用户名: 密码: 验证码:
基于Gouraud阴影法和多子模式的NAM图像表示方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像表示是计算机图形学、计算机视觉、机器人、图像处理和模式识别等领域里的一个重要问题。有效的图像表示方法不仅能节省存储空间,而且还能提高图像处理的速度。随着数字化信息时代的到来和多媒体计算机技术的发展,使得人们所面对的各种图像数据量剧增,由于图像信息所具有的大量性,其快速、实时传输的要求得不到满足已成为制约Interact发展的一个难题。因此,图像表示方法的研究就变得非常重要,它是目前最活跃的研究领域之一。非对称逆布局模型(NAM)适用于图像模式、语音模式、文本模式、视频模式的表示,是一个通用型的模式表示模型。
     针对图像的有损表示,扩展了著名的Gouraud阴影法,研究了一种基于Gouraud阴影法的NAM图像表示方法,简称NAMC表示方法,并与目前流行的STC表示方法进行了比较。具体给出了灰度图像的NAMC表示算法,该算法编解码部分的时间复杂度分别为O(n log n)和O(n),其中n为灰度图像的像素数。以图像处理领域里惯用的标准'Lena'灰度图像作为典型测试对象,理论分析和实验结果均表明:在保持图像质量的前提下,与STC表示方法和目前已经商业化了的JPEG方法相比,NAMC表示方法具有更低的比特率和更少的块数,从而具有更高的表示效率和更快的处理速度,是图像模式的一种更优的有损表示方法。
     NAMC图像表示方法有两重目的,一是体现在数据量上的优越性,二是体现在图像处理上的优越性。图像处理中的一些原子操作和运算(如:寻找近邻、搜索、计算区域的面积、集合操作等)在复杂算法中是经常用到的。具体研究了NAMC表示方法在图像处理中应用的一个例子,即:基于NAMC表示的快速矩计算算法。该算法的时间复杂度为O(N),其中N为灰度图像用NAMC表示时的同类块的总数。以图像处理领域里惯用的标准'Lena'、'F16'和'Peppers'等灰度图像作为典型测试对象,理论分析和实验结果均表明:与流行的基于STC表示的矩计算算法相比,基于NAMC表示的矩计算算法具有更快的计算速度。
     针对图像的无损表示,研究了一种基于多子模式的NAM图像表示方法和一种基于光栅扫描的NAM编码优化策略。通过对典型多子模式(三角形和矩形)进行分析,给出了一种基于三角形和矩形的NAM图像表示方法,简称为NAMTR表示方法,并与经典的线性四元树(LQT)表示方法从理论上进行了比较。具体研究了基于NAMTR的二值、灰度和彩色图像表示算法,且对算法的存储结构、数据量以及时间和空间复杂度进行了详细分析。给出了2种多值图像(灰度和彩色图像)的NAMTR表示方法,即直接方法和间接方法,且对这2种方法进行了比较,其中间接方法是一种位平面分解方法,能够有效降低原图像模式的复杂度,从而提高图像模式的表示效率。直接方法和间接方法表示的数据量和压缩比都与图像的复杂度有关,图像复杂度越低,则NAMTR表示的效率就越高。以图像处理领域里惯用的标准'Lena'、'F16'和'Peppers'等图像作为典型测试对象,理论分析和实验结果均表明:与经典的LQT表示方法、目前新提出的矩形NAM图像表示方法及流行的紧凑四元树(CQT)表示方法相比,NAMTR表示方法在子模式(节点数)和数据存储空间上具有明显的优势,是图像模式的一种更优的无损表示方法。
     NAMTR图像表示方法同样有两重目的,一是体现在数据量上的优越性,二是体现在图像处理上的优越性。作为NAMTR图像表示方法在图像处理中应用的一个例子,研究了一种基于NAMTR表示的二值图像的快速面积计算算法。该算法的时间复杂度为O(N),其中N为二值图像用NAMTR表示时的子模式总数。以图像处理领域里惯用的标准'Lena'、'F16'和'Peppers'等二值图像作为典型测试对象,理论分析和实验结果均表明:与流行的基于CQT表示的面积计算算法相比,基于NAMTR表示的面积计算算法具有更快的计算速度。
     总之,NAMC和NAMTR表示方法可以应用于图像表示和图像处理的各个方面,在降低存储空间、加快传输速度、提高模式匹配效率等方面具有良好的理论参考意义和实际应用价值。
Image representation is an important issue in computer graphics, computer vision, robotics, image processing and pattern recognition. Efficient image representations can save space and facilitate the manipulation of the acquired images. With the advent of the digital information era and the development of the computer multimedia technology, all kinds of image data are dramatically increasing. Due to mass data of image information, the fact that the demands of the fast and real-time transmission for images have failed to meet the development of the Internet has become a difficult problem. Therefore, the study on image representation method becomes increasingly important, and it is one of the hottest research fields at present. The Non-symmetry and Anti-packing Model (NAM) is suitable for representations of image pattern, audio pattern, video pattern, and text pattern, and it is a general pattern representation model.
     With respect to the lossy image representation, by extending the famous Gouraud shading method, a novel gray image representation using the NAM and shading approach called the NAM Coding (NAMC) approach is proposed and is compared with the popular S-Tree Coding (STC) approach. The encoding can be performed in O(n log n) time and the decoding can be performed in O(n) time, where n denotes the number of pixels in the gray images. By taking the idiomatic standard gray image 'Lena' in the field of image processing as a typical test object, the theoretical and experimental results show that the proposed NAMC approach can reduce the bits per pixel and the number of the homogeneous blocks in the gray images much more effective than the popular STC approach and the traded JPEG approach on the premise of remaining the image quality, and therefore it is a better method to represent the lossy image pattern.
     Not only can the NAMC approach save storage space, but also it can facilitate the image manipulations. Some image manipulations, such as neighbor finding, searching, area computing, and set operations, are often used in some complex algorithms in the field of image processing. As a representative of applications, a fast algorithm for computing the lower order moments is proposed on the NAMC representation directly, which takes O(N) time where N is the number of NAMC blocks. By taking three idiomatic standard gray images 'Lena', 'F16', and 'Peppers' in the field of image processing as typical test objects, and by comparing the proposed NAMC approach for computing lower order moments with the popular STC approach, the theoretical and experimental results show that the former is faster than the latter with respect to the computing speed.
     With respect to the lossless image representation, a novel NAM image representation method based on the multi-subpattern is proposed. Also, an optimization strategy of the NAM encoder using raster scanning is presented. By taking a typical multi-subpattern (the combination of the triangle and the rectangle subpatterns) as an example, a novel image representation method by using the Non-symmetry and Anti-packing Model with Triangles and Rectangles (NAMTR) is proposed. Also, Some concrete algorithms of the NAMTR representation for binary, gray, and color images are proposed and the storage structures, the total data amount, and the time and space complexities of these proposed algorithms are analyzed in detail. As far as multi-valued images, i.e., the gray and color images, are concerned, two kinds of representation methods are put forward. One is the direct representation of the NAMTR, and the other is indirect representation of the NAMTR, i.e., the representation of the Binary-bit Plane Decomposition (BPD). The BPD method can effectively reduce the complexity of multi-valued images and achieve high representation efficiency. The total data amount and the compression ratios of the two representation methods for multi-valued images have relations with the image complexity. The lower the image complexity is, the higher the representation efficiency of the NAMTR is. By taking some idiomatic standard images, such as 'Lena', 'F16', and 'Peppers', in the field of image processing as some typical test objects, and comparing the algorithm of NAMTR with those of the classic linear quadtree (LQT), the latest NAM, and the popular compact quadtree (CQT), the theoretical and experimental results show that the former is obviously superior to the latters with respect to the numbers of subpatterns (nodes) and the data storage, and therefore it is a better method to represent the lossless image pattern.
     Not only can the NAMTR approach save storage space, but also it can facilitate the image manipulations. As a representative image manipulation, a fast algorithm for computing the area of a binary image is proposed on the NAMTR representation directly, which takes O(N) time where N is the total subpattern number. By taking some idiomatic standard binary images, such as 'Lena', 'F16', and 'Peppers', in the field of image processing as some typical test objects, and by comparing the proposed NAMTR approach for computing the area of the binary image with the popular CQT approach, the theoretical and experimental results show that the former is faster than the latter with respect to the computing speed.
     In a word, the proposed NAMC and the NAMTR approaches for the image representation and manipulation, as envisaged in this paper, show a very strong promise and have good potential in business applications dealing with image processing, such as reducing storage room, increasing transmission speed, and improving pattern match efficiency.
引文
[1] T. Gan, Y. He, W. Zhu. Fast M-Term pursuit for sparse image representation. IEEE Signal Processing Letters, 2008, 15(1): 116-119
    
    [2] Z. He. Peak transform for efficient image representation and coding. IEEE Transactions on Image Processing, 2007,16(7): 1741-1754
    [3] F. Tang, R. Crabb, H. Tao. Representing images using nonorthogonal haar-like bases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12):2120-2134
    [4] M. Zribi. Unsupervised bayesian image segmentation using orthogonal series. Journal of Visual Communication and Image Representation, 2007, 18(6):496-503
    [5] J. Malo, I. Epifanio, R. Navarro, et al. Nonlinear image representation for efficient perceptual coding. IEEE Transactions on Image Processing, 2006, 15(1):68-80
    [6] E. L. Pennec, S. Mallat. Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing, 2005,14(4):423-438
    [7] R. Dovgard. Holographic image representation with reduced aliasing and noise effects. IEEE Transactions on Image Processing, 2004,13(7):867-872
    [8] M. N. Do, M. Vetterli. The finite ridgelet transform for image representation. IEEE Transactions on Image Processing, 2003,12(1):16-28
    [9] G. A. Papakostas, Y. S. Boutalis, D. A. Karras, et al. Fast numerically stable computation of orthogonal Fourier-Mellin moments. IET Computer Vision, 2007, 1(1):11-16
    [10] L. Kotoulas, I. Andreadis. Fast computation of Chebyshev moments. IEEE Transactions on Circuits and Systems For Video Technology, 2006,16(7):884-888
    [11] J. G. Liu, Y. Z. Liu, G. Y. Wang. Fast discrete W transforms via computation of moments. IEEE Transactions on Signal Processing, 2005, 53(2):654-659
    [12] K. Chung, P. Chen. An efficient algorithm for computing moments on a block representation of a grey-scale image. Pattern Recognition, 2005, 38 (12):2578-2586
    [13] P. Monasse, F. Guichard. Fast computation of a contrast-invariant image representation. IEEE Transactions on Image Processing, 2000,9(5):860-872
    [14] M. N. Do, M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106
    [15] K. Chung, H. Huang, H. Lu. Efficient region segmentation on compressed gray images using quadtree and shading representation. Pattern Recognition, 2004, 37(8):1591-1605
    [16] N. Balakrishnan, K. Hariharakrishnan, D. Schonfeld. A new image representation algorithm inspired by image submodality models, redundancy reduction, and learning in biological vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(9): 1367-1378
    [17] X. Xue, X. Wu. Directly operable image representation of multiscale primal sketch. IEEE Transactions on Multimedia, 2005, 7(5):805-816
    [18] Y. Wang. Image representations using multiscale differential operators. IEEE Transactions on Image Processing, 1999,8(12): 1757-1771
    [19] Y. Chan. An efficient weight optimization algorithm for image representation using nonorthogonal basis images. IEEE Signal Processing Letters, 1998, 5(8): 193-195
    [20] A. M. Bruckstein, R. J. Holt, A. N. Netravali. Holographic representations of images. IEEE Transactions on Image Processing, 1998, 7(11):1583-1597
    [21] A. P. Berg, W. B. Mikhael. An efficient structure and algorithm for image representation using nonorthogonal basis images. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 1997,44(10):818-828
    [22] W. B. Mikhael, A. P. Berg. Image representation using nonorthogonal basis images with adaptive weight optimization. IEEE Signal Processing Letters, 1996, 3(6):165-167
    [23] S. K. Naik, C. A. Murthy. Distinct multicolored region descriptors for object recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(7):1291-1296
    [24]J.G.Teti,H.N.Kritikos.SAR ocean image representation using wavelets.IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):1089-1992
    [25]Y.Y.Zeevi,E.Shlomot.Nonuniform sampling and antialiasing in image representation.IEEE Transactions on Signal Processing,1993,41(3):1223-1236
    [26]P.Pettersson.Image representation of wave propagation on wires above,on and under ground.IEEE Transactions on Power Delivery,1994,9(2):1049-1055
    [27]P.L.Rosin.Early image representation by slope districts.Journal of Visual Communication and Image Representation,1995,6(3):228-243
    [28]T.S.Lee.Image representation using 2D gabor wavelets.IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971
    [29]C.Herley,Z.Xiong,K.Ramchandran,et al.Joint space-frequency segmentation using balanced wavelet packet trees for least-cost image representation.IEEE Transactions on Image Processing,1997,6(9):1213-1230
    [30]H.Freeman.On the encoding of arbitrary geometric configurations.IRE Transactions on Electronic Computers,1961,10(2):260-268
    [31]E.Bribiesca.A geometric structure for two-dimensional shapes and three-dimensional surfaces.Pattern Recognition,1992,25(5):483-496
    [32]E.Bribiesca.A new chain code.Pattern Recognition,1999,32(2):235-251
    [33]E.Bribiesca,A.Guzman.How to describe pure form and how to measure differences in shapes using shape numbers.Pattern Recognition,1980,12(1):101-112
    [34]刘勇奎.Freeman链码压缩算法的研究.计算机学报,2001,24(12):1294-1298
    [35]Y.Liu,B.Oalik.An efficient chain code with Huffman coding.Pattern Recognition,2005,38(4):553-557
    [36]刘勇奎,魏巍,郭禾.压缩链码的研究.计算机学报,2007,30(2):281-287
    [37]F.Y.Shih,W.T.Wong.A one-pass algorithm for local symmetry of contours from chain code.Pattern Recognition,1999,32(7):1203-1210
    [38]P.Zingaretti,M.Gasparroni,L.Vecci.Fast chain coding of region boundaries.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(4):407-414
    [39]J.Koplowitz,S.Plante.Corner detection of chain code curves.Pattern Recognition,1995,28(6):843-852
    [40]J.Yuan,C.Y.Sueh.An optimal O(n) algorithm for identifying line segments from a sequence of chain codes.Pattern Recognition,1995,28(5):635-645
    [41]吴元敏.基于Freeman链码的图像中多个区域面积的计算方法.计算机工程与应用,2008,44(15):199-201
    [42]D.L.Cohen.Multiple contour finding and perceptual grouping using minimal paths.Journal of Mathematical Imaging and Vision,2001,14(3):225-236
    [43]H.Meyr,G.H.Rosdolsky,T.S.Huang.Optimum run length codes.IEEE Transactions on Communications,1974,22(6):826-835
    [44]M.Takagi,T.A.Tsuda.Highly efficient run-length coding scheme for facsimile transmission.Electronics and Communications in Japan,1975,58(2):30-38
    [45]R.H.Yeh,W.T.Ho,S.T.Tseng.Optimal production run length for products sold with warranty.European Journal of Operational Research,2000,120(3):575-582
    [46]D.Radson,H.A.Boyd.Graphical representation of run length distributions.Quality Engineering,2005,17(2):301-308
    [47]H.Samet.The quadtree and related hierarchical data structures.Computing Surveys,1984,16(2):187-260
    [48]P.Tsai,C.Y.Hu,C.C.Chang.Novel image authentication scheme based on quadtree segmentation.Imaging Science Journal,2005,53(3):149-162
    [49]M.Manouvrier,M.Rukoz,G.Jomier.Quadtree representations for storage and manipulation of clusters of images.Image and Vision Computing,2002, 20(7):513-527
    [50] J. J. Laguardia, E. Cueto, M. Doblare. A natural neighbour Galerkin method with quadtree structure. International Journal for Numerical Methods in Engineering, 2005,63(6):789-812
    [51] C. L. Wang, S. C. Wu, Y. K. Chang. Quadtree and statistical model-based lossless binary image compression method. Imaging Science Journal, 2005, 53(2):95-103
    [52] M. Lightstone, S. K. Mitra. Quadtree optimization for image and video coding. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 1997,17(2):215-224
    [53] I. Gargantini. An effective way to represent quadtrees. Communications of the ACM, 1982,25(12):905-910
    [54] H. Samet, M. Tamminen. Computing geometric properties of images represented by linear quadtrees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2):229-239
    [55] I. Gargantini. Transtation, rotation and superposition of linear quadtrees. Int. J. Man-Machine Studies, 1983,18(3):253-263
    [56] M. A. Bauer. Set operation on linear quadtrees. Computer Graphic and Image Processing, 1985,29(2):248-258
    [57] L. M. Wilke, G. F. Schrack. Filling boundaries by insertion and traversal in a linear quadtree domain. in: Proceedings of IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, 1995. 399-402
    [58] T. Lin. Set operations on constant bit-length linear quadtrees. Pattern Recognition, 1997, 30(7): 1239-1249
    [59] Y. Chan, C. Chang. Block image retrieval based on a compressed linear quadtree. Image and Vision Computing, 2004,22(5):391-397
    [60] W. Wong, F. Y. Shih, T. Su. Thinning algorithms based on quadtree and octree representations. Information Sciences, 2006,176(9): 1379-1394
    [61] E. Kawaguchi, T. Endo. On a method of binary picture representation and its application to data compression.IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(1):27-35
    [62]W.D.Jonge,P.Scheuermann,A.Schijf.S+-Trees:An efficient structure for the representation of large pictures.Computer Vision and Image Understanding,1994,59(3):265-280
    [63]Y.Tsai,K.Chung.Some image operations on S-tree-related spatial data structures.Image and Vision Computing,1999,17(12):897-904
    [64]K.Chung,J.Wu,J.Lan.Efficient search algorithm on compact S-trees.Pattern Recognition Letters,1997,18(14):1427-1434
    [65]D.Zerling.Generating binary trees using rotations.Journal of the Association for Computing Machinery,1985,32(3):694-701
    [66]C.Chen,H.Zou.Linear binary trees,in:Proceedings of the 9th International Conference on Pattern Recognition,Rome,1988.576-578
    [67]陈传波,邹海明,周冠雄.图像分层表示的最优分割和线性二元树.计算机学报,1991,14(7):505-513
    [68]A.Shamim,J.A.Robinson.Asymmetric binary tree coding for contour images.Image and Vision Computing,2003,21(9):797-807
    [69]G.H.Ong,K.Yang.A binary partitioning approach to image compression using weighted finite automata for large images.Computers and Mathematics with Applications,2006,51(11):1705-1714
    [70]H.Lu,J.C.Woods,M.Ghanbari.Binary partition tree analysis based on region evolution and its application to tree simplification.IEEE Transactions on Image Processing,2007,16(4):1131-1138
    [71]M.A.Ouksel,A.Yaagoub.The interpolation-based bintree and encoding of binary images.CVGIP:Graph.Models Image Process,1992,54(1):75-81
    [72]C.Huang,K.Chung.Fast operations on binary images using interpolation-based bintrees.Pattern Recognition,1995,28(3):409-420
    [73]D.Sarkar,N.Gupta.Operations on binary images represented by interpolation based bintrees.Pattern Recognition Letters,1999,20(4):395-403
    [74]J.Wu,K.Chung.The logical representation of bincode and its applications in manipulating binary images.Real-Time Imaging,1999,5(6):397-408
    [75]C.Huang,K.Chung.Faster neighbor finding on images represented by bincodes.Pattern Recognition,1996,29(9):1507-1518
    [76]K.Chung,C.Huang.Finding neighbors on bincode-based images in O(n log log n)time.Pattern Recognition Letters,1996,17(10):1117-1124
    [77]K.Chung,J.Wu.Fast implementations for mirroring and rotating bincode-based images.Pattern Recognition,1999,31(12):1961-1967
    [78]Y.Tsai,K.Chung.Region-filling algorithm on bincode-based contour and its implementation.Computers and Graphics,2000,24(4):529-537
    [79]Z.Bao.Reconstructing boundary representations from extended bintrees.Computers in Industry,2000,41(2):181-193
    [80]陈传波.非对称逆布局模式表示方法研究:[博士学位论文].武汉:华中科技大学图书馆,2006
    [81]郑运平,陈传波.一种基于非对称逆布局模型的彩色图像表示方法.软件学报,2007,18(11):2932-2941
    [82]Y.Zheng,C.Chen,W.Huang,et al.A new non-symmetry and anti-packing model with K-lines and its application to color image representation,in:H.R.Arabnia ed.Proceedings of the 2007 International Conference on Image Processing,Computer Vision,and Pattern Recognition(IPCV'07).Monte Carlo Resort,Nevada.2007.Las Vegas:CSREA Press,2007.526-532
    [83]Y.Zheng,C.Chen,M.Sarem.A novel algorithm for triangle non-symmetry and anti-packing pattern representation model of gray images,in:D.H,L.Heutte,M.Loog eds.Proceedings of the 3rd International Conference on Intelligent Computing(ICIC'07),LNCS 4681.Qindao,Shandong.2007.Berlin Heidelberg: Springer-Verlag,2007.832-841
    [84]C.Chen,W.Hu,L.Wan.Direct non-symmetry and anti-packing pattern representation model of medical images,in:H.Zhou ed.Proceedings of the 1st International Conference on Bioinformatics and Biomedical Engineering (ICBBE'07).Wuhan,Hubei.2007.Los Alamitos:IEEE Computer Society Press,2007.1011-1018
    [85]C.Chen,Y.Zheng,M.Sarem.A direct non-symmetry and anti-packing model for color images,in:Proceedings of the 4th International Conference on Natural Computation and the 5th International Conference on Fuzzy Systems and Knowledge Discovery(ICNC'08& FSKD'08).Jinan,Shandong.2008.Los Alamitos:IEEE Computer Society Press,2008.Volume 5,347-351
    [86]C.Chen,Y.Zheng,M.Sarem,et al.A novel algorithm for multi-valued image representation,in:J.Lei,J.Yao,Q.Zhang eds.Proceedings of the 3rd International Conference on Natural Computation and the 4th International Conference on Fuzzy Systems and Knowledge Discovery(ICNC'07& FSKD'07).Haikou,Hainan.2007.Los Alamitos:IEEE Computer Society Press,2007.Volume 3,84-89
    [87]Y.Zheng,C.Chen,M.Sarem.An improved gray image representation method based on binary-bit plane decomposition,in:Proceedings of the 4th International Conference on Natural Computation and the 5th International Conference on Fuzzy Systems and Knowledge Discovery(ICNC'08& FSKD'08).Jinan,Shandong.2008.Los Alamitos:IEEE Computer Society Press,2008.Volume 5,423-427
    [88]Y.Zheng,C.Chen,M.Sarem.A NAM representation method for data compression of binary images.Tsinghua Science Technology,2008,(Accepted)
    [89]Y.Zheng,C.Chen,M.Sarem.A novel algorithm using non-symmetry and anti-packing model with K-lines for binary image representation,in:D.Li,G.Deng ed.Proceedings of the 2008 International Congress on Image and Signal Processing(CISP'08).Sanya,Hainan.2008.Los Alamitos:IEEE Computer Society Press,2008.Volume 3,461-465
    [90]郑运平,陈传波.基于光栅扫描的NAM优化策略.华中科技大学学报,2008, 36(8):1-4
    [91]陈传波,夏晖,秦培煜,等.矩形NAM图像表示及其上欧拉数计算.小型微型计算机系统,2007,28(12):2233-2237
    [92]夏晖,陈传波,秦培煜,等.矩形NAM图像表示及其上的连通区域标记算法.计算机科学,2007,34(9):209-212
    [93]H.Freeman.Computer processing of the line drawings.ACM Computer Survey,1974,6(1):57-97
    [94]C.Dyer.The space efficiency of quadtrees.Computer Vision Graphics Image Process,1982,19(4):335-348
    [95]D.Sarkar.Boolean function-based approach for encoding of binary images.Pattern Recognition Letters,1996,17(8):839-848
    [96]P.G.Howard,F.Kossentini,B.Martins,et al.The emerging JBIG2 standard.IEEE Transactions on Circuits and Systems For Video Technology,1998,8(7):838-848
    [97]G.K.Wallace.The JPEG still picture compression standard.Communications of the ACM,1991,34(4):34-43
    [98]K.Chung,Y.Liu,W.Yan.A hybrid gray image representation using spatial- and DCT-based approach with application to moment computation.Journal of Visual Communication and Image Representation,2006,17(6):1209-1226
    [99]B.A.D.Vore,B.Jawerth,B.J.Lucien.Image compression through wavelet transform coding.IEEE Transactions on Information Theory,1992,38(2):719-746
    [100]B.Zeng,Y.Neuvo.Interpolative BTC image coding with vector quantization.IEEE Transactions on Communications,1993,41(10):1436-1438
    [101]A.E.Jacquin.Image coding based on a fractal theory of iterated contractive image transformations.IEEE Transactions on Image Processing,1992,1(1):18-30
    [102]R.Distasi,M.Nappi,S.Vitulano.Image compression by B-tree triangular coding.IEEE Transactions on Communications,1997,45(9):1095-1100
    [103]J.D.Foley,A.V.Dam,S.K.Feiner,et al.Computer Graphics,Principle,and Practice, second ed. Reading, MA: Addision-Wesley, 1990.
    [104] K. Chung, J. Wu. Improved image compression using S-tree and shading approach. IEEE Transactions on Communications, 2000,48(5):748-751
    [105] T. Evgeniou, M. Pontil, C. Papageorgiou, et al. Image representations and feature selection for multimedia database search. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4):911-920
    [106] E. Sifakis, C. Garcia, G. Tziritas. Bayesian level sets for image segmentation. Journal of Visual Communication and Image Representation, 2002,13(112):44-64
    [107] O. Deforges, M. Babel, L. Bedat, et al. Color LAR codec: a color image representation and compression scheme based on local resolution adjustment and self-extracting region representation. IEEE Transactions on Circuits and Systems For Video Technology, 2007,17(8):974-987
    [108] M. B. Dillencourt, H. Samet, M. Tamminen. A general approach to connected-component labeling for arbitrary image representations. Journal of the Association for Computing Machinery, 1992, 39(2):253-280
    [109] Y. Wang, S. K. Mitra. Image representation using block pattern models and its image processing applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(4):321-336
    [110] D. Wang, J. Ronsin. Rounded gray-level morphology and its applications to image representation. IEEE Transactions on Image Processing, 1996, 5(6): 1067-1073
    [111] Y. Yang, K. Chung, Y. Tsai. A compact improved quadtree representation with image manipulations. Image and Vision Computing, 2000,18(3):223-231
    [112] S. J. Park, H. J. Han. Euclidean reconstruction from contour matches. Pattern Recognition, 2002,35(10):2109-2124
    [113] J. Wu, K. Chung. A new binary image representation: logicodes. Journal of Visual Communication and Image Representation, 1997, 8(3):291-298
    [114] A. Rosenfeld. Quadtree grammars for picture languages. IEEE Transactions on Systems, Man, and Cybernetics, 1982,12(3):401-405
    [115] E. Nardelli, G. Proiett. Time and space efficient secondary memory representation of quadtrees. Information Systems, 1997,22(1):25-37
    [116] A. Tabernero, J. Portilla, R. Navarro. Duality of log-polar image representations in the space and spatial-frequency domains. IEEE Transactions on Signal Processing, 1999,47(9):2469-2479
    [117] K. Chung, S. Tseng. New progressive image transmission based on quadtrree and shading approach with resolution control. Pattern Recognition Letters, 2001, 22(14):1545-1555
    [118] G. Mandyam, N. Ahmed, N. Magotra. Lossless image compression using the discrete cosine transform. Journal of Visual Communication and Image Representation, 1997, 8(1):21-26
    [119] G. Deng. Grey scale image representation using binary sketch image. Electronics Letters, 1996, 32(70):881-882
    [120] F. G. Meyer, A. Z. Averbuch, R. R. Coifman. Multilayered image representation: application to image compression. IEEE Transactions on Image Processing, 2002, 11(9):1072-1080
    [121] W. Hong, J. Wright, K. Huang, et al. Multiscale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12):3655-3671
    [122] W. B. Mikhael, A. Ramaswamy. Application of multitransforms for lossy image representation. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 1994,41(6):431-434
    [123] K. Chung, W. Yan. Fast 2D discrete cosine transform on compressed image in restricted quadtree and shading format. Information Processing Letters, 2002, 81(1):13-21
    [124] K. Chung, W. Yan. An efficient algorithm for the Fourier transform on a compressed image in restricted quadtree and shading format. Information Processing Letters, 2001, 79(1): 1-5
    [125] S. K. Lodha, N. M. Faaland, J. C. Renteria. Topology preserving top-down compression of 2D vector fields using bintree and triangular quadtrees. IEEE Transactions on Visualization and Computer Graphics, 2003,9(4):433-442
    [126] S. Wang, L. Kuo, H. Jong, et al. Representing images using points on image surfaces. IEEE Transactions on Image Processing, 2005,14(8): 1043-1056
    [127] M. Yagi, T. Shibata. An image representation algorithm compatible with neural-associative-processor-based hardware recognition systems. IEEE Transactions on Neural Networks, 2003,14(5):1144-1161
    [128] K. Liang, C. C. J. Kuo. WaveGuide: a joint wavelet-based image representation and description system. IEEE Transactions on Image Processing, 1999, 8(11):1619-1629
    [129] N. Peterfreund, Y. Y. Zeevi. Nonuniform image representation in area-of-interest systems. IEEE Transactions on Image Processing, 1995,4(9): 1202-1212
    [130] D. Meagher. Geometric modeling using octree encoding. Computer Graphics and Image Processing, 1982,19 (2): 129-147
    [131] N. Ahuja, C. Nash. Octree representation of moving objects. Computer Graphics and Image Processing, 1984, 26(2):207-216
    [132] M. Tamminen, H. Samet. Efficient octree conversion by connectivity labeling. Computer Graphics, 1984,18(8):43-51
    [133] C. H. Chien, J. K. Aggarwal. Identification of 3D objects from multiple silhouettes using quadtree/octrees. Computer Graphics and Image Processing, 1986, 36(2):256-273
    [134] H. H. Atkinson, I. Gargantini, T. R. S. Walsh. Filling by quadtrees or octants. Computer Graphics and Image Processing, 1986, 33(2): 138-155
    [135] I. Gargantini. Linear octrees for fast processing of three-dimensional objects. Computer Graphics and Image Processing, 1982,20(4):365-374
    [136] B. Hariharan, S. Aluru. Efficient parallel algorithms and software for compressed octrees with applications to hierarchical methods. Parallel Computing, 2005, 31(3-4):311-331
    [137] C. L. Jackins, S. L. Tadlmoto. Quad-trees, oct-trees, and K-trees: A generalised approach to recursive decomposition of Euclidean space, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, 5 (5):533-539
    [138] P. J. Burt, E. H. Adelson. The laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4):532-540
    [139] A. B. Watson, A. J. Ahumada. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex. IEEE Transactions on Biomedical Engineering, 1989, 36(1):97-106
    [140] M. N. Do, M. Vetterli. Framing pyramids. IEEE Transactions on Signal Processing, 2003,51(9):2329-2342
    [141] M. Soumekh. Multiresolution dynamic image representation with uniform and foveal spiral scan data. IEEE Transactions on Image Processing, 1998, 7(11):1627-1635
    [142] C. Huang, K. Chung. Transformations between bincodes and the DF-expression. Computer and Graphics, 1995,19(4):601-610
    [143] C. Herley, Z. Xiong, K. Z. Bao, H. Grabowski. Converting boundary representations to exact bintrees. Computers in Industry, 1998, 37(1):55-66
    [144] F. Y. Shih, W. Wong. An adaptive algorithm for conversion from quadtree to chain codes. Pattern Recognition, 2001, 34(3):631-639
    [145] H. Samet. Region representation: quadtrees from boundary codes. Communications of the ACM, 1980,23(3): 163-170
    [146] H. Samet. Region representation: quadtrees from binary arrays. Computer Graphics and Image Processing, 1980,13 (1):88-93
    [147] C. R. Dyer, A. Rosenfeld, H. Samet. Region representation: bourdary codes from quadtrees. Communications of the ACM, 1980,23(3): 171-179
    [148] H. Samet. Algorithms for the conversion of quadtrees to raster. Computer Graphics and Image Processing, 1984,26(1):1-16
    [149] S. A. Mohamed, M. M. Fahmy. Binary image compression using efficient partitioning into rectangular regions. IEEE Transactions on Communications, 1995, 43(5):1888-1892
    [150] D. S. Taubman, M. W. Marcellin. JPEG2000 image compression fundamentals, standards and practice. Boston: Kluwer Academic. 2002.
    [151] L. Kotoulas, I. Andreadis. Accurate calculation of image moments. IEEE Transactions on Image Processing, 2007,16(8):2028-2037
    [152] J. Martinez, F. Thomas. Efficient computation of local geometric moments. IEEE Transactions on Image Processing, 2002,11 (9): 1102-1111
    [153] I. M. Spiliotis, B. G. Mertzios. Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Transactions on Image Processing, 1998, 7(11):1609-1615
    [154] J. Flusser. Refined moment calculation using image block representation. IEEE Transactions on Image Processing, 2000,9(11): 1977-1978
    [155] K. Chung, W. M. Yan, Z. H. Liao. Fast computation of moments on compressed gray images using block representation. Real-Time Imaging, 2002, 8(2): 137-144
    [156] R. D. Millan, L. D. Marco, J. M. Pozo, et al. Morphological characterization of intracranial aneurysms using 3-D moment invariants. IEEE Transactions on Medical Imaging, 2007, 26(9): 1270-1282
    [157] A. G. Bors. Watermarking mesh-based representations of 3-D objects using local moments. IEEE Transactions on Image Processing, 2006,15(3):687-701
    [158] M. H. Singer. A general approach to moment calculation for polygons and line segments. Pattern Recognition, 1993,26(7): 1019-1028
    [159] M. Jacob, T. Blu, M. Unser. An exact method for computing the area moments of wavelet and spline curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(6):633-642
    [160] S. C. Pei, L. G. Liou. Using moments to acquire the motion parameters of a deformable object without correspondences. Image and Vision Computing, 1994, 12(8):475-485
    [161] W. H. Tsai. Moment-preserving thresholding: a new approach. Computer Vision, Graphics, and Image Processing, 1985,29(3):377-393
    [162] S. C. Pei, C. M. Cheng. Color image processing by using binary quaternion-moment-preserving thresholding technique. IEEE Transactions on Image Processing, 1999, 8(5):614-628
    [163] S. C. Pei, J. H. Horng. A moment-based approach for deskewing rotationally symmetric shapes. IEEE Transactions on Image Processing, 1999, 8(12):1831-1834
    [164] J. Flusser, T. Suk. Rotation moment invariants for recognition of symmetric objects. IEEE Transactions on Image Processing, 2006,15(12):3784-3790
    [165] H. Lin, J. Si, G. P. Abousleman. Orthogonal rotation-invariant moments for digital image processing. IEEE Transactions on Image Processing, 2008,17(3):272-282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700