用户名: 密码: 验证码:
激光沉积TiO_2基复合薄膜及其光学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文工作中,我们利用脉冲激光沉积(PLD)技术生长了TiO_2薄膜和掺Au纳米颗粒的TiO_2复合薄膜,并对薄膜的结构和光学性质进行了详细研究,采用飞秒激光和Z扫描方法测量了薄膜的非线性光学性质,所制备的薄膜表现出优良的非线性光学性质。论文的主要内容和结论如下:
     (1)系统研究了在PLD制备TiO_2薄膜过程中基片沉积温度、氧气分压、激光能量密度等参数对于TiO_2薄膜结构的影响。利用PLD技术在Si(100)基片和石英玻璃基片上制备了C轴取向的锐钛矿相TiO_2薄膜和(110)择优取向的金红石相薄膜,X射线衍射(XRD)、红外光谱、拉曼光谱结果显示薄膜具有良好的结晶性能。
     (2)采用Z扫描技术对制备的锐钛矿相和金红石相TiO_2薄膜的光学非线性进行了研究,测试中采用了放大级飞秒激光和振荡级飞秒激光作为光源。当采用放大级飞秒激光进行测量时,锐钛矿相和金红石相TiO_2薄膜的非线性折射率分别为-6.32×10~(17)m~2/W和-2.7×10~(-17)m~2/W,非线性吸收系数分别为-6.2×10~(-11)m/W和-2.6×10~(-10)m/W;当采用振荡级飞秒激光进行测量时,薄膜表现出负的非线性吸收系数和正的非线性折射率。
     (3)采用PLD方法制备了不同掺杂浓度的Au:TiO_2复合薄膜,采用XRD方法分析了薄膜的晶体结构。通过透射光谱分析了复合薄膜的线性光学性质。采用Z扫描方法测量了复合薄膜的非线性光学性质。采用放大级飞秒激光为光源时,薄膜的非线性吸收系数和非线性折射率均为负,随着掺杂浓度的提高,非线性效应增强;采用振荡级飞秒激光为光源时时,薄膜的非线性折射率为正,然而在退火前薄膜随着Au掺杂浓度的增长非线性吸收系数由负变正,退火后薄膜的非线性吸收系数均为负。
     (4)采用PLD的方法制备了Au/TiO_2多层薄膜,测量了薄膜的透射光谱,结果表明随着Au掺杂浓度的增加,多层薄膜的吸收峰发生了红移。采用放大级飞秒激光对复合薄膜的非线性光学性质进行了Z扫描测量,结果表明薄膜的非线性吸收系数和非线性折射率均为负。
     (5)在石英玻璃基片上制备了掺杂周期阵列排布Au颗粒的TiO_2复合薄膜,研究了Au颗粒大小和TiO_2基质对薄膜的吸收峰的影响,结果表明随着Au颗粒的增长和TiO_2基质的加入,吸收峰发生红移。
In this work,TiO_2 films and nano-composite films containing Au particles embedded in TiO_2 matrices were fabricated using pulsed laser deposition technique(PLD).The structure and nonlinear optical properties of the films were investigated.The nonlinear optical properties were measured by Z-scan method using femtosecond laser.And the films show large optical nonlinear responses.The main results are listed as follows,
     (1) The effects of the substrate temperature,oxygen pressure and laser fluences on the crystal structure of TiO_2 films were studied.For the first time,c-axes oriented anatase TiO_2 films and(110) oriented rutile TiO_2 films were fabricated on Si(100),respectively. The results of X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR) and Raman spectra show that the prepared films have good crystal structure.
     (2) The nonlinear optical properties of the anatase and rutile TiO_2 films were investigated by z-scan method using amplified femtosecond laser and seed femtosecond laser.When amplified femtosecond laser was used,the nonlinear optical refractive indexes of the anatase films and the rutile film were measured to be 6.32×10~(-17)m~2/W and -2.7×10~(-17)m~2/W,the nonlinear refractive indexis were -6.2×10~(-11)m/W和-2.6×10~(-10)m/W, respectively.When the seed femtosecond laser was used,the nonlinear optical absorption coefficients were negative,but the nonlinear refractive indexes were positive.
     (3) Au:TiO_2 composite films were fabricated using PLD method.The crystal structure of the films was determined by XRD.The linear optical properties of the films were analyzed by transmission spectra.The results show that the position of surface plasmon resonance(SPR) peaks of the composite films changes to longer wavelength with the increasing of the annealing temperature and Au concentration.The nonlinear optical properties of the films were investigated by z-scan method using amplified femtosecond laser and seed femtosecond laser.When the amplified femtosecond laser was used,the nonlinear optical absorption coefficients and refractive indexes of the films were negative. The nonlinear optical responses increase with the increasing of the Au concentration. When the seed femtosecond laser was used,the nonlinear refractive indexes were positive, the nonlinear absorption coefficients of the films before annealing treatment change from negative to positive with the increasing of Au concentration.However,after annealing the nonlinear absorption coefficients were negative for all composite films.
     (4) Multilayer Au/TiO_2 composite films were fabricated by PLD.The transmission spectra were measured.The results show that the SPR peak position of Au/TiO_2 films change to longer wavelength with the increasing of the Au concentration.The nonlinear optical absorption coefficients and refractive indexes were determined to be negative by z-scan method using amplified femtosecond laser.
     (5) Composite films consisting of periodic gold nanoparticle arrays coated with TiO_2 were fabricated using PLD method.The effects of the Au particle size and the TiO_2 matrix on the peak position of the films were investigated.The results show the peak position show red shift with the increasing of the Au particle size.
引文
[1] Nakanishi H., Matsuda H., Okada S. Optical Functional Materials. Tokyo: Soc. of Polymer Science, Kyoritsu, 1991: 41-105
    [2] Hashimoto T., Yoko T., Sakka S. Third-order nonlinear optical susceptibility of a-iron(Ⅲ) oxide thin film prepared by the sol-gel method. J. Ceram. Soc. Jap., 1993,101(1):64-68
    [3] Masanori A., Kohei K., Masatake H. et al. large third-order optical nonlinearities in transition-meal oxides. Nature, 1995, 374(6523):625-627
    [4] Gayvoronsky V., Timoshenko V., Brodyn M. et al. Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring.Phys. Stat. Sol., 2005, 2(9):3303-3307
    [5] Gayvoronsky V., Galas A., Shepelyavyy E. et al. Giant nonlinear optical response of nanoporous anatase layers. Appl. Phys. B, 2005, 80(1):97-100
    [6] Dijkkamp D., Venkatesan T., Wu X.D., et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T_c bulk material. Appl. Phys. Lett., 1989, 51(8):619-621
    
    [7] Chrisey D.B., Hubler G.K. Pulsed Laser Deposition of Thin Films. New York, 1994.
    [8] Hayashi S., Koh R., Ichiyama Y. et al. Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles. Phys.Rev.Lett., 1988,60(11): 1085-1088
    [9] Gauthier V., Bourgeois S., Sibillot P. et al. Growth and characterization of AP-MOCVD iron doped titanium dioxide thin films. Thin Solid films, 1999,340(1-2): 175-182
    [10] Martinet C, Paillard V., Gagnaire A. Deposition of SiO_2 and TiO_2 thin films by plasma enhanced chemical vapor deposition for antireflection coating. J.Non-Crystalline Solids, 1997, 216:77-82
    [11] Babelon P., Dequiedt A.S., Mostéfa-Sba H. et al. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998, 322(1-2):63-67
    
    [12] Yamagishi M., Kuriki S., Song P.K. Thin film TiO_2 photocatalyst deposited by reactive magnetron sputtering. Thin solid films, 2003, 442(1-2):227-231
    
    [13] Sicha J., Musil J., Meissner M. et al. Nanostructure of photocatalytic TiO_2 films sputtered at temperatures below 200℃. Applied surface science, 2008, 254:3793-3800
    [14] Eufinger K., Poelman D., Poelman H. et al. Photocatalytic activity of DC magnetron sputter deposited amorphous TiO_2 thin films. Applied Surface Science, 2007,254(13):148-152
    [15] Jan S., David H., Jindrích M. et al. Surface morphology of magnetron sputtered TiO_2 Films. Plasma Processes and Polymers, 2007,4(S1):S345-S349
    [16] Negishi N., Takeuchi K. Preparation of TiO_2 thin film photocatalysts by dip coating using a highly viscous solvent. J.sol-gel Sci.&Technol., 2001, 22(1-2): 23 - 31
    [17] Zheng L.Y., Xu T.X., Li G.R. et al. Influence of thickness on oxygen-sensing properties of TiO_2 thin films on A1_2O_3. Jpn.J.Appl.Phys, 2002, 41(7A): 4655-4658
    [18] Li X.P., Zhang J.B., Yin F. et al. Preparation and photocatalytic characterization of nanoporous TiO_2. Chinese Chem.Lett., 2002, 13 (9): 891-892
    [19] Sato S., Ueda K., Kawasaki Y. et al. In Situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO_2 films. J.Phys.Chem.B,2002,106(35):9054-9058
    [20] Moriguchi I., Tsujigo Y., Teraoka Y. et al.Two-dimensional sol-gel synthesis of ultrathin zirconia and hetero-layered titania/zirconia films. J.Sol-Gel Sci.& Technol.,2000,19(1-3):227-230
    [21] O'Regan B., Gratzel M. A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991,353(6346):737-739
    [22] Kavan L., Stoto T., Graetzel M. et al. Quantum size effects in nanocrystalline semiconducting TiO_2 layers prepared by anodic oxidative hydrolysis of ticl3. J.Phys.Chem., 1993,97:9493-9498
    [23] Zhitomirsky. Electrolytic TiO_2-RuO_2 deposits. J. Mater. Sci., 1999, 34(10): 2442-2447
    [24] Karuppuchamy S., Nonomura K., Yoshida T. et al. Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells.Solid State Ionics. 2002,151(1-4):19-27
    [25] Haber J., Nowak P., Zurek P. Electrodeposition of hedgehog-shaped gold crystallites on TiO_2 surface and their behavior in anodic oxidation of oxalic acid, Langmuir,2003,19(1):196-199
    [26] Pailya R., DasGuptaa A., DasGuptaa N. et al. Effect of oxygen pressure and laser fluence during pulsed laser deposition of TiO_2 on MTOS(Metal-TiO_2-SiO_2-Si)capacitor characteristics. Thin Solid Films, 2004,462-463:57-62
    [27] Pailya R., DasGuptaa A., DasGuptaa N. et al. Pulsed laser deposition of TiO_2 for MOS gate dielectric. Applied Surface Science, 2002,187(3-4):297-304
    [28] Singh R., Paily R., DasGuptal A. et al. Optimized dual temperature pulsed laser deposition of TiO_2 realize MTOS(metal-TiO_2-SiO_2-Si) capacitors with ultrathin gate dielectri. Semicond. Sci. Technol. 2005, 20(1):38-43
    [29] Chambers S.A., Wang C.M., Thevuthasan S. et al. Epitaxial growth and properties of MBE-grown ferromagnetic Co-doped TiO_2 anatase films on SrTiO_3(001) and LaAlO_3(001). Thin Solid Films, 2002,418(2):197
    [30] Kennedy R.J., Stampe P.A. The influence of lattice mismatch and film thickness on the growth of TiO_2 on LaAlO_3 and SrTiO_3 substrates. Journal of Crystal Growth,2003,252(1):333-342
    [31] Murugesan S., Kuppusami P., Parvathavarthini N. et al. Pulsed laser deposition of anatase and rutile TiO_2 thin films. Surface & Coatings Technology. 2007,201(18):7713-7719
    [32] Sakama H., Osada G., Tsukamoto M. Epitaxial growth of anatase TiO_2 thin films on LaAlO_3(100) prepared using pulsed laser deposition. Thin Solid Films, 2006,515(2):535-539
    [33] Luca D., Macovel D., Teodorescu C. M. characterization of titania thin films prepared by reactive pulsed-laser ablation. Surf. Sci. 2006,600(18):4342-4336
    [34] Stankova N.E., Atanasov P.A., Dikovskaa A. Growth of anatase TiO_2 thin films by laser ablation. Proc, of SPIE, 2005,5830:60-64
    [35] Yuwono A., Xue J.M., Wang J. et al.Titania-PMMA nanohybrids of enhanced nanocrystallinity. J. Ele. 2006,16(4):431-439
    [36] Liao H.B., Xiao R.F., Fu J.S. et al. Large third-order optical nonlinearity in Au:SiO_2 composite films near the percolation threshold. Appl. Phys. Lett. 1997:70 (1)
    [37] Liao H.B., Xiao R.F., Wang H. et al. Large third-order optical nonlinearity in Au:TiO_2 composite films measured on a femtosecond time scale. Appl. Phys. Lett.,1998, 72(15),1817-1819
    [38] Liao H.B., Xiao R.F., Fu J.S. et al. Large third-order nonlinear optical susceptibility of Au-Al_2O_3 composite films near the resonant frequency. Appl. Phys. B 1997,65(4-5):673-676
    [39] Liao H.B., Xiao R.F., Fu J.S. et al. Origin of third-order optical nonlinearity in Au:SiO_2 composite films on femtosecond and picosecond time scales. Optics Letters,1998,23(5):388-390.
    [40] Shen H., Cheng B., Lu G.W. et al. Enhancementof optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology, 2006, 17(16):4274-4277
    [41] Wang W.T., Wang Y.M., Dai Z.H. et al. Nonlinear optical properties of periodic gold nanoparticle arrays. Applied Surface Science, 2007,253(10):4673-676
    [42] Ning T.Y., Zhou Y.L. et al. Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO. J. Phys. D: Appl. Phys. 2007 ,40(21):6705-6708
    [43] Yuen K.P., Law M.F., Yu K.W. et al. Optical nonlinearity enhancement via geometric anisotropy. Phys. Rev. E.1997,56(2): 1322-1325
    [44] Yuen K.P., Law M.F., Yu K.W. et al. Enhancement of optical nonlinearity through anisotropic microstructures. Opt. Commun. 1998, 148(1-3): 197-207
    [45] Liao H.B., Wen W., Wong G.K.L. Preparation and characterization of Au/SiO_2 multilayer composite films with nonspherical Au particles. App. Phys. A: Mat. Sci.Proc. 2005, 80(4):861-864
    [46] Agarwal G.S., Dutta Gupta S., T-matrix approach to the nonlinear susceptibilities of heterogeneous media. Phys. Rev. A 1988,38(11):5678-5687
    [47] Zeng X.C., Bergman D.J., Hui P.M. et al. Effective-medium theory for weakly nonlinear composites. Phys. Rev. B 1988, 38(15): 10970-10973
    [48] Shalaev V.M., Stockman M.I., Resonant excitation and nonlinear optics of fractals. Physica A 1992,185:181-186
    [49] Levy O., Bergman D.J., Clausius-Mossotti approximation for a family of nonlinear composites. Phys. Rev. B 1992,46(11): 7189-7192
    [50] Shalaev V.M., Poliakov E.Y., Markel V.A. Small-particle composites. Ⅱ. Nonlinear optical properties. Phys. Rev. B 1996, 53(5): 2437-2449
    [51] Shalaev V.M., Sarychev A.K., Nonlinear optics of random metal-dielectric films. Phys. Rev. B 1998,57(20): 13265-13288
    [52] Gao L., Yu K.W., Li Z.Y. et al. Effective nonlinear optical properties of metal-dielectric composite media with shape distribution. Phys. Rev. E 2001, 64(3):036615-1-8
    [53] Goncharenko A.V., Popelnukh V.V., Venger E.F., Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites. J. Phys. D: Appl.Phys. 2002,35(15): 1833-1838
    [54] Pinchuk A., Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles. J.Phys. D: Appl. Phys. 2003,36(5): 460-464
    [55] Hache F., Ricard D., Flytzanis C, Optical nonlinearities of small metal particles: Surface mediated resonance and quantum size effects. J. Opt. Soc. Am. B 1986,3(12): 1647-1655
    [56] Stroud D., Hui P.M. Nonlinear susceptibilities of granular matter. Phys. Rev. B 1988, 37(15):8719-8724
    [57] Stroud D., Van E. Wood., Decoupling approximation for the nonlinear-optical response of composite media. J. Opt. Soc. Am. B 1989, 6(4):778-786
    [58] Ma H., Xiao R., Sheng P. Third-order optical nonlinearity enhancement through composite microstructures. J. Opt. Soc. Am. B 1998,15(3): 1022-1029
    [59] Ricard D., Roussignol P., Flytzanis C., Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett. 1985,10(10): 511-513
    [60] Puech K., Henari F., Blau W. et al. Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles. Europhys. Lett. 1995, 32(2): 119-124
    [61] Huang H.H., Yan F.Q., Kek Y.M., et al. Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir. 1997,13(2): 172-175
    [62] Ganeev R.A., Ryasnyansky A.I., Stepanov A.L. et al. Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm.Opt. Quant.Electron. 2004,36(10):949-960
    [63] Yang G., Wang W., Zhou Y. et al. Linear and nonlinear optical properties of Ag nanocluster/BaTiO_3 composite films. Appl. Phys. Lett. 2002,81(21):3969-3971
    [64] Scalisi A.A., Compagnini G., D'Urso L. et al. Nonlinear optical activity in Ag-SiO_2 nanocomposite thin films with different silver concentration. Appl. Surf. Sci.2004,226(1-3):237-241
    [65] Unnikrishnan K.P., Nampoori V.P.N., Ramakrishnan V. et al. C.P.G. Nonlinear optical absorption in silver nanosol. J. Phys. D: Appl. Phys. 2003,36(11): 1242-1245
    [66] Qu S., Gao Y., Jiang X. et al. Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser. Opt. Commun.2003,224(4-6): 321-327
    [67] Wang W., Yang G., Wu W. et al. Effects of the morphology and nanostructure on the optical nonlinearities of Au:BaTiO_3 nanocomposite films. J. Appl. Phys. 2003,94:6837-6840
    [68] Ma G., Sun W., Tang S.H. et al. Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt. Lett. 2002,27(12): 1043-1045
    [69] Zhou P., You G., Li J. et al. Annealing effect of linear and nonlinear optical properties of Ag:Bi_2O_3 nanocomposite films. Opt. Expr. 2005,13(5): 1508-1514
    [70] Cotell C.M., Schiestel S., Carosella C.A. et al. Ion-beam assisted deposition of Au nanocluster/Nb2O5 thin films with nonlinear optical properties. Nucl. Instr. and Meth. in Phys. Res. B 1997, 127-128: 557-561
    [71] Zhang C.F., You G.J., Dong Z.W. et al. Off-resonant third-order optical nonlinearity of an Ag:TiO_2 composite film. Chin. Phys. Lett. 2005, 22(2): 475-477
    [72] Pincon N., Prot D., Palpant B. et al. Large optical Kerr effect in matrix-embedded metal nanoparticles. Mat. Sci. Eng. C 2002,19(1-2): 51-54
    [73] Pincon N., Palpant B., Prot D. et al. Third-order nonlinear optical response of Au:SiO_2 thin films: Influence of gold nanoparticle concentration and morphologic parameters. Eur. Phys. J. D 2002,19(3):395-402
    [74] Zhou P., You G.J., Li Y.G. et al. Linear and ultrafast nonlinear optical response of Ag:Bi_2O_3 composite films. Appl. Phys. Lett. 2003, 83(19):3876-3878
    [75] Hamanaka Y., Fukuta K., Nakamura A. et al. Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl. Phys. Lett. 2004, 84(24):4938-4940
    [76] West R., Wang Y., Goodson T. Nonlinear absorption properties in novel gold nanostructured topologies. J. Phys. Chem. B 2003,107(15):3419-3426
    [77] Okada N., Hamanaka Y., Nakamura A. et al. Linear and nonlinear optical response of silver nanoprisms: Local electric fields of dipole and quadrupole plasmon resonances. J. Phys. Chem. B 2004,108(26): 8751-8755
    [78] Faccio D., Di Trapani P., Borsella E. et al. Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range.Europhys. Lett,1998, 43(2):213-218
    [79]Li Y.,Takata M.,Nakamura A.Size-dependent enhancement of nonlinear optical susceptibilities due to confined excitons in CuBr nanocrystals.Phys.Rev.B 1998,57(15):9193-9200
    [80]Bigot J.Y.,Merle J.C.,Cregut O.et al.Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses.Phys.Rev.Lett.1995,75(25):4702-4705
    [81]Hamanaka Y..Hayashi N..Omi S.et al.Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass.J.Lumin.1997,76&77:221-225
    [82]Nisoli M.,Stagira S.,De Silvestri S.et al.Ultrafast electronic dynamics in solid and liquid gallium nanoparticles.Phys.Rev.Lett.1997,78(18):3575-3578
    [83]Perner M.,Bost P.,Becker U.et al.Optically induced damping of the surface plasmon resonance in gold colloids.Phys.Rev.Lett.78(11):2192-2195.
    [84]Inouye H.,Tanaka K.,Tanahashi I.et al.Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticles system.Phys.Rev.B 1998,57(18):11334-11340
    [85]钱士雄,王恭明.非线性光学原理和进展,复旦大学出版社,2001.
    [86]Morita N.,Tokizaki T.,Yajima T.Time-delayed four-wave mixing using incoherent light for observation of ultrafast population relaxation.J.Opt.Soc.Am.B,1987,4(8):1269-1275
    [87]Friberg S.R.,Smith P.W.Nonlinear optical glasses for ultrafast optical switches.IEEE J.Quant.Electr.,1987,QE-23(12):2089-2094.
    [88]Haiml M.,Siegner U.,Morier-Genoud F.Femtosecond response times and high optical nonlinearity in beryllium-doped low temperature grown GaAs.Applied Physies Letters.1999,74(9):1269-1271.
    [89]Guezo M.,Even J.,LeCorre A.et al.Ultrashort,nonlinear,optical time response of Fe-doped in GaAs/InP multiple quantum wells in range.Applied Physics Letters.2003,82(11):1670-1673.
    [90]Sheik-Babaei M.,Said A.A.et al.Sensitive measurement of optical nonlinearities using a single beam.IEEE J Quantum Electron,1990,26(4):760-769.
    [91] Boyd R.W. Nonlinear Optics. New York: AeademiePress, 1992
    
    [92] Gordon J.P., Leite R.C.C. et al., Long-transient effects in lasers with inserted liquid samples. J.Appl. Phys. 1965, 36(1):3-8
    [93] Kovsh D., Yang S., Hagan D.J. et al. Nonlinear optical beam propagation for optical limiting. Appl.Opt. 1999, 38(24):5168-5180
    [94] Heritier J. Electrostrictive limit and focusing effects in pulsed photoacoustic detection. Opt.Comm. 1983, 44: 267-272
    [95] Brochard P., Grolier-Mazza V.,Cabanel R. Thermal nonlinear refraction in dye solution: a study of the transient regime. J. Opt. Soc. Am. B, 1997,14(2):405-414
    [96] Falconieri M., Salvetti G. Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS_2. Appl. Phys. B 1999, 69(2): 133-136
    [97] Palpant B., Rashidi-Huyeh M., Gallas B. et al. Highly dispersive thermo-optical properties of gold nanoparticles. Applied Physics Letters, 2007, 90(22): 223105(1-3)
    [98] Andrea G., Razzari L., Righini M. et al. Z-scan measurements using high repetition rate lasers: how to manage thermal effects. Optics Express, 2005,13(20): 7976-7981
    [99] Kamada K., Matsunaga K., Yoshino A. et al. Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation. J. Opt. Soc. Am. B 2003,20(3): 529-537.
    [100] Falconieri M. Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. J. Opt. A: Pure Appl. Opt. 1999,1(6): 662-667
    [101] Kang S.H., Kim J., Kim Y. et al. Surface modification of stretched TiO_2 nanotubes for solid-state dye-sensitized solar cells. J. Phys. Chem. C 2007, 111(26):9614-9623.
    [102] Kim S.S., Yum J.H., Sung Y.E. et al. Improved performance of a dye-sensitized solar cell using a TiO_2/ZnO/Eosin Y electrode. Solar Energy Materials & Solar Cells.2003, 79(4): 495-505
    [103] Hong N.H., Prellier W., Sakai J. et al. Fe- and Ni-doped TiO_2 thin films grown on LaAlO_3 and SrTiO_3 substrates by laser ablation.Appl.Phys.Lett.2004,84(15):2850-2852.
    [104]Hong N.H.,Sakai J.,Prellier W.,Ferromagnetism in transition-metal-doped TiO_2thin films,Physical Review B,2004,70:195204.
    [105]Kim Y.J.,Thevuthasan S.,Droubay T.et al.Growth and properties of molecular beam epitaxially grown ferromagnetic Fe-doped TiO_2 rutile films on TiO_2(110),Appl.Phvs.Lett.2004.84(18):3531-3533.
    [106]Sullivan J.M.,Erwin S.C.Theory of dopants and defects in Co-doped TiO_2 anatase.Physical Review B,2003,67(14):144415
    [107]仲维卓,华素坤.晶体生长形态学.科学出版社,1999.
    [108]Sunagawa I.Morphology of crystal Tokyo:Terra Scientific Publishing Company,1987
    [109]Hartman P.,Crystal Growth:An Introduction.London:North Holland Publishing Company,1973
    [110]Horn M.,Schwerdtfeger C.F.,Meagher E.P.Refinement of the structure of anatase at several temperatures.Zeitschrift fur Kristallo graphie,1972,136:273-281.
    [111]Langford J.I.,Wilson A.J.C.Scherrer after sixty years:A survey and some new results in the determination of crystallite size.J.Appl.Cryst.1978,11(2):102-113.
    [112]Tamiko O.,Shouta N.,Tsuyoshi U.et al.Laser ablated plasma plume characteristics for photocatalyst TiO_2 thin films preparation.Thin Solid Films,2006,506- 507:106.
    [113]Kitazawa S.,Choi Y.,Yamamoto S.In situ optical spectroscopy of PLD of nano-structured TiO_2.Vacuum,2004,74(3-4):637-642.
    [114]Djaoued Y.,Badilescu S.,Pandurang V.A.Study of nanocrystalline sol-gel prepared titania films by Raman,FTIR,XRD,and atomic force microscopy.Proc.of SPIE.2001,4469:70-84.
    [115]Zhang J.Y.,Boyd I.W.,O'Sullivan B.J.et al.Nanocrystalline TiO_2 films studied by optical,XRD and FTIR spectroscopy.J.Non-Cryst.Solids.2002,303(1):134.
    [116]Kasikov C.,Aita R.Raman scattering by thin film nanomosaic rutile TiO_2.Appl. Phys. Lett. 2007, 90(21):213112.
    [117] Orendorz A., Brodyanski A., Losch J. et al. Phase transformation and particle growth in nanocrystalline anatase TiO_2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf. Sci. 2007, 601(18): 4390.
    [118] Mazza T., Barborini E., Piseri P. et al. Raman spectroscopy characterization of TiO_2 rutile nanocrystals. Phy. Rev. B, 2007,75(4): 045416.
    [119] Manifacier J.C., Gasiot J., Fillard J.P. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E:Sci. Instrum. 1976, 9(11): 1002-1004.
    [120] Simpson J.R., Drew H.D. Optical band-edge shift of anatase Ti_(1-x)Co_xO_(2-δ). Phys. Rev. B, 2004, 69(19): 193205-193208.
    [121]Mardare D., Tasca M, Delibas M. On the structural properties and optical transmittance of TiO_2 r.f. sputtered thin films. Appl. Surf. Sci. 2000, 156(1-4):200-206.
    [122] Sharan A., An I., Chen C. et al. Large optical nonlinearities in BiMnO_3 thin films. Appl. Phys. Lett. 2003, 83(25): 5169-5171.
    [123] Huang Y.L., Sun C.K., Liang J.C. et al. Femtosecond Z-scan measurement of GaN. Appl. Phys. Lett. 1999, 75(22): 3524-3526.
    [124] Shi F.W., Meng X.J., Wang G.G. et al. The third-order optical nonlinearity of Bi_(3.25)La_(0.75)Ti_3O_(12) ferroelectric thin film on quartz. Thin Solid Films, 2006,496(2):333-335.
    [125]Elim H.I., Ji W., Yuwono A.H. et al. Ultrafast optical nonlinearity in polymethylmethacrylate-TiO_2 nanocomposites. Appl. Phys. Lett. 2003, 82(16):2691-2693.
    [126] Chen Q.Y., Sargent E.H., Leelere N. et al. Ultra fast nonresonant third-order optical nonlinearity of a conjugated.3, 3-bipyridine derivative from 1150 to 1600nm. Appl. Phys.Lett, 2003, 82(25):4420-4422.
    [127] Mie G., Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 1908, 25:377-445.
    
    [128] Jackson J.D. Electrodynamics. 2nd ed. New York: Wiley, 1975
    
    [129] Stratton J.A. Electromagentic Theory. New York: McGraw-Hill, 1941
    [130] Hache F., Rieard D., Flytzanis Chr. et al. The optical kerr effeet in small metal particles and metal colloids: the case of gold applied. Physics A-Solids and Surface.1988,47(4):347.
    [131]Rashidi-Huyeh M., Palpant B. Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic field enhancement. Phys. Rev. B 2006, 74(7):075405
    [132] Winsemius P., van Kampen F.F., Lengkeek H.P. et al. Temperature dependence of the optical properties of Au, Ag and Cu. J. Phys. F: Metal Phys. 1976,6(8):1583-1606
    [133] Aspnes D.E., Studna A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B, 1983,27(2): 985 -1009
    [134] Weast R.C., Lide D.R., Astle M.J. et al. CRC Handbook of Chemistry and physics Section E-389, Florida: CRC Press, 1989-1990
    [135]Manikandan D., Mohan S., Magudapathy P. et al. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study. Physica B 2003, 325(1-4):86-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700