 174-206
    [49] Wicks M.A., Peleties P.A., Decarlo R.A. Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. European Journal of Control, 1998,4:140-147
    [50] Wicks M.A., Peleties P.A., Decarlo R.A. Construction of piecewise Lyapunov functions for stabilizing switched systems. Proceedings of the 33th IEEE Conference on Decision and Control, Lake Buena Vista, FL,USA, 1994, 4: 3492-3497
    [51] Ferron E. Quadratic stabilizability of switched systems via state and output feedback. SIAM Journal on Control and Optimization, submitted (Technical Report CICS-P-468, MIT, 1996)
    [52] Zhai G.S. Quadratic stabilizability of discrete-time switched systems via state and output feedback. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, 2001, 3: 2165-2166
    [53] Cheng D.Z. Stabilization of planar switching systems. Systems and Control Letters, 2004, 51(2):79-88
    [54] Zhao J., Spong M.W. Hybrid Control for global stabilization of the cart-pendulum systems. Automatica, 2001, 37(12):1941-1951
    [55] Branicky M.S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4):475-482
    [56] Hespanha J.P. Uniform stability of switched linear systems: Extensions of Lasell’s invariance principle. IEEE Transactions on Automatic Control, 2004,49(4):470-482
    [57] Caines P.E., Zhang J. On the adaptive control of jump parameter systems via nonlinear filtering. SIAM Journal on Control and Optimization, 1995, 33(6): 1758-1777
    [58] Cheng D.Z., Guo L., Lin Y., et al. Stabilization of switched linear systems. IEEE Transactions on Automatic Control, 2005, 50(8):1224-1228
    [59] Cohen N., Lewkowicz I. and Rodman L. Exponential stability of triangular differential inclusion systems. Systems and Control Letters, 1997, 30(4): 159-164
    [60] Li Z.G., Wen Z.Y., Soh Y.C. Observer-based stabilization of switched linear systems. Automatica, 2003, 39(3): 517-524
    [61]王仁明,关治洪,刘新芝.一类非线性切换系统的稳定性分析.系统工程和电子技术, 2004, 26(1): 68-71
    [62]张霄力,刘玉忠,赵军.一类离散切换系统的渐进稳定.控制理论与应用, 2002, 19(5): 774-776
    [63]刘玉忠,赵军.一类非线性开关系统二次稳定性的充分必要条件.自动化学报, 2002, 28(4): 596-600
    [64]孙文安,赵军.凸锥型不确定线性切换系统的二次镇定.控制理论与应用, 2005, 22(5): 790-793
    [65]瞿长连,何苇,吴智铭.切换系统的稳定性及镇定控制器设计.信息与控制, 2000, 29(1):21-26
    [66]谢广明,郑大钟.线性切换系统基于范数的系统镇定条件及算法.自动化学报, 2001, 27(1):115-119
    [67] Sun Y.G., Wang L., Xie G.M. Necessary and sufficient conditions for stabilization of discrete-time planar switched systems. Nonlinear Analysis, 2006, 65(5): 1039-1049
    [68]宗广灯,武玉强.一类离散时间切换系统的鲁棒控制器设计.控制与决策, 2004,19(6): 663-670
    [69]从屾,费吉庆,费树岷.二维切换系统指数镇定问题研究.控制与决策, 2006, 21(10): 1177-1180
    [70]卢建宁,张彦虎,赵光宙.离散时滞切换系统的无记忆状态反馈镇定.控制与决策,2006,21(8): 941-944
    [71]陈松林,姚郁.一类离散时间线性切换系统的二次鲁棒镇定.信息与控制, 2005, 34(4): 393-397
    [72]高立群,景丽.线性切换系统经周期切换渐近稳定性研究.控制与决策, 2005, 20(5): 541-544
    [73]林相泽,田玉平.切换系统的不变性原理与不变集的状态反馈镇定.控制与决策, 2005, 20(2): 127-131
    [74]朱礼营,王玉振.切换耗散Hamilton系统的稳定性研究.中国科学E辑信息科学, 2006, 36(6): 617-630
    [75]高军伟,叶阳东,蒋秋华,史天运,贾利民.焦炉加热智能控制系统的研究与应用.信息与控制, 2003, 31(1): 86-91
    [76]程代展,郭宇骞.切换系统进展.控制理论与应用, 2005, 12(6): 954-960
    [77]杨振宇.递阶混合动态系统.博士论文,北京航天航空大学,1997
    [78] Soh C.B. Controllability and observability of periodic hybrid interval systems. International Journal of Systems Science, 2000, 31(12): 1563-1571
    [79]谢广明,郑大钟.一类混合动态系统的能控性和能观性研究.控制理论与应用, 2002, 19(1): 139-142
    [80] Xie G. M., Wang L. Controllability and stabilizability of switched linear systems. Systems and Control Letters, 2003, 48(2): 135-155
    [81] Xie G.M., Wang L. Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE Transactions on Automatic Control, 2004, 49(6):960-966
    [82] Ge S.S., Sun Z.D., Lee T.H. Reachability and controllability of switched linear discrete-time systems. IEEE Transactions on Automatic Control, 2001,46(9):1437-1441
    [83] Hedlund S., Rantzer A. Optimal control of hybrid systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AR, USA, 1999, 4: 3972-3977
    [84] Hedlund S., Rantzer A. Convex dynamical programming for hybrid systems. IEEE Transactions on Automatic Control, 2002, 47(9):1536-1540
    [85] Bemporad A., Morari M. Control of systems integrating logic, dynamics and constrains. Automatica, 1999, 35 (3): 407-427
    [86] Xu X.P., Antsaklis P.J. Optimal control of switched systems: new results and open problems. Proceedings of the American Control Conference, Chicago, IL, 2000, 4: 2683-2687
    [87] Xu X.P., Antsaklis P.J. A dynamic programming approach for optimal control of switched systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, 2: 1822-1827
    [88] Xu X.P., Antsaklis P.J. Results and perspective on computational methods for optimal control of switched systems. In Maler O. and Pnueli A. (Eds.), Hybrid systems; computation and control, HSCC,2003, Lecture Notes in Computer Science, Vol. 2623, Berlin: Springer, 2003: 540-555
    [89] Giua A., Seatzu C., Van Der Mee C. Optimal control of switched autonomous linear systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, 2001, 3: 2472-2477
    [90] Capuzzo Dolcetta I., Evans L.C. Optimal switching for ordinary differential equations. SIAM Journal on Control and optimization, 1984, 22(1): 143-161
    [91] Riedinger P., Kratz F., Lung C. , Zanne C. Linear quadratic optimization for hybrid systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AR, USA, 1999, 3: 3059-3064
    [92] Bengea S.C., Decarlo R. A. Optimal control of switching systems. Automatica2005, 41(1): 11-27
    [93] Bengea S.C., Decarlo R. A. Optimal and suboptimal control of switched systems. Proceedings of the 42th IEEE Conference on Decision and Control, Maui, HI, 2003, 5: 5295-5300
    [94] Bengea S.C., Decarlo R. A. Optimal Control of two-switched linear systems. Control Engineering and Applied Informatics, 2003, 5 :11-16
    [95] Cassandras, C.G., Pepyne, D.L., Wardi, Y. Optimal control of a class of hybrid systems. IEEE Transactions on Automatic Control, 2001, 46(3): 398-415
    [96] Riedinger P., Zanne C., Kratz F. Time optimal control of hybrid systems. Proceedings of the American Control Conference, SanDiego, CA, 1999, 4: 2466-2470
    [97] Borreli F., Baotic M., Bemporad A., Morari M. Dynamical programming for constrained optimal control of discrete-time linear hybrid systems. Auatomatica, 2005, 41 (10): 1709-1721
    [98] Sussmann H. J. A nonsmooth hybrid maximum principle. Lecture Notes in Control and Information Science, Vol. 246, London: Springer-Verlag, 1999:325-354
    [99] Seidman T.I. Optimal control for switching systems. Proceedings of the 21st annual Conference on information science and systems, Baltimore, MD, 1987, 485-489
    [100] Sussmann H.J. A maximum principle for hybrid optimal control problems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AR, USA, 1999, 1: 425-430
    [101] Berkovitz, L.D. Optimal control theory. New-York: Springer, 1974
    [102] Gamkrelidze, R.V. Principles of optimal control theory. New-York: Plenum Press, 1978
    [103] Lamberto Cesari. Optimization Theory and Applications: Problems with Ordinary Differential Equations. New York: Springer-Verlag, 1983
    [104] Zhai G.S., Liu D.R., J. Imae, Kobayashi T. Lie Algebraic Stability Analysis forSwitched systems with Continuous-Time and Discrete-Time subsystems. IEEE Transactions on Automatic Control, 2006, 53(2): 152-156
    [105] Zhai G.S., Xu X.P., Lin Hai, Liu D.R. An Extension of Lie Algebraic Stability Analysis for switched systems with Continuous-Time and Discrete-Time subsystems. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, 2006: 362-367
    [106] Hu Bo, Xu X.P., Michel A.N., Antsaklis P.J. Stability Analysis for a class of nonlinear switched systems. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizon, USA, 1999, 5: 4374-4379
    [107] Margolis S.G.., Vogt W.G. Control Engineering Applications of V.I. Zubov’s Construction Procedure for Lyapunov functions. IEEE Transactions on Automatic Control, 1963, 8(2): 104-113
    [108] Kormanik L., Li C.C. Decision Surface Estimate of Nonlinear System Stability Domain by Lie Series Method. IEEE Transactions on Automatic Control, 1972, 17(5): 666-669
    [109] Seibert P., Suarez R. Global stabilization of nonlinear cascade systems. Systems and Control Letters, 1990, 14(4): 347-352
    [110] Lin Y., E.D.Sontag, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM Journal on Control and Optimization, 1996, 34(1): 124-160
    [111] Mancilla-Aguilar J.L. A converse Lyapunov theorem for nonlinear switched systems. Systems and Control Letters, 2000, 41(1): 67-71
    [112] Mancilla-Aguilar J.L., Garcia R.A. On converse Lyapunov theorem for ISS and iISS switched nonlinear systems. Systems and Control Letters, 2001, 42(1): 47-53
    [113] Alberto Isidori. Nonlinear Control Systems. Springer-Verlag, London, 1999
    [114] Barnett S., Cameron R.G. Introduction to Mathematical Control Theory. Clarendon Press, Oxford, 1985
    [115] Yang X.S. Existence of unbounded solutions of time varying systems and failure ofglobal asymptotic stability in discrete-time cascade systems. Journal of Mathematical Control and Information, 2005, 22: 80-87
    [116] Zhai G. S., Lin H., Xu X. P., Joe Imae and Tomoaki K. Analysis of switched normal discret-time systems. Nonlinear analysis: Theory, Methods and Applications, 2007, 66(8): 1788-1799
    [117] Iggidr A., Bensoubaya M. New results on the stability of Discrete-time Systems and Applications to Control problems. Journal of Mathematical Analysis and Applications, 1988, 219(2): 392-414

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700