用户名: 密码: 验证码:
多智能体机器人协调控制研究及稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多智能体机器人的集合运动问题引起了不同领域研究人员的极大兴趣。从物理学,生物学到计算机科学,再到控制科学,科学家们试图弄明白,自主运动的生物体,比如鸟群,鱼群,细菌群,人群,或人造自主移动智能体,如何能够在没有集中协调的情况下,通过局部的协调聚集成编队。这主要是由于多智能体机器人系统在无人机协调控制、多机器人编队控制、多智能体群集运动、分布式传感器网络、人造卫星群位姿调整及通信网络拥塞控制等领域的广泛应用。
     本文主要研究了多智能体机器人的群集运动控制,多智能体机器人的一致性问题,多机器人编队的非线性模型。具体内容如下:
     对具有二次积分动态模型的智能群体跟随领航者取得群集运动编队进行了研究。通过建立智能群体相互作用或通信的图论模型,提出了一类控制规则,使智能群体跟随领航者取得群集运动。在固定和动态的网络拓扑,分别运用传统的Lyapunov稳定性理论及非平滑分析理论进行了稳定性分析。
     对具有二次积分动态的智能群体,在有向网络取得群集运动进行了研究。提出了一个分散控制方法对智能群体进行分散控制。理论分析显示,有向图的弱连通性及一种称为平衡图的有向图在系统的稳定性分析中扮演着关键角色。
     对具有质点动态模型的智能群体在高维空间取得群集运动进行了研究。基于智能群体两个不同的中心(质心及重心)提出了4个不同的控制规则使智能群体取得群集运动编队。前2个控制规则是基于智能群体的质心,其余2个则基于智能群体的几何中心。引入了光滑的邻接矩阵及光滑的势场函数来克服理论分析的困难。在某种合理的假设下,得以从理论上建立系统的稳定性,即:聚集、避免碰撞、速度匹配。
     提出了加权平均一致性的新概念。首先,对多智能体无向动态网络取得全局加权平均一致性问题进行了研究,提出了线性和非线性分布式协调控制规则以使多智能体系统取得加权平均一致性。其次,对多智能体有向网络的一致性问题进行了研究。基于一类分散协调控制器使多智能体网络在固定和切换的网络拓扑取得全局渐近加权平均一致性。从理论上证明了有向网络的强连通性及一类称为平衡图的有向图在解决加权平均一致性问题中扮演着关键角色。
     对Vicsek模型进行了进一步的讨论。首先,对多智能体有向网络取得渐近一致性进行了研究。提出了多智能体协调的新规则——N近邻规则,基于N——近邻规则,应用分布式控制器使得多智能体网络取得渐近一致性。其次,基于简化的Vicsek模型,对自主移动多机器人的集合运动进行了研究。给出了自主移动多机器人基于最近邻规则在有向网络的集合动态行为的一个定性分析。提出了多机器人运动方向收敛到同一方向的一个充分必要图条件。互连图有一个全局可达的结点在系统的收敛性分析中扮演着关键角色。进一步,如果该全局可达的结点没有邻接成员,则作为特殊情形,该结点充当着群组的领航者。
     对多机器人编队的一个非线性模型进行了研究。提出了一种非线性滑模控制器,协调一组非完整移动机器人以取得合乎要求的编队。在合理的假设下,从理论上证明了存在有界干扰情形下机器人编队的渐近稳定性,即所提出的滑模控制器使得相对距离误差、方位角误差及运动方向误差渐近稳定。
The problem of collective motion of multi-agent robots attracts attention of the scientists from different research fields. From physics, biology, computer science to control science, scientists try to understand how a group of moving creatures such as flocks of birds, schools of fish, colonies of bacteria, crowds of people, or man-made mobile autonomous agents, can cluster in formations only by local cooperative rule without centralized coordination. This is mainly due to broad applications of multi-agent robots systems in many areas including cooperative control of unmanned air vehicles (UAVs), formation control of multi-robot, flocking of multi-agent robots, distributed sensor networks, attitude alignment of clusters of satellites, and congestion control in communication networks.
     This thesis mainly investigates flocking motion control of multi-agent robots, consensus problem of multi-agent robots and a nonlinear model for multi-robot formations. Details are as follows:
     The multiple mobile agents with double integrator dynamics followed by a leader to achieve flocking motion formation is studied. We model the interaction and/or communication relationship between agents by algebraic graph theory. A class of control laws for a group of mobile agents is proposed. Stability analysis is achieved by using classical Lyapunov theory in fixed network topology, differential inclusions and nonsmooth analysis in switching network topology respectively.
     Flock with double integrator dynamics to achieve flocking motion formation in directed networks is studied. A class of decentralized control laws for a flock of mobile agents is proposed. Theoretical analysis show that the weakly connectedness of directed graph and a class of directed graphs, called balanced graphs, play a crucial role in stability analysis.
     A novel procedure is presented for control and analysis of multiple autonomous agents with point mass dynamics achieving flocking motion in high-dimensional space. Four distributed control laws are proposed for a group of autonomous agents to achieve flocking formations related to two different centers (mass center and geometric center) of the flock. The first two control laws are designed for flocking motion guided at mass center and the others for geometric center. Smooth adjacency matrix and smooth potential function are introduced to overcome the difficulties in theoretical analysis. Under some reasonable assumptions, theoretical analysis is established to indicate the stability (cohesiveness, collision avoidance and velocity matching) of the control systems.
     A new notion, called weighted average-consensus, is proposed. Firstly, multi-agent achieving global weighted average-consensus in undirected dynamic networks is studied, linear and nonlinear distributed cooperative control laws are proposed for multi-agent systems to achieve weighted average-consensus. Secondly, the consensus problem in directed networks of multi-agent is studied. A class of distributed controller is applied to achieve global asymptotically weighted average-consensus in networks of multi-agent with fixed and switching topology. It is proved theoretically that the strongly connectedness of directed graph and a class of directed graphs, called balanced graphs, play a crucial role in solving weighted average-consensus problems.
     Vicsek's model is further discussed. Firstly, multi-agent achieving consensus asymptotically in directed dynamic networks is studied. A new rule, N-nearest neighbors rule, is proposed for multi-agent coordination. Based on N-nearest neighbors rule, a class of distributed controllers is applied for multi-agent networks to reach consensus asymptotically. Secondly, based on simplified Vicsek's model, coordinated collective motion of groups of autonomous mobile robots is studied. A qualitative analysis for the collective dynamics of multiple autonomous robots with directed interconnected topology using nearest neighbor rules is given. A necessary and sufficient graphical condition is proposed to guarantee that the headings of all robots converge to the same heading. The graph having a globally reachable node plays a crucial role in convergence analysis. Furthermore, we show that the globally reachable node having no neighbors serves as a group leader as a special case.
     A nonlinear model for multi-robot formations is studied. A nonlinear sliding mode controller is proposed to coordinate a group of nonholonomic mobile robots such that a desired formation can be achieved. We prove theoretically that under certain reasonable assumptions the formation is asymptotically stable even with bounded disturbances; that is, the proposed sliding mode controller can asymptotically stabilize the errors in relative distance, relative bearing and heading direction, respectively.
引文
[1] Maes P. Modeling adaptive autonomous agents. Artif. Life, 1994, 1(1-2): 135-162
    [2] Burgard W, Moors M, Fox D, et al. Collaborative multi-robot exploration. in: Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA: Institute of Electrical and Electronics Engineers Inc., 2000, 476-481
    [3] Cao Y U, Fukunaga A S, Kahng A B. Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 1997, 4(1):7-27
    [4] Dudek G, Jenkin M R M, Milios E, et al. A taxonomy for multi-agent robotics. Autonomous Robots, 1996, 3(4):375-397
    [5] Russell S J, Norvig P. Artificial intelligence : a modern approach, 2nd ed. Prentice Hall series in artificial intelligence. Upper Saddle River, N.J.: Prentice Hall, 2003
    [6] Russell S J, Norvig P. Artificial intelligence : a modern approach. Englewood Cliffs, N.J.: Prentice Hall, 1994
    [7] Liu J,靳小龙,张世武,等.多智能体模型与实验.北京:清华大学出版社,2003
    
    [8] Matsumoto A, Asama H, Ishida Y, et al. Communication in the autonomous and decentralized robot system ACTRESS. in: Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, Ibaraki, Japan: Institute of Electrical and Electronics Engineers Inc., 1990, 835-40
    [9] Asama H, Habib M K, Endo I, et al. Functional distribution among multiple mobile robots in an autonomous and decentralized robot system. in: Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA: IEEE Comput. Soc. Press, 1991, 1921-6
    [10] Ishida Y, Asama H, Endo I, et al. Communication and cooperation in an autonomous and decentralized robot system. in: Proceedings of Distributed Intelligence Systems. Selected Papers from the IFAC Symposium, Arlington, VA, USA: Pergamon, 1992, 189-94
    [11] Ozaki K, Asama H, Ishida Y, et al. Synchronized motion by multiple mobile robots using communication. in: Proceedings of the IEEE/RS J International Conference on Intelligent Robots and Systems, Yokohama, Japan: Institute of Electrical and Electronics Engineers Inc., 1993, 1164-9
    [12] Asama H, Ozaki K, Ishida Y, et al. Collaborative team organization using communication in a decentralized robotic system. in: Proceedings of the IEEE/RS J/GI International Conference on Intelligent Robots and Systems, Munich, Germany: Institute of Electrical and Electronics Engineers Inc., 1994, 816-23
    [13] Ishida Y, Asama H, Tomita S, et al. Functional complement by cooperation of multiple autonomous robots. in: Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, USA: Institute of Electrical and Electronics Engineers Inc., 1994,2476-2481
    [14] Fukuda T, Nakagawa S, Kawauchi Y, et al. Structure decision method for self organising robots based on cell structures - CEBOT. in: Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA: Institute of Electrical and Electronics Engineers Inc., 1989, 695-700
    [15] Fukuda T, Buss M, Hosokai H, et al. Cell Structured Robotic System CEBOT. Control, planning and communication methods. Robotics and Autonomous Systems, 1991, 7(2-3):239-248
    [16] Kawauchi Y, Inaba M, Fukuda T. Principle of distributed decision making of Cellular Robotic System(CEBOT). in: Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA: Institute of Electrical and Electronics Engineers Inc., 1993, 833-838
    [17] Jin K, Liang P, Beni G. Stability of synchronized distributed control of discrete swarm structures. in: Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, USA: Institute of Electrical and Electronics Engineers Inc., 1994, 1033-1038
    [18] Wang Y, Tan D, Huang S. MRCAS: a multi-agent based implementation of multi-robot cooperative assembly system. in: Proceedings of the 3rd Asian Conference on Robotics and its Applications, Tokyo, Japan: Japan Robot Assoc, 1997, 97-102
    [19] Arkin R C. Behavior-based robotics. Intelligent robots and autonomous agents. Cambridge, Mass: MIT Press, 1998
    [20] Vicsek T. A question of scale. Nature, 2001, 411(6836):421-421
    [21] Low D J. Following the crowd. Nature, 2000, 407(6803):465-466
    [22] Coleman R A, Underwood A J, Chapman M G. Absence of costs of foraging excursions in relation to limpet aggregation. Journal of Animal Ecology, 2004, 73(3):577-584
    [23] Underwood N, Anderson K, Inouye B D. Induced vs. constitutive resistance and the spatial distribution of insect herbivores among plants. Ecology, 2005, 86(3):594-602
    [24] Reynolds C W. Flocks, herds and schools: a distributed behavioural model. Computer Graphics (ACM), 1987, 21(4):25-34
    [25] Reynolds C W. Flocks, herds and schools: a distributed behavioural model. in: Proceedings of the Conference held at Computer Graphics 87, London, UK: Online Publications, 1987,71-87
    [26] Deamer D. A giant step towards artificial life? Trends in Biotechnology, 2005, 23(7):336- 338
    [27] Toner J, Tu Y H. Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 1998, 58(4):4828-4858
    [28] Raymond J R, Evans M R. Flocking regimes in a simple lattice model. Physical Review E, 2006,73(3):036112
    [29] Tanner H G, Jadbabaie A, Pappas G J. Stable Flocking of Mobile Agents, Part I: Fixed Topology. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 2010-2015
    [30] Tanner H G, Jadbabaie A, Pappas G J. Stable Flocking of Mobile Agents Part II: Dynamic Topology. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 2016-2021
    [31] Godsil C D, Royle G. Algebraic graph theory. Graduate texts in mathematics ; 207. New York: Springer, 2001
    [32] Biggs N. Algebraic graph theory, 2nd. ed. Cambridge mathematical library. Cambridge: Cambridge University Press, 1993
    [33] Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems. IEEE Transactions on Automatic Control, 1994, 39(9):1910-1914
    [34] Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems. in: Proceedings of the IEEE Conference on Decision and Control, San Antonio, TX, USA: Institute of Electrical and Electronics Engineers Inc., 1993, 416-421
    [35] Paden B E, Sastry S S. Calculus for computing filippov's differential inclusion with application to the variable structure control of robot manipulators. Ieee Transactions on Circuits and Systems, 1987, 3(1):73-82
    [36] Paden B E, Sastry S S. Calculus for computing filippov's differential inclusion with application to the variable structure control of robot manipulators. in: Proceedings of the IEEE Conference on Decision and Control, Athens, Greece: Institute of Electrical and Electronics Engineers Inc., 1986, 578-582
    [37] Tanner H G. Flocking with obstacle avoidance in switching networks of interconnected vehicles. in: Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, United States: Institute of Electrical and Electronics Engineers Inc., Piscataway, United States, 2004, 3006-3011
    [38] Rimon E, Koditschek D E. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 1992, 8(5):501-518
    [39] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3):401-420
    [40] Olfati-Saber R, Murray R M. Flocking with Obstacle Avoidance: Cooperation with Limited Communication in Mobile Networks. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 2022-2028
    [41] Liu Y, Passino K M, Polycarpou M. Stability analysis of one-dimensional asynchronous swarms. IEEE Transactions on Automatic Control, 2003, 48(10): 1848-1854
    [42] Liu Y, Passino K M, Polycarpou M. Stability analysis of one-dimensional asynchronous mobile swarms. in: Proceedings of the IEEE Conference on Decision and Control, Orlando, FL: Institute of Electrical and Electronics Engineers Inc., 2001, 1077-1082
    [43] Liu Y, Passino K M, Polycarpou M. Stability analysis of one-dimensional asynchronous swarms. in: Proceedings of the American Control Conference, Arlington, VA: Institute of Electrical and Electronics Engineers Inc., 2001, 716-721
    [44] Gazi V, Passino K M. Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2005, 35 (4): 834-841
    [45] Gazi V, Passino K M. Stability of a one-dimensional discrete-time asynchronous swarm. in: Proceedings of the IEEE International Symposium on Intelligent Control, Mexico City: Institute of Electrical and Electronics Engineers Inc., 2001, 19-24
    [46] Liu Y, Passino K M, Polycarpou M. Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology. in: Proceedings of the American Control Conference, Anchorage, AK, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 1278-1283
    [47] Liu Y, Passino K M, Polycarpou M M. Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology. IEEE Transactions on Automatic Control, 2003,48(1):76-95
    [48] Gazi V, Passino K M. Stability analysis of swarms. IEEE Transactions on Automatic Control, 2003, 48(4):692-697
    [49] Gazi V, Passino K M. Stability analysis of swarms. in: Proceedings of the American Control Conference, Anchorage, AK, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 1813-1818
    [50] Gazi V, Passino K M. A class of attraction/repulsion functions for stable swarm aggregations. in: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 2842-2847
    [51] Gazi V, Passino K M. Stability analysis of social foraging swarms. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2004, 34(1):539-557
    [52] Gazi V, Passino K M. Stability analysis of swarms in an environment with an attrac-tant/repellent profile. in: Proceedings of the American Control Conference, Anchorage, AK, United States: Institute of Electrical and Electronics Engineers Inc., 2002,1819-1824
    [53] Gazi V, Passino K M. Stability analysis of social foraging swarms: Combined effects of attractant/repellent profiles. in: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 2848-2853
    [54] Liu Y, Passino K M. Stable social foraging swarms in a noisy environment. IEEE Transactions on Automatic Control, 2004, 49(1):30-44
    [55] Liu Y, Passino K M. Stability Analysis of Swarms in a Noisy Environment. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 3573-3578
    [56] Shi H, Wang L, Chu T, et al. Flocking control of multiple interactive dynamical agents with switching topology via local feedback. in: Proceedings of the 8th European Conference, Canterbury, UK: Springer-Verlag, 2005, 604-13
    [57] Shi H, Wang L, Chu T, et al. Flocking coordination of multiple mobile autonomous agents with asymmetric interactions and switching topology. in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., Canada: Institute of Electrical and Electronics Engineers Inc., 2005, 771-6
    [58] Wang L, Shi H, Chu T. Flocking control of groups of mobile autonomous agents via local feedback. in: Proceedings of IEEE International Symposium on Intelligent Control, Limassol, Cyprus: Institute of Electrical and Electronics Engineers Inc., 2005, 441-446
    [59] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature, 2000, 407(6803):487-490
    [60] Vicsek T, Czirok A, Benjacob E, et al. Novel Type of Phase-Transition in a System of Self-Driven Particles. Physical Review Letters, 1995, 75(6): 1226-1229
    [61] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6):988-1001
    [62] Bhatia R. Matrix analysis. Graduate texts in mathematics ; 169. New York; Hong Kong: Springer, 1997
    [63] Horn R A, Johnson C R. Topics in matrix analysis. Cambridge; New York: Cambridge University Press, 1991
    [64] Horn R A, Johnson C R. Matrix analysis. Cambridge; New York: Cambridge University Press, 1985
    [65] Moreau L. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 2005, 50(2): 169-182
    [66] Moreau L. Leaderless coordination via bidirectional and unidirectional time-dependent communication. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 3070-3075
    [67] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5):655-661
    [68] Ren W, Beard R W. Consensus of information under dynamically changing interaction topologies. in: Proceedings of the American Control Conference, Boston, MA, United States: Institute of Electrical and Electronics Engineers Inc., 2004, 4939-4944
    [69] Lin Z, Broucke M, Francis B. Local control strategies for groups of mobile autonomous agents. IEEE Transactions on Automatic Control, 2004, 49(4):622-629
    [70] Lin Z, Broucke M, Francis B. Local Control Strategies for Groups of Mobile Autonomous Agents. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 1006-1011
    [71] Lin Z, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127
    [72] Olfati-Saber R, Murray R M. Consensus Protocols for Networks of Dynamic Agents. in: Proceedings of the American Control Conference, Denver, CO, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 951-956
    [73] Olfati-Saber R, Murray R M. Agreement Problems in Networks with Directed Graphs and Switching Topology, in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003,4126-4132
    [74] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [75] Hatano Y, Mesbahi M. Agreement over random networks. IEEE Transactions on Automatic Control, 2005, 50(11):1867-1872
    [76] Hatano Y, Mesbahi M. Agreement over random networks. in: Proceedings of the IEEE Conference on Decision and Control, Nassau, Bahamas: Institute of Electrical and Electronics Engineers Inc., 2004, 2010-2015
    [77] McLain T W, Chandler P R, Rasmussen S, et al. Cooperative control of UAV rendezvous. in: Proceedings of the American Control Conference, Arlington, VA: Institute of Electrical and Electronics Engineers Inc., 2001, 2309-2314
    [78] Roy N, Dudek G. Collaborative robot exploration and rendezvous: algorithms, performance bounds and observations. Autonomous Robots, 2001, 11(2):117-36
    [79] Xiao L, Boyd S. Fast linear iterations for distributed averaging. Systems & Control Letters, 2004, 53(1):65-78
    [80] Xiao L, Boyd S. Fast Linear Iterations for Distributed Averaging. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 4997-5002
    [81] Smith S L, Broucke M E, Francis B A. A hierarchical cyclic pursuit scheme for vehicle networks. Automatica, 2005, 41(6): 1045-1053
    [82] Roy S, Saberi A, Herlugson K. A control-theoretic perspective on the design of distributed agreement protocols. in: Proceedings of the American Control Conference, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., 2005, 1672-1679
    [83] McCartney M, Glass D H. Comparing measures of agreement for agent attitudes. Intelligent Data Engineering and Automated Learning Ideal 2004, Proceedings, 2004, 3177:820-826
    [84] Ganapathy S, Passino K M. Agreement Strategies for Cooperative Control of Uninhabited Autonomous Vehicles. in: Proceedings of the American Control Conference, Denver, CO, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 1026-1031
    [85] Ren W, Beard R W, Atkins E M. A survey of consensus problems in multi-agent coordination. in: Proceedings of the American Control Conference, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., 2005, 1859-1864
    [86] Ren W, Beard R W, Kingston D B. Multi-agent kalman consensus with relative uncertainty. in: Proceedings of the American Control Conference, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., 2005, 1865-1870
    [87] Kingston D B, Ren W, Beard R W. Consensus algorithms are input-to-state stable. in: Proceedings of the American Control Conference, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., 2005, 1686-1690
    [88] Bokma A, Slade A, Kerridge S, et al. Engineering Large-Scale Agent-Based Systems with Consensus. Robotics and Computer-Integrated Manufacturing, 1994, 11(2):81—90
    [89] Olfati-Saber R. Ultrafast consensus in small-world networks. in: Proceedings of the American Control Conference, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., 2005, 2371-2378
    [90] Moreau L. Stability of continuous-time distributed consensus algorithms. in: Proceedings of the IEEE Conference on Decision and Control, Nassau, Bahamas: Institute of Electrical and Electronics Engineers Inc., 2004, 3998-4003
    
    [91] 谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,Springer,2005
    [92] Shiroma N, Matsumoto O, Tani K. Cooperative behavior of a mechanically unstable mobile robot for object transportation. JSME International Journal, Series C, 1999, 42(4):965-973
    [93] Kume Y, Hirata Y, Kosuge K, et al. Decentralized control of multiple mobile robots transporting a single object in coordination without using force/torque sensors. in: Proceedings of the IEEE International Conference on Robotics and Automation, Seoul: Institute of Electrical and Electronics Engineers Inc., 2001, 3004-3009
    [94] Hirata Y, Kosuge K, Asama H, et al. Coordinated transportation of a single object by multiple mobile robots without position information of each robot. in: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Takamatsu: Institute of Electrical and Electronics Engineers Inc., 2000, 2024-2029
    [95] Kosuge K, Oosumi T, Satou M, et al. Transportation of a single object by two decentralized-controlled nonholonomic mobile robots. in: Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium: Institute of Electrical and Electronics Engineers Inc., 1998, 2989-2994
    [96] Kosuge K, Sato M. Transportation of a single object by multiple decentralized-controlled nonholonomic mobile robots. in: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Kyongju, South Korea: Institute of Electrical and Electronics Engineers Inc., 1999, 1681-1686
    [97] Wang Z D, Takano Y, Hirata Y, et al. A pushing leader based decentralized control method for cooperative object transportation. in: Proceedings of the 2004 IEEE/RS J International Conference on Intelligent Robots and Systems, Sendai, Japan: Institute of Electrical and Electronics Engineers Inc., 2004, 1035-1040
    [98] Flint M, Fernandez-Gaucherand E, Polycarpou M. Cooperative Control for UAV's Searching Risky Environments for Targets. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 3567-3572
    [99] Flint M, Polycarpou M, Fernandez-Gaucherand E. Cooperative control for multiple autonomous UAV's searching for targets. in: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 2823-2828
    [100] Yang Y, Minai A A, Polycarpou M M. Decentralized cooperative search by networked UAVs in an uncertain environment. in: Proceedings of the American Control Conference, Boston, MA, United States: Institute of Electrical and Electronics Engineers Inc., 2004, 5558-5563
    [101] Sujit P B, Ghose D. Search using multiple UAVS with flight time constraints. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2):491-509
    [102] Sugihara K, Suzuki I. Distributed motion coordination of multiple mobile robots. in: Proceedings of the 5th IEEE International Symposium on Intelligent Control, Philadelphia, PA, USA: Institute of Electrical and Electronics Engineers Inc., 1990, 138-143
    [103] 陈卫东,董胜龙,席裕庚.基于开放式多智能体结构的分布式自主机器人系统.机器人,2001,23(1):45—50
    
    [104] Desai J P, Ostrowski J, Kumar V. Controlling formations of multiple mobile robots. in: Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium: Institute of Electrical and Electronics Engineers Inc., 1998, 2864-2869
    [105] Desai J P, Kumar V, Ostrowski J P. Control of changes in formation for a team of mobile robots. in: Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA: Institute of Electrical and Electronics Engineers Inc., 1999, 1556-1561
    [106] Desai J P, Ostrowski J P, Kumar V. Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 2001, 17(6):905-908
    [107] Wesselowski K, Fierro R. A Dual-Mode Model Predictive Controller for Robot Formations. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 3615-3620
    [108] Sanchez J, Fierro R. Sliding Mode Control for Robot Formations. in: Proceedings of the IEEE International Symposium on Intelligent Control, Houston, TX, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 438-443
    [109] Li X, Xiao J, Tan J. Modeling and controller design for multiple mobile robots formation control. in: Proceedings of the IEEE International Conference on Robotics and Biomimet-ics, Shenyang, China: Institute of Electrical and Electronics Engineers Inc., 2004, 838-843
    [110] Ogren P, Egersted M, Hu X. A control Lyapunov function approach to multi-agent coordination. in: Proceedings of the IEEE Conference on Decision and Control, Orlando, FL: Institute of Electrical and Electronics Engineers Inc., 2001, 1150-1155
    [111] Ogren P, Egerstedt M, Hu X. A control Lyapunov function approach to multiagent coordination. IEEE Transactions on Robotics and Automation, 2002, 18(5):847—851
    [112] Egerstedt M, Hu X. Formation constrained multi-agent control. in: Proceedings of the IEEE International Conference on Robotics and Automation, Seoul: Institute of Electrical and Electronics Engineers Inc., 2001, 3961-3966
    [113] Egerstedt M, Hu X. Formation constrained multi-agent control. IEEE Transactions on Robotics and Automation, 2001, 17(6):947-951
    [114] Yamaguchi H, Arai T, Beni G. A distributed control scheme for multiple robotic vehicles to make group formations. Robotics and Autonomous Systems, 2001, 36(4): 125-147
    [115] Yamaguchi H. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. Robotics and Autonomous Systems, 2003, 43(4):257-282
    [116] Yamaguchi H. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. in: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 2984-2991
    [117] Marshall J A, Broucke M E, Francis B A. Pursuit formations of unicycles. Automatica, 2006,42(1):3-12
    [118] Marshall J A, Broucke M E, Francis B A. Formations of vehicles in cyclic pursuit. IEEE Transactions on Automatic Control, 2004, 49(11): 1963-1974
    [119] Marshall J A, Broucke M E, Francis B A. Unicycles in cyclic pursuit. in: Proceedings of the American Control Conference, Boston, MA, United States: Institute of Electrical and Electronics Engineers Inc., 2004, 5344-5349
    [120] Marshall J A, Broucke M E, Francis B A. A Pursuit Strategy for Wheeled-vehicle Formations. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 2555-2560
    [121] Marshall J A, Fung T, Broucke M E, et al. Experiments in multirobot coordination. Robotics and Autonomous Systems, 2006, 54(3):265-275
    [122] Marshall J A, Fung T, Broucke M E, et al. Experimental validation of multi-vehicle coordination strategies. in: Proceedings of the American Control Conference, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., 2005, 1090-1095
    [123] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476
    [124] Lafferriere G, Williams A, Caughman J, et al. Decentralized control of vehicle formations. Systems & Control Letters, 2005, 54(9):899-910
    [125] Roy S, Saberi A. Static decentralized control of a single-integrator network with Marko-vian sensing topology. Automatica, 2005, 41(11): 1867-1877
    [126] Dunbar W B, Murray R M. Distributed receding horizon control for multi-vehicle formation stabilization. Automatica, 2006, 42(4):549-558
    [127] Leonard N E, Fiorelli E. Virtual leaders, artificial potentials and coordinated control of groups. in: Proceedings of the IEEE Conference on Decision and Control, Orlando, FL: Institute of Electrical and Electronics Engineers Inc., 2001, 2968-2973
    [128] Olfati-Saber R, Murray R M. Graph rigidity and distributed formation stabilization of multi-vehicle systems. in: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 2965-2971
    [129] Olfati-Saber R, Murray R M. Distributed structural stabilization and tracking for formations of dynamic multi-agents. in: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 209-215
    [130] McIsaac K A, Ren J, Huang X. Modifed Newton's Method Applied to Potential Field Navigation. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 5873-5878
    [131] Olfati-Saber R, Dunbar W B, Murray R M. Cooperative Control of Multi-Vehicle Systems Using Cost Graphs and Optimization. in: Proceedings of the American Control Conference, Denver, CO, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 2217-2222
    [132] Loizou S G, Tanner H G, Kumar V, et al. Closed Loop Navigation for Mobile Agents in Dynamic Environments. in: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 3769-3774
    [133] Ogren P, Fiorelli E, Leonard N E. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control, 2004, 49(8): 1292-1302
    [134] Dimarogonas D V, Loizou S G, Kyriakopoulos K J, et al. A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica, 2006, 42(2):229-243
    [135] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1):29-41
    [136] Stilwell D J, Bay J S. Toward the development of a material transport system using swarms of ant-like robots. in: Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA: Institute of Electrical and Electronics Engineers Inc., 1993,766-771
    [137] Brooks R A. Robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 1986, RA-2(1): 14-23
    [138] Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 1998, 14(6):926-939
    [139] Arai T, Pagello E, Parker L E. Guest editorial advances in multirobot systems. IEEE Transactions on Robotics and Automation, 2002, 18(5):655—661
    [140] Sang H, Wang S, Tan M, et al. Research on patrol algorithm of multiple behavior-based robot fishes. in: Proceedings of the International Offshore and Polar Engineering Conference, Toulon, France: International Society of Offshore and Polar Engineers, Cupertino, CA, USA, 2004, 295-301
    [141] Monteiro S, Bicho E. A dynamical systems approach to behavior-based formation control. in: Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, United States: Institute of Electrical and Electronics Engineers Inc., 2002,2606-2611
    [142] Su Z, Lu J. Formation feedback applied to behavior-based approach to formation keeping. Journal of Beijing Institute of Technology (English Edition), 2004, 13(2): 190-193
    [143] Siljak D D. Decentralized control of complex systems. Mathematics in science and engineering ; v. 184. Boston: Academic Press, 1991
    [144] Swaroop D, Hedrick J K. String stability of interconnected systems. IEEE Transactions on Automatic Control, 1996, 41(3):349-357
    [145] Zhang J, Yang Y, Zeng J. String stability of infinite interconnected systems. Applied Mathematics and Mechanics (English Edition), 2000, 21(7):791-796
    [146] Socha L. Stochastic stability of interconnected string systems. Chaos, Solitons and Fractals, 2004, 19(4):949-955
    [147] Wang J, Wu X B, Xu Z L. String stability of a class of interconnected nonlinear system from the input to state view. in: Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ, United States, 2005, 1208-1213
    [148] Pant A, Seiler P, Hedrick K. Mesh stability of look-ahead interconnected systems. IEEE Transactions on Automatic Control, 2002, 47(2):403-407
    [149] Zhang J, Pant A, Seiler P, et al. Comments on "Mesh stability of look-ahead interconnected systems" (multiple letter). IEEE Transactions on Automatic Control, 2004,49(5):858-860
    [150] Sontag E D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 1989, 34(4):435-443
    [151] Tanner H G. ISS properties of nonholonomic vehicles. Systems and Control Letters, 2004, 53(3-4):229-235
    [152] Tanner H G, Kumar V, Pappas G J. The effect of feedback and feedforward on formation ISS. in: Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 3448-3453
    [153]Tanner H G,Pappas G J,Kumar V.Leader-to-formation stability.IEEE Transactions on Robotics and Automation,2004,20(3):443-455
    [154]Tanner H G,Pappas G J,Kumar V.Input-to-state stability on formation graphs,in:Proceedings of the IEEE Conference on Decision and Control,Las Vegas,NV,United States:Institute of Electrical and Electronics Engineers Inc.,2002,2439-2444
    [155]Chen X,Serrani A.Remarks on ISS and formation control,in:Proceedings of the IEEE Conference on Decision and Control,Nassau,Bahamas:Institute of Electrical and Electronics Engineers Inc.,2004,177-182
    [156]林怡青,郑时雄.机器人群体合作的信念分析.机器人,2000,22(5):350-353
    [157]吴智政,席裕庚.一种基于理性原则的多机器人协调控制.自动化学报,2000,26(4):454-460
    [158]景兴建,王越超,等.理性遗传算法及其在多机器人运动协调中的应用.自动化学报,2002,28(6):955-961
    [159]王醒策,张汝波,顾国昌.多机器人动态编队的强化学习算法研究.计算机研究与发展,2003,40(10):1444-1450
    [160]韩学东,洪炳熔,等.多机器人任意队形分布式控制研究.机器人,2003,25(1):66-72
    [161]丁滢颍,何衍,蒋静坪.基于蚁群算法的多机器人协作策略.机器人,2003,25(5):414-418
    [162]韩逢庆,李红梅,李刚,等.一种改进的多机器人任意队形控制算法.机器人,2003,25(6):521-525
    [163]程代展,陈翰馥.从群集到社会行为控制.科技导报,2004,(8):4-7
    [164]景兴建,王越超,谈大龙.基于人工协调场的多移动机器人实时协调避碰规划.控制理论与应用,2004,21(5):757-764
    [165]周浦城,洪炳镕,王月海.动态环境下多机器人合作追捕研究.机器人,2005,27(4):289-300
    [166]张飞,陈卫东,席裕庚.多机器人协作探索的改进市场法.控制与决策,2005,20(5):516-524
    [167]程磊,俞辉,王永骥,等.融合路径跟踪模式的多移动机器人有序化群集运动控制.机器人,2006,28(2):97-102
    [168]贾秋玲,闫建国,王新民.基于势函数的多机器人系统的编队控制.机器人,2006,28(2):111-114
    [169]任燚,陈宗海.基于强化学习算法的多机器人系统的冲突消解策略.控制与决策,2006,21(4):430-434,439
    [170]卢骏,关治洪,王华.基于流函数的多移动机器人Swarming控制模型.机器人,2006,28(3):264-268,274
    [171] Merris R. Laplacian matrices of graphs: A survey. Linear Algebra and Its Applications, 1994, 197-98:143-176
    [172] Clarke F H, Industrial S, Mathematics. A. Optimization and nonsmooth analysis. Philadelphia: SIAM, 1990
    [173] Clarke F H. Nonsmooth analysis and control theory. Graduate texts in mathematics ; 178. New York: Springer, 1998
    [174] Olfati-Saber R. Flocking with obstacle avoidance. Technical Report CIT-CDS 03-006, Control and Dynamical Systems, California Institute of Technology, Pasadena, California, 2003
    [175] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. Technical Report CIT-CDS 04-005, Control and Dynamical Systems, California Institute of Technology, Pasadena, California, 2004
    [176] Chang D E, Shadden S C, Marsden J E, et al. Collision Avoidance for Multiple Agent Systems. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 539-543
    [177] Lynch N A. Distributed algorithms. Morgan Kaufmann series in data management systems. San Francisco, Calif.: Morgan Kaufmann Publishers, 1996
    [178] O'Brien D P. Analysis of the internal arrangement of individuals within crustacean aggregations (Euphausiacea, Mysidacea). Journal of Experimental Marine Biology and Ecology, 1989, 128(1): 1-30
    [179] Ben-Jacob E, Schochet O, Tenenbaum A, et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature, 1994, 368(6466):46
    [180] Savkin A V. Coordinated Collective Motion of Groups of Autonomous Mobile Robots: Analysis of Vicsek's Model. in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 2003, 3076-3077
    [181] Savkin AV. Coordinated collective motion of groups of autonomous mobile robots: Analysis of Vicsek's model. IEEE Transactions on Automatic Control, 2004, 49(6):981-983
    [182] Bang-Jensen J, Gutin G. Digraphs: theory, algorithms, and applications. Springer monographs in mathematics. London; Hong Kong: Springer, 2001
    [183] Healey A J. Application of formation control for multi-vehicle robotic minesweeping. in: Proceedings of the IEEE Conference on Decision and Control, Orlando, FL: Institute of Electrical and Electronics Engineers Inc., 2001, 1497-1502
    [184] Utkin V I. Sliding modes in control and optimization. Communications and control engineering series. Berlin: Springer-Verlag, 1992
    [185] Singh S N, Pachter M, Chandler P, et al. Input-output invertibility and sliding mode control for close formation flying of multiple UAVs. International Journal of Robust and Nonlinear Control, 2000, 10(10):779-797
    [186] Chwa D. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control Systems Technology, 2004, 12(4):637-644
    [187] Chwa D, Seo J H, Kim P, et al. Sliding mode tracking control of nonholonomic wheeled mobile robots. in: Proceedings of the American Control Conference, Anchorage, AK, United States: Institute of Electrical and Electronics Engineers Inc., 2002, 3991-3996
    [188] Lewis F L, Abdallah C T, Dawson D M. Control of robot manipulators. New York Toronto New York: Macmillan Pub. Co. ; Maxwell Macmillan Canada ; Maxwell Macmillan International, 1993
    [189] Lewis F L, Dawson D M, Abdallah C T, et al. Robot manipulator control : theory and practice, 2nd ed. New York: Marcel Dekker, 2004
    [190] Yang J M, Kim J H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and Automation, 1999, 15(3):578—587
    [191] Khalil H K. Nonlinear systems, 3rd ed. Upper Saddle River, N.J.: Prentice Hall, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700