用户名: 密码: 验证码:
分形理论的若干应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20多年来,分形几何理论及其应用发展迅速。分形几何理论主要研究在一定条件下,大量具有标度不变性、随机性等特性的复杂现象,现已应用到自然科学和社会科学的几乎所有领域。本文采用分形几何理论和Monte Carlo等方法相结合,从理论的角度来研究和认识分形物体的结构特点和输运性质。
     本文根据分形几何理论,首先研究了多孔介质的结构特点。提出了两个描述多孔介质孔隙空间分布的分形结构模型,并根据其构造方法,求出了周长、面积、孔隙度和比表面积,并在此基础上讨论了周长、面积、孔隙度和Menger海绵的比表面积随分形维数的变化规律,分析了模拟孔隙结构时对各参数的要求。此外,还提出了两个描述多孔介质的统一表达式,其结果与已有模型符合得很好。本文提出的这种方法,为模拟具有不同微结构、不同分维数和孔隙度的实际多孔介质提供了新的途径。
     本文还根据多孔介质里孔隙大小分布具有分形幂规律和具有随机性这些特点,采用分形几何理论和蒙特卡罗方法,分别推导了孔隙大小和渗透率的几率模型。以双弥散分形多孔介质为例,计算了其渗透率。所得渗透率的预测值与已有分析解和实验结果做了比较,得到了一致的结果。本文提出的这种模拟方法,可以用来研究(饱和或不饱和)多孔介质的其他输运性质(如热导率、弥散率、电导率和介电常数等)。
     接下来,本文根据粗糙表面微凸体(或凹坑)大小分布具有分形幂规律和表面粗糙具有自仿射特征这些特点,提出了一种具有分形特征的粗糙表面的蒙特卡罗模拟方法,并推导了用来产生表面形貌的基于随机数的微凸体大小几率模型。所提出的递推迭代方法能够模拟具有上述特征的粗糙表面。结果表明,表面拓扑结构的变化与粗糙表面轮廓的常数G和分形维数D有关。D值越大,或G值越小,意味着表面拓扑越平坦。本方法可用来预测粗糙表面的其它输运性质,如摩擦力、磨损、润滑、渗透率和热导率或电导率等。
     最后,本文在分形几何理论的基础上,提出了一个计算粗糙表面接触热导(TCC)的随机数模型。为了研究真空下接触界面的传热机理及其影响因素,本文从几何和力学两个方面入手展开研究。基于固体的弹塑性理论研究了塑性守恒条件下的表面粗糙度在法向载荷作用下的变形问题,推导了基于分形几何理论的接触热阻网络模型理论.通过对参数的研究发现,分形维数D和特征长度参数G对接触热导有着重要的影响。通过调整参数D和G,本文计算得到的接触热导与实验结果十分吻合。结果显示,在D和G取较大数值时,在已有模型中通常被忽略不计的基体电阻对接触热导的影响不可忽略。本文提出的方法和技巧,可进一步用来研究粗糙表面的其它输运性质。
Over the past two decades, fractal geometry theory, which describes the fractal features such as randomicity and scale-independence, etc, has been received much attention in a variety of sciences sand engineering subjects and has extensively been studied both theoretically and experimentally. In order to theoretically identify and recognize the fractal features of structures or patterns existing in nature, some models, methods and techniques have been developed.
     Firstly, the structural properties of porous media are investigated theoretically based on fractal geometry theory. Construction methods of two types of fractal structures (the Sierpinski carpet and the Menger sponge) are presented, and the expressions for the surface and volume of the structures are derived. Furthermore, two unified models for describing the fractal characters of porous media are derived. The results from the proposed unified models are found to be in good agreement with the available models. The present analysis allows for simulating real porous media with different microstructures and different fractal dimensions, porosity and specific surface area.
     Secondly, the permeability of porous media is simulated by Monte Carlo technique in this work. Based on the fractal character of pore size distribution in porous media, the probability models for pore diameter and for permeability are derived. Taking the bi-dispersed fractal porous media as examples, the permeability calculations are performed by the proposed Monte Carlo technique. The results show that the present simulations present a good agreement compared with the existing fractal analytical solution in the general interested porosity range. The proposed simulation method may have the potential in prediction of other transport properties (such as thermal conductivity, dispersion conductivity and electrical conductivity) in fractal porous media, both saturated and unsaturated.
     Thirdly, a new Monte Carlo method is presented for simulating rough surfaces with fractal behavior. The simulation is based on power-law size distribution of asperity diameter and self-affine property of roughness on surfaces. A probability model based on random number for asperity sizes is developed to generate the surfaces. By iteration, this method can be used to simulate surfaces that exhibit the aforementioned properties. The results indicate that the variation of the surface topography is related to the effects of scaling constant G and the fractal dimension D of the profile of rough surface. The larger value of D or smaller value of G signifies the smoother surface topography. This method may have the potential in prediction of the transport properties (such as friction, wear, lubrication, permeability, thermal and electrical conductivity, etc.) on rough surfaces.
     Finally, a random number model based on fractal geometry theory is developed to calculate the thermal contact conductance (TCC) of two rough surfaces in contact. This study is carried out by geometrical and mechanical investigations. The present parametric study reveals that the fractal parameters D and G have the important effects on TCC. The TCC by the proposed model is compared with the existing experiment data, and good agreement is observed by fitting parameters D and G. It is also shown that the effect of the bulk resistance on TCC, which is often neglected in existing models, should not be neglected for the relatively larger G and D. The present results show a better agreement with the practical situation than other models’.
引文
[1] Mandelbrot B B. The Fractal Geometry of Nature. San Francisco, Freeman, 1982
    [2]孙霞,吴自勤.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003, 29-51
    [3]徐淑平,李春明.分形图的生成算法研究.微机发展, 2005, 15(9): 4-6
    [4]张济忠.分形[M].北京:清华大学出版社,1995, 111-140
    [5] Hastings H M and Sugihara G. Fractals: a user's guide for the natural sciences. Oxford University Press, Oxford, England, 1993
    [6] Falconer K J. Fractal Geometry: Mathematical Foundations and Applications[M]. Jone Wiley& Sons, 1990
    [7]齐东旭.分形及其计算机生成[M].北京:科学出版社,1994.
    [8]谢和平.岩土介质分形孔隙和分形粒子[J].力学进展.1993,25(2):145-164
    [9]陈凌,分形几何学.北京:地震出版社,1998
    [10] Dathe A. Thullner M. The relationship between fractal properties of solid matrix and pore space in porous media. Geoderma, 2005, 129: 279-290
    [11]陈美林,张实.分形及分维在单轴向三维编织复合材料拉伸实验中的应用.纤维复合材料, 2006, 1: 44-48
    [12]刘华杰.分形艺术[M].长沙:湖南科学技术出版社,1998
    [13] Metropolis W, Ulam S. Monte Carlo Method [J]. J. Amer. Stat. Ass, 1949, 44: 335-341
    [14] Householder A S, et al. Monte Carlo method (Symposium)[J]. NBS math. Series, 1951, 12(3): 203-205
    [15]方涛,徐文彬,胡海浪,徐维生. Monte Carlo法在岩体裂隙结构面模拟方面的应用.灾害与防治工程, 2006, 2: 3-47
    [16]徐钟济.蒙特卡罗方法[M].上海:科学技术出版社, 1985.
    [17]贾洪彪,唐辉明,刘佑荣.岩体结构面网络模拟技术研究进展[J].地质科技情报, 2001, 20(1): 105-108
    [18]王岩. Monte Carlo方法应用研究[J].云南大学学报, 2006, 28(S1): 23-26
    [19] Feder J. Fractals. Plenum Press, New York, 1988
    [20] Sahimi M. Flow and Transport in Porous Media and Fractured Rocks. Germany, VCH Verlagsgesellshaft mbH, 1995
    [21] Yu B M, Li J H. Some fractal characters of porous media. Fractals, 2001, 9: 365–372
    [22] Yu B M, Cheng P. A fractal permeability model for bi-dispersed porous media[J]. Int. J. Heat and Mass Transfer, 2002, 45: 2983–2993
    [23] Yu B M, Lee L J, Cao H Q. A fractal in-plane permeability model for fabrics. Polym. Compos., 2002, 23: 201-221
    [24] Yu B M, Zou M Q, Feng Y J. Permeability of fractal porous media by Monte Carlo simulations. Int. J. Heat Mass Transfer, 2005, 48: 2787–2794
    [25]林瑞泰.多孔介质传热传质引论.科学出版社, 1994
    [26]王补宣.传热传质学.科学出版社, 1998
    [27] Yanagisawa T, Shimozu T, Kuroda K, et a1.[J].Bul1 Chem Soc.Jpn., 1990,63: 988
    [28] Beck J S, Vartuli J C, Roth W J, et a1.[J]. J Am Chem Soc., 1992, 1l4: l0834
    [29] Xie H P (谢和平) Fractals in Rock Mechanics. Netherlands: A. A. Ballkema Publishers, 1993, 1-5
    [30] Wang W W, Huai X L and Tao Y J. Heat Conduction and Characteristic Size of Fractal Porous Media. Chinese Phys. Lett., 2006, 23(6): 1511-1514
    [31] Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett., 1985, 54(14): 1325-1328
    [32] Krohn C E, Thompson A H. Fractal sandstone pores: Automated measurements using scanning-electron-microscope images. Phys Rev. B, 1986, 33: 6366-6374
    [33] Xie H, Bhaskar R and Li J. Generation of fractal models for characterization of pulverized materials. Mineral & Metallurgical Processing, 1993, 2: 36-42
    [34]刘晓丽,梁冰,薛强.多孔介质渗透率的分形描述[J]水科学进展,2003,14(6): 769-773
    [35] Perfect E, Kay B D. Applications of fractals in soil and tillage research: a review. Soil & Tillage Research, 1995, 36: 1-20
    [36] Feng Y J, Yu B M, Zou M Q and Zhang D M. A generalized model for the effective thermal conductivity of porous media based on self-similarity. J. Phys. D: Appl. Phys., 2004, 37: 3030-3040
    [37] Cheng Q. The perimeter-area fractal model and its application to geology. Math. Geology, 1995, 27(1): 69–82
    [38] Dullien F A L.多孔介质—流体渗移与孔隙结构(中译本).北京:石油工业出版社,1990, 145-53
    [39] Mauran S, Rigaud L, Coudevylle O. Application of the Carman--Kozeny correlation to a high-porosity and anisotropic consolidated medium: the compressed expanded natural graphite[J]. Transport in Porous Media, 2001, 43: 355-376
    [40] Kang F Y, ZHeng Y P, Wang H N, et a1.Effect of preparation conditions on the characteristics of exfoliated graphite[J]. Carbon, 2002, 9: 1575-1581.
    [41]于雪梅,卢泽生,饶河清.基于分形理论多孔质石墨渗透率的研究.机械工程学报, 2006, 42(Supp.): 74-77
    [42]周宏伟,谢和平.多孔介质孔隙度与比表面积的分形描述.西安矿业学院学报, 1997, 17(2): 97-102
    [43] Xie H, Wan J A and Aan P G. Fractal characters of micropore evlution in marbles. Physics letter A , 1996, 218: 275-280
    [44] Bear J. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., 1972
    [45] Kaviany M. Principles of Heat Transfer in Porous Media. second ed., Springer-Verlag, Inc., New York, 1995
    [46] Sahimi M. Flow phenomena in rock: from continuum models to fractals percolation, cellular automata, and simulated annealing. Rev. Mod. Phys., 1993, 65: 1393–1534
    [47] Koponen A, Kataja M, Timonen J. Permeability and effective porosity of porous media. Phys.Rev. E, 1997, 56: 3319–3325
    [48] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 1998, 30: 329–364
    [49] Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D. The lattice Boltzmann equationmethod: theoretical interpretation, numerics and implications. Int. J. Multiphase Flow, 2003, 29: 117–169
    [50] Young I M, Crawford J W. The fractal structure of soil aggregations: its measurement and interpretation. J. Soil Sci., 1991, 42: 187–192
    [51] Smidt J M, Monro D M. Fractal modeling applied to reservoir characterization and flow simulation. Fractals, 1998, 6: 401–408
    [52] Yu B M, Lee L J, Cao H Q. Fractal characters of pore microstructures of textile fabrics. Fractals, 2001, 9: 155–163
    [53] Adler P M. Transports in fractal porous media. J. Hydrol., 1996, 187: 195–213
    [54] Yu B M, Li J H, Zhang D M. A fractal trans-plane permeability model for textile fabrics. Int. Comm. Heat Mass Transfer, 2003, 30: 127–138
    [55] Denn M M. Process Fluid Mechanics, Prentice Hall, NJ, 1980
    [56] Wheatcraft S W, Tyler S W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res., 1988, 24: 566–578
    [57] Shih C -H, Lee L J. Effect of fiber architecture on permeability in liquid composite molding, Polym. Compos., 1998, 19: 626–639
    [58] Chen Z Q, Cheng P, Hus C T. A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media. Int. Comm. Heat Mass Transfer, 2000, 27: 601–610
    [59] Yu B M, Lee L J. A simplified in-plane permeability model for textile fabrics. Polym. Compos., 2000, 21: 660–685
    [60] Yu B M. Fractal dimension for tortuous stream-tubes in porous media. Chin. Phys. Lett., 2005, 22: 158–160
    [61] Peng W. Contact mechanics of multilayered rough surfaces in tribology, PhD thesis, The Ohio State University, Columbus, 2001
    [62]陈辉,胡元中,王慧,王文中.粗糙表面分形特征的模拟及其表征.机械工程学报, 2006, 42(9): 219-223
    [63] Lévy P. Processus Stochastiques et Mouvement Brownien, Gauthier-Villar, Paris, 1948
    [64] Jang Y H, Barber J R. Effect of contact statistics on electrical contact resistance. J. Appl. Phys., 2003, 94: 7215-7221
    [65] Voss R F.“Random fractal Forgeries.”in: Fundamental Algorithms for Computer Graphics, R. A. Earnshaw, ed., 1986, 805-835
    [66] N. Patir, A numerical procedure for random generation of rough surfaces, Wear 47 (1978) 263–277.
    [67] Watson W, Spedding T A. The time series modeling of non-Gaussian engineering processes. Wear, 1982, 83:215–231
    [68] Whitehouse D J. The generation of two-dimensional random surfaces having a specified function. Ann. CIRP, 1983, 495–498
    [69] Newland D E. An Introduction to Random Vibration and Spectral Analysis. Second ed., Longman, London, 1984
    [70] Hu H Z, Tonder K. Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. Int. J. Mach. Tools Manuf., 1992, 32: 83-90
    [71] Mihailidis A, Bakolas V. Numerical simulation of real 3-D rough surfaces. J. Balk. Tribol. Assoc., 1999, 5: 247–255
    [72] Wu J J. Simulation of rough surfaces with FFT. Tribol. Int., 2000, 33: 47–58
    [73] Bakolas V. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces. Wear, 2003, 254: 546–554
    [74] Mantoglou A, Wilson J L. The Turning Bands Method for the simulation of random fields using line generation by a spectral method. Water Resources Res., 1982, 18: 1379-1394
    [75] Tompson A F B, Ababou R, Gelhar L W. Implementation of the three-dimensional turning bands random field generator. Water Resources Research, 1989, 25: 2227-2243
    [76] Zhang X, Cong P Z, Fujiwara S J, Fujii M T. A new method for numerical simulation of thermal contact resistance in cylindrical coordinates. Int. J. Heat Mass Transfer, 2004, 47: 1091–1098.
    [77] Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces. Wear, 1990, 136: 313–327
    [78] Patrikar R M. Modeling and simulation of surface roughness. Applied SurfaceScience, 2004, 228: 213–220
    [79] Cai Z J, Chen D Q, Lu S. Reconstruction of a fractal rough surface, Physica D, 2006, 213: 25–30
    [80] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc. R. Soc. London Ser. A, 1966, 295: 300–319
    [81] Sayles R S, Thomas T R. Surface topography as a nonstationary random process [J]. Nature, l978, 271(2): 431-434
    [82]王建军,魏宗信.粗糙表面轮廓分形维数的计算方法.工具技术, 2006, 40(8): 73-75
    [83] Berry M V, Lewis Z V. On the Weierstrass-Mandelbrot fractal function. Proceedings of the Royal Society A, 1980, 370: 459-484
    [84] Voss R F.“Fractals in Nature: From Characterization to Simulation,”in: The Science of fractal Images, H. O. Peitgen and D. Saupe, eds., Springer-Verlag, New York, 1988, 21-70
    [85] Majumdar A. Fractal surfaces and their applications to surface phenomena. PhD thesis, University of California, Berkley, 1989
    [86] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol., 1990, 112: 205–216
    [87] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces. ASME J. Tribol. 1991, 113: 1–11
    [88]张学良,黄玉美,傅卫平,张文鹏.粗糙表面法向接触刚度的分形模型.应用力学学报, 2000, 17(2): 31-35
    [89] Gagnepin J J, Roques-Carmes C. Fractal approach to two-dimensional and three-dimensional surface roughness. Wear, 1990, 109: 114-119
    [90] Lopez J, Hansali G, Zahouani H, Lebosse J C, Mathis T. 3D fractal-based characterization for engineered surface topography. Int. J. Mach. Tools Manufact., 1995, 35: 211-217
    [91] Majumdar A, Tien C L. Fractal network model for contact conductance. Trans. ASME, J. Heat Transfer, 1991, 113: 516–525
    [92] Xie H P(谢和平). Fractal estimation of joint roughness coefficients. SCIENCE INCHINA (Series B), 1994, 37: 1516-1524
    [93] Marotta E E, Fletcher L S, Dietz Thomas A. Thermal contact resistance modeling of non-Flat, roughened surfaces with non-Metallic coatings. Journal of Heat Transfer, 2001, 123: 11-23
    [94] Russ J C. Fractal surfaces (1st Edition), Springer, 1994, 320pp.
    [95] Warren T L, Krajcinovic D. Fractal models of elastic-perfectly plastic contact of rough surfaces based on the Cantor Set. Int. J. Solids Struct., 1995, 32: 2907-2922
    [96] Warren T L, Krajcinovic D. Random Cantor set models for the elastic-perfectly plastic contact of rough surfaces. Wear, 1996, 196: 1-15
    [97] Sahimi M, Mukhopadhyay S. Scaling properties of a percolation model with long-range correlations. Phys. Rev. E, 1996, 54: 3870-3880
    [98] Turcotte D L. Fractals and Chaos in Geology and Geophysics (2nd Edition), Cambridge University Press, 1997, 398pp.
    [99] Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys., 1998, 84: 3617–3624
    [100] Mourzenko V V, Thovert J -F, Adler P M. Percolation and conductivity of self-affine fractures. Phys. Rev. E, 1999, 54: 4265-4284
    [101] Komvopoulos K, Ye N. Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies. Journal of Tribology, 2001, 123: 632–640
    [102] Yang Z Y, Di C C. A directional method for directly calculating the fractal parameters of joint surface roughness. International Journal of Rock Mechanics & Mining Sciences, 2001, 38: 1201–1210
    [103] Drazer G, Koplik J. Transport in rough self-affine fractures. Phys. Rev. E, 2002, 66: 026303
    [104] Kogut L, Komvopoulos K. Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys., 2003,94: 3153-3162
    [105] Morrow C A, Adhesive rough surface contact, PhD thesis, University of Pittsburgh, Pittsburgh, 2003
    [106] Zhou H W, Xie H. Direct estimation of the fractal dimensions of a fracture surface of rock. Surface Review and Letters, 2003, 10: 751-762
    [107] Jafari G R, Fazeli S M, Ghasemi F, Vaez Allaei S M, Reza Rahimi Tabar M, Iraji zad A, Kavei G. Stochastic analysis and regeneration of rough surfaces, Phys. Rev. Lett., 2003, 91: 226101
    [108] Poon C Y, Bhushan B. Numerical contact and stiction analyses of Gaussian isotropic surfaces for magnetic head slider disk contact. Wear, 1996, 202: 83-98.
    [109] Develi K, Babadagli T. Quantification of natural fracture surfaces using fractal geometry. Mathematical Geology, 1998, 30: 971-998
    [110] Ponson L, Bonamy D, Bouchaud E. Two-dimensional scaling properties of experimental fracture surfaces. Phys. Rev. Lett. 2006, 96: 035506
    [111] Bhushan B, Majumdar A. Elastic-plastic contact model for bifractal surfaces[J]. Wear, 1992, 153: 53-64
    [112] Motoyoshi H, JianCheng L, Konish Y. Characterization of engineering surfaces by fractal analysis [J]. In. J. Japan Soc. Prec. Eng., 1993, 27(3): 192-196
    [113]李伯奎,刘远伟.表面粗糙度理论发展研究.工具技术, 2004, 38(1): 63-67
    [114]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用.北京:科学出版社,1980
    [115]裴鹿成等.计算机随机模拟.长沙:湖南科学技术出版社,1989
    [116]裴鹿成.蒙特卡罗方法发展的回顾与展望.蒙特卡罗方法及其应用(一).郑州:河南科学技术出版社,1993
    [117]费斌,王海容,蒋庄德.机械加工表面分形特性的研究[J].西安交通大学学报,1998,32(5):83—86
    [118]吴立群.分形、小波理论在粗糙轮廓建模与设计中的应用研究[D].杭州:浙江大学,2001.
    [119] Zhao Z. Thermal design of a broadband communication system with detailed modeling of TBGA packages. Microelectronics Reliability, 2003, 43: 785–793
    [120] Mohamed S, EL-Genk and Bostanci H. Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip. Int. J. Heat Mass Transfer, 2003, 46: 1841–1854
    [121] Bejan A and Ledezma G A. Thermodynamic optimization of cooling techniques for electronic packages. Int. J. Heat Mass Transfer, 1996, 39: 1213-1221
    [122] Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer, 1997, 40: 799-816
    [123] Ogiso K. Assessment of overall cooling performance in thermal design of electronics based on thermodynamics. J. of Heat Transfer, 2001, 123: 999-1005
    [124] Aung W. Cooling technology for electronic equipment. New Yoke, Hemisphere. 1988
    [125]夏再忠,过增元.用生命演化过程模拟导热优化.自然科学进展, 2001, 11: 845-852
    [126] Madhusudana C V. Thermal Contact Conductance. Springer-Verlag, New-York, 1996, pp4-5
    [127] Cong P Z, Zhang X and Fujii M. Estimation of Thermal Contact Resistance Using Ultrasonic Waves. International Journal of Thermophysics, 2006, 27: 171-183
    [128] Hasselman D P H and Johnson L F.“Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistant”, J. Comp. Materials, 1987, 21: 508
    [129] Lu Y, Donaldson K Y, Hasselman D P H and Thomas J R Jr. Thermal conductivity of uniaxial coated cylindrically orthotropic fiber-reinforced composite with thermal barriers”, J. Comp. Materials, 1995, 29: 1719
    [130] Zou M Q, Yu B M, Zhang D M. An analytical solution for transverse thermal conductivities of unidirectional fiber composites with thermal barrier. J. Phys. D: Appl. Phys., 2002, 35: 1867-1874
    [131] Tien C L and Chen G. Challenges in microscale conductive and radiative heat transfer. ASME Journal of Heat Transfer, 1994, 116: 799-807
    [132]湛利华,李晓谦,胡仕成.界面接触热阻影响因素的实验研究.轻合金加工技术, 2002, 30(9): 40-43
    [133] Cooper M G, Mikic B B and Yovanovich M M. Thermal contact conductance. Int. J. Heat Mass Transfer, 1969, 12: 279-300
    [134] Mikic B B. Thermal contact conductance; theoretical considerations. Int. J. Heat Mass Transfer, 1974, 17: 205–214
    [135] Johnson K L. Contact Mechanics. Cambridge University Press, Cambridge,England, 1985
    [136] Nishino K, Yamashita S and Torii K. Thermal contact conductance under low applied load in a vacuum environment. Experimental Thermal and Fluid Science, 1995, 10: 258-271
    [137] Jeng Y R, Chen J T and Cheng C Y. Theoretical and experimental study of a thermal contact conductance model for elastic, elastoplastic and plastic deformation of rough surfaces. Tribology Letters, 2003, 14: 251-259
    [138] Bahrami M, Culham J R, Yovanovich M M and Schncider G E. Proc. ASME Heat Transfer Conference, Las Vegas (2003), Paper No. HT2003–47051
    [139] Bahrami M, Culham J R and Yovanovich M M. Thermal contact resistance: a scale analysis approach. ASME Journal of Heat Transfer, 2004, 126(6): 896–905
    [140] Wahid S M S, Madhusudana C V and Leonardi E. Solid spot conductance at low contact pressure. Experimental Thermal and Fluid Science, 2004, 28:489–494
    [141] Xiao Y M, Sun H, Xu L, Feng H D and Zhu H M. Thermal contact conductance between solid interfaces under low temperature and vacuum. Review of Scientific Instruments, 2004, 75(9): 3074-3076
    [142] Kumar S S, Abilash P M and Ramamurthi K. Thermal contact conductance for cylindrical and spherical contacts. Heat and Mass Transfer, 2004, 40: 679–688
    [143] Bahrami M, Yovanovich M M and Culham J R. Thermal contact resistance at low contact pressure: Effect of elastic deformation. International Journal of Heat and Mass Transfer, 2005, 48: 3284–3293
    [144] Bahrami M, Culham J R, Yananovich M M and Schneider G E. Review of Thermal Joint Resistance Models for Nonconforming Rough Surfaces. Applied Mechanics Reviews, 2006, 59: 1-11
    [145] Zhang X, Cong P Z and Fujii M. A Study on Thermal Contact Resistance at the Interface of Two Solids. International Journal of Thermophysics, 2006, 27(3): 880-895
    [146] YüncüH. Thermal contact conductance of nominaly flat surfaces. Heat Mass Transfer, 2006, 43: 1–5
    [147] Nayak P R. Random Process model of rough surfaces. Trans ASME J. Lubric. Technol, 1971, 93
    [148] Nayak P R. Some aspects of surface roughness measurement. Wear, 1973, 26: 165-174
    [149] Nayak P R. Random process model of rough in plastic contact. Wear, 1973, 26: 305-333
    [150] McCool J I, Gassel S S. The contact of two surfaces having anisotropic roughness geometry. ASLE Spec. Publ. SP-7, American Society of Lubrication Engineering,New York, 1981, 29-38
    [151] Vmadhusuda C, Leonardi J A E. On the enhancement of the thermal contact conductance: effect of loading. Journal of Heat Transfer, 2000, 122: 46
    [152]黄志华,王如竹,韩玉阁.一种接触热阻的预测方法.低温工程, 2000, 6: 40-46
    [153] Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Engrs., 1970-1971, 185: 625-633
    [154] Sahoo P and Banerjee A. Asperity interaction in adhesive contact of metallic rough surfaces. J. Phys. D: Appl. Phys., 2005, 38: 4096-4103
    [155] Bush A W, Gibson R D. The elastic contact of a rough surfaces. Wear, 1975, 35: 87-111
    [156] Sridhar M R, Yovanovich M M, Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments. Journal of Heat Transfer, l996, l18(2): 3-9
    [157] Chang W R, Etsion I. An elastic-plastic model for the contact of rough surfaces. Journal of Tribology, 1987, 109(4): 257-263
    [158] Willner K. Elasto-plastic normal contact of three-dimensional fractal surfaces using halfspace theory. ASME J. Tribol., 2004, 126: 28–33
    [159] Bowden F B, Tabor D. The friction and lubrication of solids, Part I. Oxford University Press, Oxford, 1950
    [160] Archard J F. Elastic deformation and the laws of friction. Proc. R. Soc. London, Ser. A, 1957, 243: l90-205
    [161] Ciavarella M, Demelio G. Elastic multiscale contact of rough surfaces: Archard’s model revisited and comparisons with modern fractal models. J. Appl. Mech., 2001, 68: 496–498
    [162] Lumbantobing A, Kogut L, Komvopoulos K. Electrical contact resistance as adiagnostic tool for MEMS contact interfaces, Journal of microelectromechanical systems, 2004, 13(6): 977-987
    [163] Morag Y and Etsion I. Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear, 2007, 262, 624-629
    [164]沈军,马骏,刘伟强.一种接触热阻的数值计算方法.上海航天, 2002, 4: 33-36
    [165] Yang A J and Komvopoulos K. Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces. Journal of Tribology, 2005, 127: 315-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700