用户名: 密码: 验证码:
无线mesh网络中覆盖多播流分发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下一代无线通信网络的设计目标是灵活方便地为用户提供互联网接入和有服务质量保障的多媒体宽带业务,无线mesh网络正是为此目的而产生的一种能够提供更大范围的无线接入新技术。与此同时,各种业务应运而生,如何有效支持以视频点播、移动学习等为代表的实时多媒体业务是无线mesh网络面临的挑战。而且这些业务对多播技术有强烈需求,因此促使本论文将覆盖多播与无线mesh网络相结合,把提高无线mesh网络中多播流的分发质量作为研究目标。
     覆盖多播是在应用层实现多播功能,但多播流的分发质量与底层网络的拓扑结构、接入控制机制、路由等有关。而传统的分层协议架构向上屏蔽了这些因素,各层之间缺乏及时的信息交互,若采用传统的分层协议设计将会导致无线mesh网络性能的下降。为此,不少学者采用“优化理论”和“上层从底层获取信息的跨层设计”的方法,但这些方法缺乏对网络全局优化模型的指导。基于此,本论文采用网络效用最大化(Network Utility Maximization,简称NUM)的方法来研究无线mesh网络的跨层设计,提出了基于效用函数模型的多播流分发过程中的时延控制、功率控制以及链路强度控制等分布式优化算法
     论文首先对无线mesh网络和覆盖多播技术的应用背景、研究现状进行了综述,并归纳了面临的关键问题,分析了利用网络效用最大化架构进行跨层设计的意义。在此基础上,从以下几个方面开展了研究工作:
     第一,针对多播流在无线mesh网络中进行分发时面临的时延问题,提出了一种联合拥塞控制和信道接入控制的跨层优化算法。通过联合优化调整多播流的速率和无线链路的信道接入概率,减少链路拥塞和冲突的发生,从而降低多播流的分发时延。并将此问题建模为网络效用最大化问题,采用基于效用的定价机制,通过拉格朗日对偶分解获得一个基于价格的分布式算法,以该分布式算法为核心进行链路的信道接入竞争控制和拥塞控制。
     第二,为了减少链路间的相互干扰,提高多播流的分发质量,提出了将多播流分发过程中所经链路的功率消耗引入到网络效用最大化架构中,实现净效用最大化。并将此问题抽象成一个非线性优化问题,通过对偶技术将此非线性优化问题分解成若干个可分布式求解的子问题,这些子问题分别对应于传输层的流量控制和物理层的功率控制。通过联合控制,实现在链路消耗功率最小的情况下,获得最佳的多播流分发速率,从而使整个网络的性能趋于最优。
     第三,由于覆盖多播是在应用层主机上完成多播流的复制,这就不可避免地会造成链路强度问题。链路强度大,不仅浪费链路的带宽,而且容易导致在一些链路上产生拥塞现象。为此,提出了一种跨层设计的方法来联合优化调整链路的强度。通过引入价格竞争机制,每条链路根据自身强度的大小合理定价,同时转发多播流的节点确定转发价格,每个多播流依据链路的强度价格和转发价格决定其速率大小和转发方向,从而实现链路强度控制。
     以上研究工作得到了国家自然科学基金项目“无线mesh网交互式流媒体分发研究”(项目编号:60773193)和“基于网络效用最大化的无线传感器网络研究”(项目编号:60772088)的资助。
The target of next generation wireless communication networks is to provide users with Intemet access and QoS-guaranteed multimedia service broadband connection in a flexible manner.Wireless Mesh Networks(WMNs),which efficiently extends the coverage of wireless access networks,is introduced for this purpose.However,to develop various applications,WMNs faces challenges on how to deliver efficiently real-time mlticast-demanding applications,such as demand of video,mobile e-learning etc.This dissertation is focus on how to improve the quality of flows delivery and the throughput of WMNs by combining overlay multicast with wireless mesh networks.
     Although overlay multicast is designed to carry out multicast in the application layer, many factors in other layers also affect the quality of delivery flows,such as physical topology,access control,routing etc.The conventional layered-protocol architecture screens those factors upward and lacks interaction between different protocol layers. WMNs will have a poor performance if the conventional layered protocol design methods and algorithms are employed.Thus,the methods of "optimization principle" and "cross-layer design method that up-layers achieve information from bottom-layers" are investigated in the literatures.However,these methods.usually lack the guidance of global optimization.In this dissertation,the cross-layer design using Network Utility Maximization(NUM) in WMNs and a distributing optimization algorithm based on utility to control delay,power consumption,link stress which take place in the process of delivery flows,are presented.
     In this dissertation,the background,and key issues of WMNs and overlay multicast are introduced.The necessity of Network Utility Maximization for the cross-layer design in WMNs is analyzed.The major works are as follows:
     Firstly,an approach for carrying out cross-layer design by joining congestion control and contention control aiming at end-to-end delay of the multicast flows in WMNs is proposed.It utilizes the network utility maximization framework to tackle this problem, by combining optimization flow rate allocation and channel access probabilities of links to decrease congestion and confliction so that the end-to-end delay of the delivery multicast flows in WMNs is decreased.Then,a distributed algorithm based on pricing scheme by using Lagrange dual decomposition technique for contention control and congestion control is presented.
     Secondly,to decrease mutual interference between links and improve the quality of flows delivery,the idea of net utility maximization is proposed by introducing the power consumption of links along flow's routing path to the NUM.The optimal design of WMNs is formulated as a nonlinear optimization problem.By using the dual decomposition method,the primal nonlinear problem is separated into several sub-problems which correspond to a protocol layer in the traditional network respectively.Based on this,the distributed power control and flows rate adjusting algorithm are designed to improve network performance by minimizing power consumption of the links and optimizing the rate of flows.
     Thirdly,in the application of overlay multicast,due to duplication of the data flows at end host,the problem of link stress is inevitable.When the link stress increases,this will introduce the issue of congestion and consume more network bandwidth.In this dissertation,an approach to combine optimizing rate allocation of flows and stress of delivering data flow links along flow's routing path,is proposed by a pricing scheme,in which each link adjusts its stress price according to the traffic load and each flow in turn collects the stress prices of all links along its routing path and calculates the overall network price.Basing on this,it adjusts the streaming rate and forward path.
     The works in this dissertation have been supported by the Natural Science Foundation of China program "Research on interactive media streaming distrioution technologies in wireless mesh network"(No.60773193) and the Natural Science Foundation of China program "Research on Wireless Sensor Networks based on Network Utility Maximization"(No.60772088).
引文
[1] Ian F. Akyildiz, Xudong Wang, Weilin Wang. Wireless mesh networks: a survey.Computer networks, 2005, 47(4): 445-487.
    
    [2] S. Sesay, Z. Yang, J. He. A Survey on Mobile Ad Hoc Wireless Network. Information Technology Journal, 2004, 3(2): 168-175.
    [3] E. Yanmaz, O. K. Tonguz, H. Wu, C. Qiao. Performance of iCAR Systems: A Simplified Analysis Technique, in Proc. of the IEEE Intl. Conf. Comm. ICC 2003 (2): 949-953. - " -
    
    [4] Ian F. Akyildiz, and Xudong Wang. Cross-Layer Design in Wireless Mesh Networks. IEEE Transactions on vehicular technology, 2008, 57 (2) : 1061-1076.
    [5] H. Jiang, W. Zhuang, X. Shen, A. Abdrabou, and P.Wang. Differentiated services for wireless mesh backbone. IEEE Communication Magazine, 2006, 44(7):113-119.
    [6] K. D. Lee and V. C. M. Leung. Fair allocation of subcarrier and power in an OFDMA wireless mesh network. IEEE J. Sel. Areas Communication, 2006, 24(11): 2051-2060.
    
    [7] W. Ge, J. Zhang, and S. Shen. A cross-layer design approach to multicast in wireless networks. IEEE Trans. Wireless Communication, 2007, 6 (3) : 1063-1071.
    [8] A. Raniwala and T. Chiueh. Architecture and algorithms for an IEEE 802.11 based multi-channel wireless mesh network. in Proc. IEEE INFOCOM 2005, 2005, (3) : 2223-2234.
    [9] Bo Rong, Yi Qian, Kejie Lu, and Rose Qingyang Hu. Enhanced QoS Multicast Routing in Wireless Mesh Networks. IEEE Transactions on wireless communications, 2008, 7 (6) : 2119-2130.
    
    [10] Srikrishna Devabhaktuni, et al. Selection of routing paths based upon path quality of a wireless mesh network. Patent No US2004008663, Jan 15,2004.
    
    [11] Draves R., Padhye J., and Zill B. Routing in multi-radio multi-hop wireless mesh networks. ACM Annual International Conference on Mobile Computing and Networking (MOBICOM), 2004. 114-128.
    
    [12] Can Emre Koksal, and Hari Balakrishnan. Quality-Aware Routing Metrics for Time-Varying Wireless Mesh Networks. IEEE Journal on selected areas in communications, 2006, 24 (11) : 1984-1994.
    
    [13] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile wireless networks. in Proc. IEEE INFOCOM, 1997. 1405-1413.
    [14] D..De Couto, D. Aguayo, J. Bicket, and R. Morris. A high throughput path metric for multi-hop wireless routing. in Proc. MobiCom, 2003.
    [15] S. Waharte, B. Ishibashi, R. Boutaba. Performance Study of Wireless Mesh Networks Routing Metrics. IEEE/ACS International Conference on Computer Systems and Applications, 2008,4:1100-1106.
    [16] Chen J., Lv T, Zheng H T. Joint cross-layer design for wireless QoS content delivery. IEEE ICC. Piscataway: IEEE Press, 2004.4243-4247.
    [17] KozatU C, Koutsopoulos I, Tassiulas L. A framework for cross-layer design of energy efficient communication with QoS provisioning in multi-hop wireless networks. IEEE INFOCOM 2004. Piscataway: IEEE Press, 2004. 1446-1456.
    [18] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimization decomposition: A mathematical theory of network architectures. Proc. lEEE, 2007, 95 (1) :255-312.
    [19] N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology control algorithm. IEEE Trans. Wireless Commun., 2005, 4 (3) : 1195-1206.
    [20] Y. Andreopoulvos, N. Mastronade, and M. van der Schaar. Cross-layer optimized video streaming over wireless multi-hop mesh networks. IEEE Journal on Selected Areas in Communications, 2006, 24 (11) :2104-2115.
    [21] Qiang Shen, Xuming Fang, Pan Li, and Yuguang Fang. Admission Control for Providing QoS in Wireless Mesh Networks. ICC '08. IEEE International Conference on Communications, 2008.2910-2914.
    [22] Liu C. H., kelias G., Leung A.. A Cross-Layer Framework of QoS Routing and Distributed Scheduling for Mesh Networks. IEEE Vehicular Technology Conference, VTC Spring 2008. 11-14 May 2008. 2193-2197.
    [23] Honglin Hu, Yan Zhang, Hsiao-Hwa Chen. An Effective QoS Differentiation Scheme for Wireless Mesh Networks.IEEE network, 2008, 22(1):66-73.
    [24] Diot C, Levine BN, and Lyles B. Deployment Issues for the IP Multicast Service and Architecture, IEEE Network, Jan. 2000. 78-88.
    [25] Chu Y. H, Rao S. G., and Zhang H. A Case for End System Multicast. In Proceedings of ACM SIGMETRIC, June 2000. 1-12.
    [26] Francis P., Yoid. Extending the Multicast Internet Architecture. Technical Report, Berkeley, AT&T Center for Internet Research at ICSI (ACIRI), 2000. http:// www.aciri.org/yoid/.
    [27] E. Sayed A., Roca V.. A Survey of Proposals for an Alternative Group Communication Service. IEEE Network, 2003, 6:2-7.
    [28] Y Chawathe. Scattercast:An Architecture for Internet Broadcast Distribution as an Infrastructure Service. PhD thesis, University of Cal fornia, Berkeley, USA, Dec. 2000.
    [29] Pendarakis D., Shi S., Verma D., et al. ALMI: An Application Level Multicast Infrastructure. In Proceedings of the 3rd USENIX Symposium on Internet Technologies & Systems, SanFrancisco, 2001. 49-60.
    [30] Shi S., Turner J.. Multicast Routing and Bandwidth Dimensioning in overlay networks. IEEE Journal on Selected Areas in Communications, 2002, 20(8): 1444-1455.
    [31] Chu YH, Rao SG, Zhang H.. A Case for End System Multicast. In Proceedings of ACM SIGMETRIC, June 2000.
    [32] Chawathe Y.. Scattercast: An Architecture for Internet Broadcast Distribution as an Infrastructure Service: [Ph.D. Thesis], University of California, Berkeley, 2000.
    [33] Banerjee S., Bhattacharjee B., Kommareddy C. Scalable Application Layer Multicast. In Proceedings of ACM SIGCOMM '02, 2002. 205-217.
    [34] Jannotti J, Gifford K, Johnson K. L., et a!. Overcast: reliable multicasting with an overlay network. Proc of USENIX Symposium on Operating Systems Design and Implementation. 2000. 197-212.
    [35] Yatin Chawathe, Steven McCanne, and Eric A. Brewer. RMX:Reliable Multicast for Heterogeneous Networks. Proc.of IEEE INFOCOM, 2000.
    [36] Guillaume Urvoy-Keller and Ernst W. Biersack. A Congestion Control Model for Multicast Overlay Networks and its Performance. Proc. of NGC 2002, October 2002.
    [37]Gu-In Kwon, John W. Byers. ROMA: Reliable Overlay Multicast with Loosely Coupled TCP Connections. in Proc. of IEEE INFOCOM 2004, March 2004.
    [38] K. Chen and K. Nahrstedt. Effective location-guided overlay multicast in mobile ad hoc networks. International Journal of Wireless and Mobile Computing, 3, 2005.
    [39] M. Ge, S. V. Krishnamurthy, and M. Faloutsos. Overlay Multicasting for Ad Hoc Networks. Proc. of 3rd Mediterranean Ad Hoc Networking Workshop, 2004.
    [40] C. Gui and P. Mohapatra. Efficient Overlay Multicast for Mobile Ad Hoc Networks. Proc. of IEEE Wireless Communications and Networking Conference, 2003.
    [41] L. Xiao, A. Patil, Y. Liu, L. M. Ni, and A.-H. Esfahanian. Prioritized Overlay Multicast in Ad-hoc Environments. IEEE Computer Magazine, Feb. 2004.
    [42] Chi-Kuo Chiang and Chung-Ta King. Source Routing for Overlay Multicastin Wireless Ad hoc and Sensor Networks. International Conference on Parallel Processing Workshops, 2007.
    [43]K.Chen and K.Nahrstedt.Effective Location-Guided Overlay Multicast in Mobile Ad Hoc Networks.International Journal of Wireless and Mobile Computing,Vol 3,2005.
    [44]O.Stanze and M.Zitterbart.On-Demand Overlay Multicast in Mobile Ad hoc Networks.in Proceedings of IEEE WCNC,Vol.4,Mar.2005.2155-2161.
    [45]Ki-Il Kim and Sang-Ha Kim.A Novel Overlay Multicast Protocol in Mobile Ad Hoc Networks:Design and Evaluation.IEEE Transactions on Vehicular Technology,2005,52(6):1124-1141.
    [46]E.Bommaiah.AMRoute:Ad hoc Multicast Routing Protocol.IETF Internet draft,Aug.1998.
    [47]C.Gui,P.Mohapatra.Efficient Overlay Multicast for Mobile Ad Hoc Networks.in Proceedings ofIEEE WCNC,Mar.2003.1118-1123.
    [48]Hochoong Cho,Sang-Ho Lee,Younghwan Choi,Fucai Yu,Sang-Ha Kim.Efficient Overlay Multicast Protocol in Mobile Ad hoc Networks.Vehicular Technology Conference,IEEE 65th VTC2007-Spring,2007(2):51-55.
    [49]A.Maullco,F.P.Kelly,and D.Tan.Rate control for communication networks:Shadow prices,proportional fairness and stability.Operations Res.Soc.,1998,49(3):237-252.
    [50]陈宝林.最优化理论与算法.北京:清华大学出版社,1989.
    [51]S.H.Low.A duality model of tcp flow controls.In ITC specialist seminar on IP traffic measurement,modeling and management,2000.
    [52]J.Doyle,S.H.Low,and F.Paganini.Internet congestion control.IEEE control system magzine,2002,21(1):28-43.
    [53]S.H.Low and R.Srikant.A mathematical framework for designing a low-loss,low-delay internet.In Special Issue on Crossovers Between Transportation Planning and Telecommunications,Netw.Spatial Econ,2004(4):75-101.
    [54]D.X.Wei,C.Jin,and S.H.Low.FAST TCP:Motivation,architecture,algorithms,and performance.In Proc.INFOCOM'04,2004.
    [55]S.H.Low,C.Jin,D.X.Wei.FAST TCP:From theory to experiments.IEEE networking,2005,19(1):4-11.
    [56]V.Jacobson.Congestion avoidance and control.In Proc.ACM SIGCOMM'98,1988.
    [57]J.Huang,J.W.Lee,and A.Tang.Reverse engineering mac:A game theoretic model.IEEE Journal of selected areas communication.2007,24(8):27-39.
    [58]S.H.Low,L.Chen,and J.C.Doyle.Joint top congestion control and medium access control.In Proc.IEEE INFOCOM'05,2005.
    [59] M. Chiang, J. W. Lee, and R. A. Calderbank. Jointly optimal congestion and contention control in wireless ad hoc networks. IEEE communication letter. 2006,10(3):216-218.
    [60] M. Chiang. Balancing transport and physical layer in wireless multihop networks: Jointly optimal congestion control and power control. IEEE Journal of selected areas communication. 2005, 23(1):104-116.
    [61] R. A. Calderbank, M. Chiang, S. H. Low and J. C. Doyle. Layering as optimization decomposition: a mathematical theory of network architectures. Proceedings of the IEEE, 2007,95(1): 104-312.
    [62] M. Chiang and J. Bell. Balancing supply and demand of bandwidth in wireless cellular networks: Utility maximization over powers and rates. In Proc. IEEE INFOCOM'04, 2004.
    [63] M. Chiang L. Chen, S. H. Low and J. C. Doyle. Joint optimal congestion control, routing, and scheduling in wireless ad hoc networks. In Proc. IEEE INFOCOM'06, 2006.
    [64] R. Srikant, L. Bui, A. Eryilmaz, and X. Wu. Joint congestion control and distributed scheduling in multihop wireless networks with a node exclusive interference model. In Proc. IEEE INFOCOM'06, 2006.
    [65] Liu Q, Zhou S, and Giannakis G B. Cross-layer scheduling with prescribed QoS guarantees in adaptive wireless networks. IEEE Journal on Selected Areas in Communications, 2005, 23 (5):1056-1066.
    [66] Johnsson K B, Cox D C. An adaptive cross-layer scheduler for improved QoS support ofmixed data traffic on wireless data systems. IEEE VTC20032Fall. Piscataway: IEEE Press, 2003. 1618-1622.
    [67] S. H. Low, S. Athuraliya. Optimization flow control with newton-like algorithm. Journal of Telecommunication System, 15(3):345-358, 2000.
    [68] S. H. Low F. Paganini, J. C. Doyle. Scalable laws for stable network congestion control. In Proc. IEEE CDC'01,2001(1): 185-190.
    [69] G. Song and Y. Li. Cross-layer optimization for OFDM wireless networks-Part I: Theoretical framework. IEEE Trans. Wireless Commun., 2005, 4 (2) :614-624.
    [70] A. Eryilmaz and R. Srikan. Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control. In Proc. INFOCOM'05, 2005 (3) : 1794-1803.
    [71] M. Andrews. Joint optimization of scheduling and congestion control in communication networks. In Proc. IEEE CISS'06, 2006.
    [72] J. He and J. Rexford. TCP/IP interaction based on congestion prices: stability and optimality. In Proc. IEEE ICC'06,2006.
    [73] S. H. Low, J. Wang, L. Li and J. C. Doyle. Cross-layer optimization in TCP/IP networks. IEEE/ACM transactions on networking, 2005, 13(3):582-682.
    [74] M. Chiang and R. Man. Jointly optimal congestion control and power control for wireless multihop networks. In Proc. IEEE GLOBECOM'03,2003.
    [75] R. Bhatia and M. Kodialam. On power efficient communication over multihop wireless networks: joint routing, scheduling and power control. In Proc. IEEE INFOCOM'04, 2004.
    [76] D. Palomar and M. Chiang. Alternative distributed algorithms for utility maximization: Framework and applications. IEEE transactions on automatic control, 2007, 13(4):532-543.
    [77] D. Palomar and M. Chiang. A tutorial on decomposition methods and distributed network resource allocation. IEEE Journal of selected areas communication, 2006, 24(8):1439-1451.
    [78] N. Z. Shor. Minimization method for non-differentiable functions. Springer Verlag, 1985.
    
    [79] D. P. Bertsekas. Nonlinear Programming. Athena scientic, 1999.
    [80] R. Srikant. The mathematics of Internet congestion control. Birkhauser, 2004.
    [81] S. Kunniyur and R. Srikant. A time-scale decomposition approach to adaptive explicit congestion notication marking. IEEE transactions on automatic control, 2002, 47(6):882-894.
    
    [82] J. Nocedal and S. J. Wright. Numerical optimization. Beijing: Science Press,2006.
    [83] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge Press, 2004.
    [84] D. P. Bertsekas. Convex analysis and optimization. Beijin: Tsinghua Press, 2006.
    [85] L. L. Perterson, S. H. Low, and L. Wang. Understanding tcp vegas: A duality model. Journal of ACM, 2002, 49(2):207-235.
    [86] L. L. Perterson, S. H. Low and L. Wang. Linear stability of tcp/red and a scalable control. Computer networks, 2003, 16(5):439-451.
    [87] S. H. Low. A duality model of tcp and queue management algorithms. IEEE/ACM transaction on networking, 2003, 11(4):525-536.
    [88] Wanqing Tu, Cormac J. Sreenan, and Weijia Jia. Worst-Case Delay Control in Multigroup Overlay Networks. IEEE Transactions on parallel and distributed systems, 2007,18(10):1407-1419.
    [89] Chae Y. Lee, Hyo Jung Park, and Jin woo Baek. An Overlay Multicast to Minimize End-to-end Delay in IP Networks. International Conference on Communication Technology, ICCT '06, Guilin, China, 2006:1-4.
    [90] Chuan Wu and Baochun Li., Optimal Peer Selection for Minimum-Delay Peer-to-Peer Streaming with Rateless Codes. P2PMMS'05, Singapore, November 11,2005.69-77.
    [91] Dai Han and Edward Chan. Quick Patch: An Overlay Multicast Scheme for Supporting Video on Demand in Wireless Networks. International Conference on Information Technology Interfaces ITI 2006, Cavtat, Croatia, June 19-22, 2006. 613-618.
    [92] Banerjee S, Kommareddy C, and Kar K.. Construction of an efficient overlay multicast infrastructure for real-time applications. IEEE INFOCOM, 2003. 1521-1531.
    [93] Chawathe Y.. Scattercast: an Architecture for Internet Broadcast Distribution as an Infrastructure Service. University of California, Berkeley, 2000.
    [94] Helder D. A. and Jamin S. End-host multicast communication using switch-trees protocols. Workshop on Global and Peer to Peer Computing on Large Scale Distributed System (GP2PC). Washington, DC, USA, 2002. 419-424.
    [95] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Comm., 2000, 18 (3) : 535-547.
    [96] Lijun Chen, Steven H. Low and John C. Doyle. Joint Congestion Control and Media Access Control Design for Ad Hoc Wireless Networks. IEEE INFOCOM, 2005. 2212-2222.
    [97] IEEE 802.11 WG.. International Standard for Information Technology Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN MAC and PHY specifications, 1999.
    [98] R. A. Calderbank, M. Chiang, S. H. Low, and J. C. Doyle. Layering as optimization decomposition: a mathematical theory of network architectures. Proceedings of the IEEE, 2007, 95(1):104-312.
    [99] D. Palomar, C. W. Tan, and M. Chiang. Distributed optimization of coupled systems with applications to network utility maximization. In Proc. IEEE ICASSP,2006.
    [100] Eren Gurses; Kim Anna N.. Utility optimal real-time multimedia communication in wireless mesh networks. Packet Video 2007, 12-13 Nov. 2007. 234-242.
    [101] M. L. Honig, C. Zhou, and S. Jordan. Utility-based power control for a two-cell cdma data network. IEEE transactions on wireless communications, 2005,4(6) :2764-1776.
    [102] X. Wang, C. Li, and D. renolds. Utility-based joint power and rate allocation for downlink cdma with blind multiuser detection. IEEE/ACM transactions on wireless communications, 2005,4(3):1163-1174.
    [103] S. Mau O. Ileri and N. B. Mandayam. Pricing for enabling forwarding in selfconguring ad hoc networks. IEEE/ACM transactions on wireless communications, 2005, 23(1):151-162.
    [104] J. Huang and M. L. Honig. Distributed interference compensation for wireless networks. IEEE Journal on selected areas in communications, 2006, 24(5):801-809.
    [105] J. W. Lee. Opportunistic power scheduling for dynamic mult-server wireless systems. In Proc. IEEE GLOBECOM, 2006.
    [106] A. J. Goldsmith, O. Daniel, and S. Boyd. Optimizing adaptive modulation in wireless networks via utility maximization. In Proc. IEEE ICC'08, 2008.
    [107] Vishwanath R., Abu R., Sudhir D., and Biswanath M.Xink Scheduling and Power Control in Wireless Mesh Networks with Directional Antennas. ICC 2008. 4835-4839.
    [108] Slawomir S., Marcin W., and Holger B.. Distributed Utility-Based Power Control: Objectives and Algorithms. IEEE Transactions on signal processing, 2007, 55(10): 5058-5068.
    [109] Jun Yuan, Zongpeng Li, Wei Yu, and Baochun Li. A Cross-Layer Optimization Framework for Multihop Multicast in Wireless Mesh Networks. IEEE Journal on selected areas in communications, 2006,24(11): 2092-2103.
    [110] Cover T, Thomas J A. Elements of information theory, John-Wiley and Sons, Inc., 1991.
    [111] Nama H., Chiang M., Mandayam N.. Utility-lifetime trade-off in self-regulating wireless sensor networks: a cross-layer design approach. IEEE International Conference on Communications. Istanbul, Turkey, 2006. 3511-3516.
    [112] Dimitrios Pendarakis, Sherlia Shi, and Dinesh Verma. ALMI: An application level multicast infrastructure. Proceedings of the 3rd USNIX Symposium on Internet Technologies and Systems (USITS'01),2001. 49-60.
    [113] Banerjee S, Bhattacharjee B, and Kommareddy C. Scalable application layer multicast.ACM SIGCOMM Computer Communication Review,2002,32(4):205-217.
    [114] Zhang Beichuan, Jamin S, and Zhang Lixia. Host multicast:A framework for delivering multicast to end users. IEEE INFOCOM. New York,USA:IEEE Press,2002:1366-1375.
    [115] Sylvia Ratnasamy, Francis P, and Mark Handley. A scalable content addressable network. ACM SIGCOMM Computer Communication Review,2001,31(4):161-172.
    [116] Castro M, Druschel P, and Kermarrec A. M.. SCRIBE: a largescale and decentralised application-level multicast infrastructure. IEEE Journal on Selected Areas in Communication, 2002,20(8): 100-110.
    [117] Chu Y H, Grao S, and Zhang H. A case for end systemmulticast. ACM SIGMETRICS Performance Evaluation Review, 2000, 28(1): 1-12.
    [118] Dimitrios Pendarakis, Sherlia Shi, and Dinesh Verma. ALMI: An application level multicast infrastructure. Proceedings of the 3rd USNIX Symposium on Internet Technologies and Systems (USITS'01 ),2001. 49-60.
    [119] Banerjee S., Bhattacharjee B, and Kommareddy C. Scalable application layer multicast. ACM sigcomm Computer Communication Review, 2002, 32(4):205-217.
    [120] D. Waitzman, C. Partridge, and S. Deering, Distance Vector Multicast Routing Protocol, IETF RFC 1075, Nov. 1988.
    [121] T. Ballardie, P. Francis, and J. Crowcroft. Core-Based Trees(CBT). ACM SIGCOMM Computer Comm. Rev., 1993, 23 (4) :85-95.
    [122] S. Deering et al.. The PIM Architecture for Wide-Area Multicast Routing. IEEE/ACM Trans. Networking, 1996, 4(2) : 153-162.
    [123] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure. IEEE J. Selected Areas in Comm., 2002, 22 (8) : 1489-1499.
    [124] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Application Layer Multicast. Proc. ACM sigcomm '02, 2002, 32 (4) : 205-217.
    [125] M. Castro et al.. An Evaluation of Scalable Application-Level Multicast Built Using Peer-To-Peer Overlays. Proc. IEEE infocom'02, 2003, (2) : 1510-1520.
    [126] Xing Jin, W.P. Ken Yiu, S.H. Gary Chan, and Yajun Wang. On Maximizing Tree Bandwidth for opology-Aware Peer-to-Peer Streaming. IEEE Transations on multimedia, 2007, 9(8): 1580-1592.
    [127] Ki-Il Kim. Bandwidth dependent overlay multicast scheme. IEEE International Conference on Communication systems, ICCS 2006. 10th Singapore 2006. 1-5.
    [128] H. Chu, S. Rao, S. Seshan, and H. Zhang. A Case for End System Multicast. Proc. of ACM Sigmetrics 2000, Santa Clara, California, USA. pp. 1-12, June,2000. 17-21
    [129] J. Jannotti, D. K. Gifford, K. L. Overcast: Reliable Multicasting with An OverlayNetwork. Proc. of The 4th Usenix Symposium on Operating Systems Design and Implementation, October 22-25, 2000, San Diego, California, USA.
    [130]S.Banerjee,B.Bhattachajee,and C.Kommareddy.Scalable Application Layer Multicast.Proc.Of ACM sigcomm,August 19-23,2002,Pennsylvania,USA.205-217.
    [131]De-Nian Yang,and Wanjiun Liao.On Bandwidth-Efficient Overlay Multicast.IEEE Transactions on parallel and distributed systems,2007,18(11):1503-1515.
    [132]Wanqing Tu,Xing Jin,Cormac J.Sreenan,and Mark W.O'Brien.Performance Analysis for Overlay Multicast on Tree and M-D Mesh Topologies(Ⅱ).IEEE ICC 2008.419-423.
    [133]Cui Y,Xue Y,and Nahratedt K.Optimal resource allocation in overlay multicast.IEEE Transaction on Parallel and distributed Systems,2006,17(8):808-823.
    [134]Y.H.Chu,S.Rao,S.Seshan,and H.Zhang.A case for end system multicast.IEEE J.Sel.Areas Commun.,2003,20(8):1456-1471.
    [135]M.Kwon and S.Fahmy.opology-aware overlay networks for group communication.in Proc.ACM Nossdav'02,May 2002.127-136.
    [136]M.Chiang,Y.Yi.Stochastic network utility maximization.Invited paper,European Transactions on Telecommunications,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700