用户名: 密码: 验证码:
西秦岭—东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大陆中部东—西走向的“中央造山系”是我国北方(以华北和塔里木为代表)和南方(以华南和羌塘为代表)两大陆块群碰撞拼合的结合部,其形成与原特提斯洋和古特提斯洋的演化密切相关。“中央造山系”东段是华北和华南陆块碰撞形成的秦岭—大别一条造山带;西段西秦岭以西撒开分为两支:北部的北祁连造山带和南部的昆仑造山带,中间夹有众多微陆块。查明秦岭—大别造山带与祁连—昆仑造山带及夹于其中的微陆块的衔接、拼合关系是中国大陆诸多陆块构造演化研究的关键问题,而西秦岭—东昆仑造山带正是东西衔接、转换的关键区域。“中央造山系”“秦—祁—柴—昆”地区沿各主要缝合带保存了大量与原特提斯洋和古特提斯洋构造演化有关的蛇绿岩和岛弧岩浆岩。精确测定区内出露的蛇绿岩和岛弧岩浆岩的年龄与地球化学性质,不仅为西秦岭和东昆仑造山带的演化,而且对查明中国中西部众多造山带与东部秦岭—大别造山带的衔接关系及特提斯洋的演化提供重要制约。前人研究成果及尚存问题分别是:
     ①东秦岭地区厘定出“商—丹”和“勉—略”两条重要的缝合带;早古生代华北陆块南缘的“商—丹洋”(属原特提斯构造域)发育有完整的“弧—盆”体系,晚古生代“勉—略洋”(属古特提斯构造域)的打开使南秦岭微陆块从冈瓦纳大陆分离。其中“商—丹”带向西如何延伸是秦岭构造研究的关键问题之一,前人依据地层对比提出的“商—丹缝合带西延与西秦岭天水—武山缝合带相连”的观点尚缺乏西秦岭地区蛇绿岩和岛弧岩浆岩的可靠地球化学和年代学数据。此外,“商—丹洋弧—盆”体系演化历史中的一些重要事件尚缺乏同位素年龄的制约,如“商—丹洋”洋壳的初始形成时代,二郎坪弧后盆的开启时代及“商—丹洋盆”闭合时代等。
     ②西秦岭以西的“祁—柴—昆”地区存在众多与冈瓦纳陆块具有较强亲缘性的微陆块,它们彼此之间为早古生代缝合带所分割。新元古代—早古生代时期总体呈现原特提斯“多岛洋”的构造格局,本文工作开展之前积累的年代学数据显示该“多岛洋”的南部边界是“东昆中断裂带”,而更向南的“东昆南断裂带”因为仅有晚古生代蛇绿岩年龄数据报道,被认为属于古特提斯构造域。但西段布青山地区新发现的早古生代蛇绿岩暗示东昆南断裂带东段阿尼玛卿地区也可能存在尚未被发现的早古生代蛇绿岩,或者布青山地区与阿尼玛卿地区具有不同的演化历史。澄清这一问题涉及原特提斯“多岛洋”的南界问题,并需要对该带蛇绿岩开展更深入的年代学研究。
     ③现代印度洋MORB表现出的特殊同位素特征是否继承自特提斯洋是地质学领域的热点问题。前人依据中国西部特提斯构造域(包括新特提斯、古特提斯和原特提斯)蛇绿岩均具有“印度洋MORB型同位素组成特征”判定现代佣妊驧ORB表现出的特殊同位素特征是从特提斯洋继承而来的。但是前人用于Pb同位素示踪的特提斯蛇绿岩中具MORB特征的玄武岩和辉长岩样品普遍存在不同于现代大洋MORB的元素Pb的正异常,因此,使用这些蛇绿岩Pb同位素示踪获得的“印度洋地幔大体上继承了特提斯洋地幔”的认识尚存在疑问。
     ④随着古特提斯和新特提斯洋的闭合,中国东部和西部在中—新生代分别发生了若干大陆碰撞构造运动。中国东部大陆是三叠纪华北陆块和华南陆块碰撞形成。中国西部大陆是中—新生代羌塘、拉萨地块和印度陆块与古生代时已与华北陆块拼合的青藏高原诸多微陆块(从北向南包括中祁连、南祁连、柴达木、东昆北和东昆南等)接连发生碰撞拼合形成的。这东、西两套碰撞构造运动在“中央造山系”结合部——西秦岭和“祁—柴—昆”地区会发生什么构造响应是一个令人感兴趣的科学问题。
     针对上述四个科学问题,本文对西秦岭—东昆仑造山带蛇绿岩和岛弧型岩浆岩及部分中生代构造—岩浆事件开展地球化学和年代学研究,获得的结果和新认识主要是:
     1西秦岭早古生代“天水—武山”洋及其“弧—盆”构造体系的年代学格架
     本文对西秦岭地区沿天水—武山构造带及其邻近地区发育的蛇绿岩和岩浆岩开展了系统的地球化学和锆石SHRIMP U-Pb及角闪石~(40)Ar/~(39)Ar年代学研究,判明了它们各自形成的构造环境和时代。从而清晰地给出了西秦岭早古生代“天水—武山洋”及其弧—盆体系的年代学格架,支持“商—丹缝合带西延与天水—武山缝合带相连”的论断。
     关子镇蛇绿混杂岩位于“天水—武山”构造带中部。本文识别出该蛇绿混杂岩包含了古洋壳型和古岛弧火成岩型两种类型:古洋壳型蛇绿岩样品不具有显著的Nb负异常(La/Nb)_N<1.5、LREE亏损或略富集,(La/Yb)_N<1.4、亏损的Nd同位素组成ε_(Nd)(t)=2.1~4.0,这些特征与MORB型变玄武岩类似;并首次在该区鉴别出洋中脊成因的“大洋斜长花岗岩类”。古岛弧型蛇绿岩样品具有显著的Nb负异常(La/Nb)_N=3.74、LREE显著富集(La/Yb)_N=17.1、富集的Nd同位素组成ε_(Nd)(t)=-6.9。锆石SHRIMP U-Pb定年结果为:古洋壳成因变辉长岩和变斜长花岗岩形成时代分别是534±9 Ma和517±8 Ma;古岛弧成因变辉长岩形成时代为489±10 Ma。变斜长花岗岩中角闪石的~(40)Ar/~(39)Ar坪年龄394.9±5.2Ma指示了关子镇蛇绿混杂岩经历角闪岩相变质作用的时代。
     武山蛇绿混杂岩位于“天水—武山”构造带西部。该蛇绿混杂岩中的桦林沟辉长岩和鸳鸯镇辉长闪长岩样品LREE富集,(La/Yb)_N分别为7.1和10.8,Nb、Ta、Ti显著亏损,显示它们形成于岛弧环境;锆石SHRIMP U-Pb年龄分别是440±5Ma和456±3。关子镇和武山岛弧岩浆岩样品的ε_(Nd)(t)值(-3.8~-6.9)表明关子镇古岛弧和武山古岛弧都是华北陆块南缘的近陆古岛弧。
     “天水—武山”断裂以北的秦岭群北侧,沿清水—红土堡一带出露有酸性和基性火山岩。它们的SiO_2含量变化于47.69%~50.80%和68.83%~70.14%,显示具有“双峰式”火山岩的特征。清水“陈家河群”“双峰式”火山岩中的玄武岩与红土堡玄武岩具有相似的痕量元素和Sr-Nd同位素组成。高放射成因Pb同位素组成,特别是高~(207)pb/~(204)pb比值表明这些玄武岩的形成与俯冲带有关。两件清水新城英安岩样品的锆石SHRIMP U-Pb年龄447±8 Ma和448±8与已报道的红土堡玄武岩年龄443.4±1.7Ma接近。据此提出“陈家河群”火山岩形成于弧后盆初始拉张阶段,而不是前人建议的“形成于岛弧环境”。
     综合上述新数据,提出如下的西秦岭早古生代“天水—武山”洋构造演化模型:“天水—武山”洋形成于早—中寒武世(534±9Ma~517±8 Ma),洋壳初始消减发生在晚寒武—早奥陶世(489±10Ma);武山地区存在晚奥陶(456±3Ma)—早志留世(440±5Ma)的两次洋壳消减事件;同时在448±8Ma时,清水—红土堡弧后盆开始拉张形成;在早—中泥盆世(394.9±5.2Ma)发生弧陆碰撞并引发变质作用。对比研究表明,本文建立的“天水—武山洋”及其弧—盆体系与东秦岭沿“商—丹”构造带发育的古大洋及其弧—盆体系之间存在很好的对应关系。因此,“商—丹”洋和“天水—武山”洋共同构成了华北陆块南缘早古生代“秦岭洋”,其演化历史可能反映了原特提斯部分边缘海的演化历史。
     2东昆南构造带存在晚震旦—早奥陶世的洋盆
     首次在东昆南构造带花石峡—玛沁区段内发现具有晚震旦—早奥陶世锆石SHRIMP U-Pb年龄的古洋壳残片。形成于晚震旦世(555±9 Ma)的苦海辉长岩LREE略富集((La/Yb)_N=5.15),高Ni(102 ppm)含量,Nb、Ta略亏损,这些特征类似于OIB;形成于早寒武世(535±10 Ma)的玛积雪山辉长岩LREE亏损((La/Yb)_N=0.61),高Ni(160 ppm)含量,Nb、Ta不亏损,显示典型的MORB特征。而德尔尼闪长岩(493±6 Ma)LREE富集((La/Yb)_N=52.64),Ni含量(18ppm)低,Nb、Ta显著亏损,显示典型的IAB的特征,因此其年龄指示了古洋壳消减的时代。上述蛇绿混杂岩的定年结果与已报道的布青山早古生代蛇绿岩共同表明东昆南构造带存在不同于“勉—略”构造带的晚新元古代—早古生代演化历史。
     东昆南构造带晚新元古代—早古生代岩浆事件的时代可与已报道的从北祁连到东昆中构造带的蛇绿岩和岛弧火山岩年龄数据对比。因此,该多岛洋的南部边界不应限定在早先认为的“东昆中断裂带”,而应该向南推到“东昆南断裂带”。
     3蛇绿岩变质过程中元素Pb的引入及对Pb同位素组成的影响——对“印度洋MORB型同位素特征”起源的制约
     特提斯蛇绿岩的Pb同位素组成被用于判断印度洋地幔特殊的同位素组成是否继承自特提斯洋地幔,而我们首次明确指出MOR型蛇绿岩样品中存在Pb的正异常有可能影响Pb同位素对其地幔源区的示踪效果。为查明引起MOR型蛇绿岩Pb正异常的原因,本文对比样品采用不同预处理方法(酸淋洗与未淋洗)和不同测试方法(ICP-MS与同位素稀释法)分析所得元素Pb含量的差异,发现导致蛇绿岩样品元素Pb正异常的因素是:①ICP-MS分析流程的高本底Pb;②地表作用过程中样品表面吸附的Pb;③变质流体作用引入的Pb。
     样品的Nb/Pb(指示流体活动强度的指标)与δPb(指示Pb正异常程度的指标)负相关,表明MOR型蛇绿岩样品中的过量Pb与蛇绿岩构造侵位过程或其后变质流体的活动有关,蛇绿岩样品的实测Pb同位素组成是变质流体和未改造MORB相混合的结果。因此,本文只选择那些具有最小δPb的样品来进行蛇绿岩地幔源区的Pb同位素示踪。按照这种方法,重新分析获得的中国西部原特提斯、古特提斯和新特提斯洋MOR型蛇绿岩样品同位素数据,显示“印度洋MORB型同位素特征”大体上继承自特提斯洋地幔,这与前人的论断一致;但同时发现印度洋相比古特提斯洋,其地幔源区具有相对低的ε_(Nd)和高的~(206)Pb/~(204)Pb值,推测与古特提斯洋关闭过程中地壳物质再循环进入地幔有关。
     4西秦岭与“祁—柴—昆”地区对中国东、西部晚古生代—中生代大陆碰撞构造运动的响应——年代学记录
     陆—陆斜向碰撞构造运动可导致平行活动陆缘的大型走滑断裂。清水新城糜棱岩化英安岩样品中黑云母~(40)Ar/~(39)Ar坪年龄355.2±2.6 Ma,指示了“陈家河断裂”走滑运动时代。武山北李家河剖面花岗质糜棱岩样品的锆石SHRIMP U-Pb年龄为951±13 Ma,表明原岩花岗岩形成于新元古代;而白云母~(40)Ar/~(39)Ar坪年龄226.8±2.2 Ma代表了这一花岗岩发生糜棱岩化作用的时代,表明“天水—武山断裂”在这一时期发生走滑运动。这两个构造年龄分别与“商—丹洋”和“勉—略洋”的闭合时代一致,表明这些陆缘断裂的走滑运动是华北陆块,北秦岭微陆块、南秦岭微陆块及华南陆块碰撞拼合作用的结果。因此,355Ma指示了南秦岭与北秦岭斜向碰撞的时代,而227Ma指示了华南与南秦岭斜向碰撞的时代。对于没有超高压变质岩出露的缝合带,本文观察到的陆缘走滑断裂发育时代与陆块拼合时代的一致性,为我们提供了一个判断陆块碰撞时代的有效方法。
     由于南秦岭微陆块北缘的“天水—武山”断裂在中—晚三叠世发生右行走滑,而南缘的“勉—略”断裂发生左行走滑,因此南秦岭微陆块在三叠纪华北陆块和华南陆块碰撞过程中被“向西挤出”。该挤出构造传递的向西挤压力可导致西部古生代已拼合的“祁—柴—昆”地区发生引张。本文初步测定的柴北缘宗务隆蛇绿岩中辉长岩年龄233±9 Ma,指示了柴达木地块北缘一次三叠纪引张事件,这可能是对南秦岭微陆块三叠纪“西向挤出构造”的响应。而麻当碱性玄武岩的~(40)Ar/~(39)Ar坪年龄87.2±0.9 Ma则可能反映了西秦岭地区对青藏高原拉萨地块与羌塘地块晚白垩世碰撞事件的构造响应。
The east-west striking "Central Orogenic System(COS)" lain in the central China is considered to be the collisional zone between the Northern China blocks (represented by the North China Block and the Tarim Block)and the Southern China blocks(represented by the South China Block and the Qiangtang Block).The formation of the "COS" was closely related to the evolution of the Proto-Tethys and the Paleo-Tethys.In the eastern part of the "COS",there's the uniform Qinling-Dabie orogen which resulted from the collision between the North China Block and the South China Block,while to the west of the Western Qinling orogen,the "COS" has two major branches:i.e.the Qilian orogen in the north and the Kunlun orogen in the south,between which a lot of micro-continents are distributed.Trying to find out the joining relationship between the Qinling-Dabie orogen and the Qilian-Kunlun orogenic belts is a key project for understanding the tectonic evolution of China continental blocks.The Western Qinling orogen and the Eastern Kunlun orogen are the key areas to link up the Qinling-Dabie orogen and the Qilian-Kunlun orogens. Lots of ophiolites and island-arc-type igneous rocks,which are related to the evolution of the Proto-Tethys and the Paleo-Tethys,develop along those major suture zones in the area of "Qinling-Qilian-Qaidam-Kunlun" of the "COS".Accurate geochronological and geochemical studies for ophiolites and island-arc-type igneous rocks in these areas will provide crucial constraints not only on the evolution of the Western Qinling and the Eastern Kunlun orogens but also on the joining relationship between the Qinling-Dabie orogen in the east and those orogenic belts in the west,as well as on the evolution of the Tethys in the Central- Western China.Previous studies on such rocks and remained questions are summarized as following:
     ①Two main suture zones have been identified in the Eastern Qinling orogen: i.e.the "Shang-Dan" suture and the "Mian-Lüe" suture.An early Paleozoic arc-back arc basin system along the southern margin of the North China Block has been recognized in the "Shang-Dan Ocean"(belonged to the Proto-Tethyan domain),while the opening of the "Mian-Lüe Ocean"(belonged to the Paleo-Tethyan domain)split the South Qinling micro-continent from the Gondwana during the Late Paleozoic. How the "Shang-Dan" suture extends westward is a key question in the tectonic research on the Qinling orogen.Based on stratigraphic correlation,the TianshuiWushan suture in the western Qinling has been suggested to be the westward extension of the Shang-Dan suture.However,accurate geochemical and geochronological data for ophiolites and island-arc-type igneous rocks in the Western Qinling orogen have not been reported yet,which are critical to test such a view point. Furthermore,some important ages concerning the evolution history of the arc-back arc basin system in the "Shang-Dan Ocean" have not been well constrained,such as the age for the initial formation of the "Shang-Dan" oceanic crust,the age for the opening of the Ealangping back-arc basin and the times for the closure of the "Shang-Dan Ocean".
     ②To the west of the Western Qinling orogen,there are numerous microcontinentals in the area of "Qilian-Qaidam-Kunlun",which are geochemically similar to the Gondwana and separated from each other by several Early Paleozoic sutures. Therefore,the tectonic framework of this area is generally considered to be the Proto-Tethyan archipelagic ocean during the Late Neoproterozoic to the Early Paleozoic.According to previous geochronological data,the southern margin of such an archipelagic ocean was located in the central east Kunlun tectonic belt,while the southern east Kunlun tectonic belt,to the south,is considered to belong to the Paleo-Tethyan domain because only Late Paleozoic ages for the ophiolites in this belt have been reported.However,the recent discovery of the Early Paleozoic ophiolite in the Buqingshan area,located in the western section of the southern east Kunlun tectonic belt,suggests that either there is undiscovered Early Paleozoic ophiolite in the eastern section of this belt,i.e.A'nyemaqen area,or the evolution history of the Buqingshan area differed from the A'nyemaqen area.To clarify this question may help us to determine the location of the southern margin of the Proto-Tethyan archipelagic ocean,which needs further geochronological investigations on the ophiolites in the southern east Kunlun tectonic belt.
     ③It is a hot subject in geological society that whether the distinct isotopic features of MORB from the Indian Ocean has been inherited from the Tethys.It has been shown that "the Indian MORB-type isotopic signature" has been possessed by ophiolites form the Tethyan(including Proto-Tethys,Paleo-Tethys and Neo-Tethys) domain in the Western China.Thus,a hypothesis has been advocated by some scholars that the distinct Indian Ocean mantle domain may be largely "inherited" Tethyan mantle.However,contrasting with present-day MORB,ubiquitous enrichments of Pb exist in MORB-type basalts and gabbros from the Tethyan ophiolite suites.Therefore,the conclusion mentioned above,which is based on the Pb isotopes of the ophiolite samples with positive Pb anomaly,is still doubtful.
     ④Following the closure of the Paleo-Tethys and the Neo-Tethys,several continental collisions had taken place during Mesozoic and Cenozoic in Eastern China and Western China,respectively.The continent of Eastern China resulted from the collision between the North China Block and the South China Block in Triassic, while the continent of Western China was the product of the successive collisions between the blocks in Tibet plateau from the north to the south,such as Middle Qilian, South Qilian,Qaidam,North Kunlun and South Kunlun,which had been combined with the North China Block during the Paleozoic,and the Qiangtang Block,the Lhasa Block and the Indian Plate,which successively collided each other in the Masozoic and the Cenozoic.It is interested to know that what tectonic responses to those continental collision events developed in Eastern China and Western China, respectively,had happened in the junction part of the "COS",i.e.the area of Western Qinling and "Qilian-Qaidam-Kunlun".
     In order to answer the above four scientific questions,geochemical and geochronological studies on the ophiolites and island-arc-type igneous rocks,as well as some Mesozoic tectono-magmatic events in the Western Qinling orogen and the Eastern Kunlun orogen have been carried out.The following new findings and knowledge are achieved in this study.
     1 Geochronological framework of the Early Paleozoic "Tianshui-Wushan" ocean and its arc-back arc basin system in the Western Qinling orogen
     The tectonic setting and ages of the ophiolite and igneous rocks developed along the Tianshui-Wushan suture and its adjacent area in the Western Qinling orogen have been determined based on comprehensive geochemical analyses and SHRIMP U-Pb dating of zircons as well as ~(40)Ar/~(39)Ar dating of hornblende.Thus,the geochronological framework of the Early Paleozoic "Tianshui-Wushan" ocean and its arc-back arc basin system in the Western Qinling orogen has been established,which supports the viewpoint that "the Tianshui-Wushan suture could be the westward extension of the Shang-Dan suture".
     The Guanzizhen ophiolite complex occurred in the central section of the Tianshui-Wushan tectonic belt.Two types of protolith have been distinguished for the samples from the Guanzizhen ophiolite complex,i.e.the paleo-oceanic crust and the paleo-island arc igneous rocks:samples related to the paleo-oceanic crust are characterized by LREE depletion or slight LREE enrichment((La/Yb)_N<1.4)with no Nb negative anomalies in spider-diagram((La/Nb)_N<1.5)and depleted Nd isotopes (ε_(Nd)(t)=2.1~4.0).Such geochemical features are similar to those of the MORB. Moreover,"oceanic plagiogranite" formed at the middle ocean ridge has been identified for the first time in the Guanzizhen area.In contrast,one gabbro sample related to the paleo-island arc is characterized by high LREE enrichment ((La/Yb)_N=17.1)with remarkable Nb negative anomalies in spider-diagram ((La/Nb)_N=3.74)and enriched Nd isotopes(ε_(Nd)(t)=-6.9).Zircon SHRIMP U-Pb dating yielded the ages of 534±9Ma and 517±8 Ma for meta-gabbro and meta-plagiogranite related to the paleo-oceanic crust,respectively,and an age of 489±10 Ma for meta-gabbro related to the paleo-island arc.The ~(40)Ar/~(39)Ar plateau age of hornblende from the meta- plagiogranite is 394.9±5.2 Ma,indicating the time of amphibolite-facies metamorphism.
     The Wushan ophiolite complex occurred in the western section of the Tianshui-Wushan tectonic belt.The samples from the Hualingou gabbro and the Yuanyangzhen gabbro-diorite are characterized by LREE enrichment((La/Yb)_N=7.1 and 10.8,respectively)and remarkable Nb,Ta and Ti negative anomalies in spiderdiagram, indicating they were formed in the island arc setting.The zircon SHRIMP U-Pb ages are 440±5 Ma and 456±3 Ma for the Hualingou gabbro and the Yuanyangzhen gabbro-diorite,respectively.Their lowε_(Nd)(t)values(-3.8~-6.9) suggest that the Guanzizhen Paleozoic island arc and the Wushan Paleozoic island arc were epicontinental arcs developed on the southern margin of the North China Block.
     To the north of the Qinling Group developed on the northern side of the Tianshui-Wushan Fault,acidic and basic volcanic rocks occured in the area of Qingshui-Hongtubao.Their SiO_2 contents range from 47.69%~50.80%and 68.83%~70.14%,displaying characteristics of bimodal volcanic rocks.The geochemical and Sr-Nd isotopic features of the all basalts either from the "Chenjiahe Group" bimodal volcanic rocks at the Qingshui area or from the Hongtubao area are similar.Moreover, relatively higher radiogenic Pb isotopic compositions,especially higher ~(207)Pb/~(204)Pb ratios,suggest that the formation of these basalts were related to the subduction zone. Zircon SHRIMP U-Pb ages of 447±8 Ma and 448±8 Ma for two dacite samples from Xincheng at the Qingshui area are consistent with the previously published age of 443.4±1.7 Ma for the basalt at the Hongtubao area.Thus,it's suggested that the "Chenjiahe Group" volcanic rocks were formed at the initial stage of a back-arc extension instead of the island arc setting suggested by previous studies.
     According to these new results,a model for the tectonic evolution of the "Tianshui-Wushan Ocean" in the Western Qinling orogen during the Early Paleozoic is proposed.The "Tianshui-Wushan Ocean" formed in the Early-Middle Cambrian (534±9 Ma~517±8Ma)followed by the initial subduction during the Late Cambrian to the Early Ordovician.Two subduction-related events took place at the Wushan area during the Late Ordovician(456±3Ma)to the Early Silurian(440±5 Ma)together with the initial extension of the back-arc basin in Qingshui and Hongtubao area at 448±8 Ma.Metamorphism resulted from the arc-continent collision happened during the Early-Middle Devonian(394.9±5.2Ma).The evolution history of the "Tianshui-Wushan" ocean and its arc-back arc basin system established in this study is well comparable to that developed along the "Shang-Dan" tectonic belt.Therefore,the "Shang-Dan Ocean" and the "Tianshui- Wushan Ocean" constitute,on the southern margin of the North China Block,the Early Paleozoic "Qinling Ocean",whose evolution history may reflect that of a marginal sea in the Proto-Tethys.
     2 The Late Sinian to the Early Ordovician oceanic basin existed along the southern east Kunlun tectonic belt
     The fragments of paleo-oceanic crust with zircon SHRIMP U-Pb ages of the Late Sinian to the Early Ordovician are firstly observed in the Huashixia-Maqin section along the southern east Kunlun tectonic belt.The Kuhai gabbro,with the Late Sinian age(555±9Ma)is characterized by slight LREE enrichment((La/Yb)_N=5.15),high Ni abundance(102 ppm)and slight depletion of Nb and Ta,which are similar to the features of the OIB,while the Majixueshan gabbro with the Early Cambrian age(535±10 Ma)is characterized by LREE depletion((La/Yb)_N=0.61),high Ni abundance (160 ppm)with no Nb or Ta negative anomalies,which are typical features of the MORB.On the other hand,the Dur'ngoi diorite with age of 493±6 Ma is characterized by LREE enrichment((La/Yb)_N=52.64),low Ni abundance(18 ppm) and remarkable depletion of Nb and Ta,which are typical features of the IAB.So its age indicates the subduction time of the paleo-oceanic crust.The above results together with the Early Paleozoic ophiolite in the Buqingshan area reported previously document the existence of the Late Sinian to the Early Ordovician ocean in the southern east Kunlun tectonic belt,indicating that the southern east Kunlun tectonic belt has had an evolution history differing from the "Mian-Lüe" tectonic belt during the Late Neoproterozoic to the Early Paleozoic.
     The above dating results of the ophiolites occured along the southern east Kunlun tectonic belt are comparable to those reported ages for ophiolites and island-arc volcanic rocks from the Northern Qilian belt to the central east Kunlun tectonic belt. Thus,it is concluded that the southern margin of this Proto-Tethyan archpelagic ocean could not be limited in the central east Kunlun tectonic belt as suggested previously, but in the southern east Kunlun tectonic belt.
     3 The introduction of Pb during metamorphism of ophiolites and its effect on the Pb isotopic compositions—implication for origin of the isotopic signature of the Indian Ocean MORB
     Pb isotopic compositions of the Tethyan ophiolites have been studied to test whether the distinct isotopic signatures of the Indian Ocean are inherited from the Tethys Ocean.However,we first point out that the positive Pb anomaly existed in MOR-type ophiolites may result in invalidation of Pb isotopes in tracing the sources of ophiolites.To determine the possible reasons causing the positive Pb anomaly in MOR-type ophiolites,the differences in Pb concentrations obtained using different pretreatment methods(acid leach vs.unleach)and different analytical methods(by ICP-MS vs.by isotopic dilution)are investigated.It shows that there are three major causes of the positive Pb anomaly observed in ophiolites,i.e.the high Pb blank during ICP-MS analyses,the adsorption of Pb during the surface processes,and the external Pb introduced by metamorphic fluids.
     The negative correlation between Nb/Pb(indicating the quantity of fluid flux) andδPb(indicating the degree of positive Pb anomaly)suggest that the excess Pb in MOR-type ophiolites may be related to the activity of metamorphic fluids during or after the tectonic emplacement of ophiolites.The Pb isotopic compositions of ophiolite samples are results of mixing between metamorphic fluids and unaltered MORB rocks.Therefore,in this study,only those samples with the lowest value ofδPb in each ophiolite should be selected to constrain the Pb isotopic compositions of their mantle sources.Following this way,our new data obtained from the Proto-, Paleo- and Neo-Tethyan ophiolites in Western China suggest that most of the Indian MORB-type isotopic signatures are basically inherited from the Tethyan mantle, consistent with previous conclusion.However,the Indian Ocean mantle trends to have lowerε_(Nd)values and higher ~(206)Pb/~(204)Pb ratios than the Paleo-Tethyan mantle,which could be a result of recycling of crustal materials during the closing of the Paleo-Tethys.
     4 The tectonic responses in the Western Qinling and the "Qiliang-QaidamKunlun" orogens to the continental collision events in Easten China and Western China during the Late Paleozoic to Mesozoic—Geochronological records
     Oblique collision between two continents may lead to large-scale strike-slip faults parallel to active continental margin.The ~(40)Ar/~(39)Ar plateau of biotite from the mylonite dacite at Xincheng in the Qingshui area gives an age of 355.2±2.6 Ma, indicating the time of strike-slip movement for the Chenjiahe Fault.Zircon SHRIMP U-Pb age of 951±13Ma for the granitic mylonite from the Lijiahe profile in the north of Wushan area indicates that the granitic protolith was formed during Neoproterozoic, while the ~(40)Ar/~(39)Ar plateau age of 226.8±2.2 Ma given by white mica from the same sample indicates the mylonitization time of the gneiss,suggesting a strike-slip movement for the Tianshui-Wushan Fault occurred at the Triassic.These two ages are just corresponding to the closure times of the "Shang-Dan Ocean" and the "Mian-Lüe Ocean",respectively,which suggest that these strike-slip movements on continental margin resulted from each oblique collision and suturing between the North China Block,North Qinling and South Qinling micro-continents.Thus,the age of 355Ma indicates the oblique collision between the South Qinling Block and the North Qinling Block,while the age of 227Ma indicates the oblique collision between the Yangtze Block and the South Qinling Block.To those suture zones without any ultrahigh-pressure metamorphic rocks,the consistency observed in this study between the formation ages for the strike-slip movement on continental margin and the times of continental matching provides us a valid means to constrain the times of continental collision.
     Because the Tianshui-Wushan Fault,on the northern margin of the South Qinling micro-continent,took place right-lateral strike-slip movement during the Middle-Late Triassic,while the "Mian-Lüe" Fault,on the southern margin of the South Qinling micro-continent,took place left-lateral strike-slip movement in the same time.It's suggested that the South Qinling micro-continent had undergone "Westward Extrusion" during the Triassic collision between the North China Block and the South China Block.The westward compression given by such a westward extrusion may cause an extension in the "Qilian-Qaidam-Kunlun"area,which had been assembled during the Early Paleozoic.The tentative dating result of 233±9 Ma for the gabbro from the Zongwulong ophiolite indicates an extensional event happened during the Triassic on the northern margin of the Qaidam Block.Such an extensional event could be the tectonic responses to the "Westward Extrusion" of the South Qinling micro-continent.Furthermore,the ~(40)Ar/~(39)Ar plateau age 87.2±0.9 Ma for the Madang alkaline basalt is considered as the tectonic responses in the Western Qinling area to the collision between the Lhasa Block and the Qiangtang Block in Tibet during the Late Cretaceous.
引文
边千韬,罗小全,李红生,等.199a.阿尼玛卿山早古生代和早石炭一早二叠世蛇绿岩的发现.地质科学,34(3):523.524.
    边千韬,罗小全,陈海泓,等.1999b.阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义.地质科学,34(4):420-426.
    边千韬,尹磊明,孙淑芬,等.2001a.东昆仑布青山蛇绿混杂岩中发现奥陶纪疑源类.科学通报,46(2):167-171.
    边千韬,罗小全,李涤徽,等.2001b.青海省阿尼玛卿山带布青山蛇绿混杂岩的地球化学性质及形成环境.地质学报,75(1):45-55.
    边千韬,赵大升,叶正仁,等.2002.初论秦祁昆缝合系.地球学报,23(6):501-508.
    陈斌,翟明国,邵济安.2002.太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据.中国科学(D辑),32(11):896-907.
    陈丹玲,刘良,车自成,等.2001.祁漫塔格印支期铝质A型花岗岩的确定及初步研究.地球化学,30(6):540-546.
    陈丹玲,孙勇,刘良,等.2007.柴北缘鱼卡河榴辉岩的超高压变质年龄:锆石LA-ICP-MS 微区定年.中国科学(D辑),37(增刊):279-287.
    谌宏伟,罗照华,莫宣学,等.2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质,32(3):386-395.
    谌宏伟,罗照华,莫宣学,等.2006.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义.岩石矿物学杂志,25(1):25-32.
    陈隽璐,黎敦朋,李新林,等.2004.东昆仑祁漫塔格山南缘黑山蛇绿岩的发现及其特征.陕西地质,22(2):35-46.
    陈隽璐,何世平,王洪亮,等.2006.秦岭-祁连造山带接合部位基性岩墙的LA-ICP-MS锆石U-Pb年龄及地质意义.岩石矿物学杂志,25(6):455-462.
    陈隽璐,李好斌,王洪亮,等.2007.秦祁结合部位王家岔石英闪长岩体锆石LA-ICP-MS定年及地质意义.吉林大学学报(地球科学版),37(3):423-431.
    陈亮,孙勇,柳小明,等.2000.青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义.岩石学报,16(1):106-110.
    陈亮,孙勇,裴先治,等.2001.德尔尼蛇绿岩~(40)Ar-~(39)Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据.科学通报,46(5):424-426.
    陈亮,孙勇,裴先治,等.2003.古特提斯蛇绿岩的综合对比及其动力学意义:以德尔尼蛇绿岩为例.中国科学(D辑),33(12):1136-1142.
    陈能松,朱杰,王国灿,等.1999.东昆仑造山带东段清水泉高级变质岩片的变质岩石学研究.地球科学--中国地质大学学报,24(2):116-120.
    陈能松,孙敏,张克信,等.2000.东昆仑变闪长岩体的~(40)Ar-~(39)Ar和U-Pb年龄:角闪石过剩Ar和东昆仑早古生代岩浆岩带证据.科学通报,45(21):2337-2342.
    陈能松,何蕾,孙敏,等.2002.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定.科学通报,47(8):628-631.
    陈能松,李晓彦,王新宇,等.2006.柴达木地块南缘昆北单元变质新元古代花岗岩锆石SHRIMPU-Pb年龄.地质通报,25(11):1311-1314.
    陈能松,王新宇,张宏飞,等.2007a.柴-欧微陆块花岗岩地球化学和Nd-SvPb同位素组成:基底性质和构造属性启示.地球科学--中国地质大学学报,32(1):7-21.
    陈能松,孙敏,王勤燕,等.2007b.东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录.科学通报,52(11):1297-1306.
    陈岳龙,杨忠芳,张宏飞,等.1996.北秦岭古生代-中生代花岗岩类的Nd,sr,Pb同位素地球化学特征及Nd,Sr同位素演化.地球科学--中国地质大学学报,21(5):481-486.
    陈志宏,陆松年,李怀坤,等.2004a.秦岭造山带富水中基性侵入杂岩的成岩时代--锆石U-Pb及全岩Sm、Nd同位素年代学新证据.地质通报,23(4):322-328.
    陈志宏,陆松年,李怀坤,等.2004b.北秦岭德河黑云二长花岗片麻岩体的成岩时代--TIMS 和SHRIMP锆石U-Pb同位素年代学.地质通报,23(2):136-142.
    崔智林,孙勇,王学仁.1995.秦岭丹凤蛇绿岩带放射虫的发现及其地质意义.科学通报,40(18):1686-1688.
    董国安,杨怀仁,杨宏仪,等.2007.祁连地块前寒武纪基底锆石SHRIMPU-Pb年代学及其地质意义.科学通报,52(13):1572-1585.
    董云鹏,周鼎武,张国伟.1997.东秦岭富水基性杂岩体地球化学特征及其形成环境.地球化学,26(3):79-87.
    董云鹏,张国伟,杨钊,等.2007.西秦岭武山E-MORB型蛇绿岩及相关火山岩地球化学.中国科学(D辑),37(增刊):199-208.
    丁仨平,裴先治,李勇,等.2004.西秦岭天水地区“李子园群”的解体及其构造环境浅析.地质通报,23(12):1209-1214.
    樊光明,雷东宁.2007.祁连山东南段加里东造山期构造变形年代的精确限定及其意义.地球科学--中国地质大学学报,32(1):39-44.
    丰成友,张德全,党兴彦,等.2005.青海格尔木地区驼路沟钴(金)矿床石英钠长石岩锆石SHRIMP U-Pb定年:对“纳赤台群”时代的制约.地质通报,24(6):501-505.
    冯庆来,杜远生,殷鸿福,等.1996.南秦岭勉略蛇绿混杂岩带中放射虫的发现及其意义.中国科学(D辑),26(增刊):78-82.
    冯益民,何世平.1995.北祁连蛇绿岩的地质地球化学研究.岩石学报,11(增刊):125-146.
    冯益民,何世平.1996.祁连山大地构造与造山作用.北京:地质出版社.
    冯益民.1997.祁连造山带研究概况--历史、现状及展望.地球科学进展,12(4):307-314.
    冯益民,曹宣铎,张二朋,等.2003.西秦岭造山带的演化、构造格局和性质.西北地质,36(1):1-10.
    甘肃省地质矿产局.1989.甘肃省区域地质志.北京:地质出版社.附图1甘肃省地质图.
    高山,张本仁,谷晓明,等.1991.华北与扬子板块志留-泥盆纪对接的沉积地球化学证据.中国科学(B辑),21(6):645-651.
    高延林,吴向农,左国朝.1988.东昆仑山清水泉蛇绿岩特征及其大地构造意义.西安地质矿产研究所所刊,21:17-28.
    郭安林,张国伟,孙延贵,等.2006.阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征:玛积雪山古洋脊热点构造证据.中国科学(D辑),36(7):618-629.
    郭安林,张国伟,孙延贵,等.2007.共和盆地周缘晚古生代镁铁质火山岩地球化学及空间分布:玛积雪山三联点以及古特提斯多岛洋启示.中国科学(D辑),37(增刊):249-261.
    郭进京,赵风清,李怀坤.1999.中祁连中段晋宁期碰撞型花岗岩及其地质意义.地球学报,20(1):10-15.
    郭进京,赵风清,李怀坤,等.2000.中祁连东段湟源群的年代学新证据及其地质意义.中国区域地质,19(1):26-31.
    韩松,周鼎武,张成立.1993.东秦岭秦王山-拉鸡庙基性杂岩体的形成环境.岩石学报,9(增刊):122-129.
    郝国杰,陆松年,李怀坤,等.2001.柴北缘沙柳河榴辉岩岩石学及年代学初步研究.前寒武纪研究进展,24(3):152-162.
    郝杰,刘小汉,桑海清.2003.新疆东昆仑阿牙克岩体地球化学与~(40)Ar/~(39)Ar年代学研究及其大地构造意义.岩石学报,19(3):517-522.
    何世平,王洪亮,徐学义,等.2007a.北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb 年龄及其地质意义.地球科学进展,22(2):143-151.
    何世平,王洪亮,徐学义,等.2007b.北祁连东段红土堡基性火山岩和陈家河中酸性火山岩地球化学特征及构造环境.岩石矿物学杂志,26(4):295-309.
    何艳红,孙勇,陈亮,等.2005.陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.岩石学报,21(1):125-134.
    洪大卫,谢锡林,张季生.1999.从花岗岩的Sm-Nd同位素探讨华南中下地壳的组成、性质和演化.高校地质学报,5(4):361-371.
    侯青叶,赵志丹,张宏飞,等.2005a.北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义.中国科学(D辑),35(8):710-719.
    侯青叶,张宏飞,张本仁,等.2005b.祁连造山带中部拉脊山古地幔特征及其归属:来自基性火山岩的地球化学证据.地球科学--中国地质大学学报,30(1):61-70.
    侯青叶,赵志丹,张本仁,等.2006.青藏高原东北缘特提斯构造域界线的探讨.岩石学报,22(3):567-577.
    侯振辉,王晨香.2007.电感耦合等离子体质谱法测定地质样品中35中微量元素.中国科学技术大学学报,37(8):940-944.
    胡波.2005.甘肃天水地区清水-张家川早古生代变质火山岩岩石地球化学特征及其构造意义.长安大学硕士学位论文.
    胡波,裴先治,丁仨平,等.2005.甘肃天水地区红土堡变基性岩的地球化学特征及其构造意义.地质通报,24(3):258-263.
    胡健民,崔建堂,孟庆任,等.2004.秦岭柞水岩体锆石U-Pb年龄及其地质意义.地质论评,50(3):323-329.
    黄汲清,陈炳蔚.1987.中国及邻区特提斯海的演化.北京:地质出版社,1-78.
    简平,刘敦一,张旗,等.2003.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘,10(4):439-456.
    姜春发,杨经绥,封秉贵,等.1992.昆仑开合构造.北京:地质出版社,1-224.
    姜春发.1993a.中央造山带主要地质构造特征.地学研究,27:107-108.
    姜春发.1993b.软基底、硬基底、基底缝合带.中国地质,(3):30-31.
    姜春发,王宗起,李锦轶.2000.中央造山带开合构造.北京:地质出版社,1-154.
    姜春发.2002.中央造山带几个重要地质问题及其研究进展.地质通报,21(8-9):453-455.
    赖绍聪,邓晋福,赵海玲.1996.柴达木北缘古生代蛇绿岩及其构造意义.现代地质,10(1):18-28.
    赖绍聪.1997.秦岭造山带勉略缝合带超镁铁岩的地球化学特征.西北地质,77(3):36-45.
    赖绍聪,张国伟,杨永成,等.1997.南秦岭勉县-略阳结合带变质火山岩岩石地球化学特征.岩石学报,13(4):563-573.
    赖绍聪,张国伟,杨永成,等.1998.南秦岭勉县-略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义.地球化学,27(3):283-293.
    赖绍聪,刘池洋,O'Reilly S Y.2000.北羌塘新第三纪高钾钙碱性火山岩系的成因及大陆动力学意义.中国科学(D辑),31(增刊):34-42.
    赖绍聪,张国伟,裴先治.2002.南秦岭勉略结合带琵琶寺洋壳蛇绿岩的厘定及其大地构造意义.地质通报,21(8-9):465-470.
    赖绍聪,张国伟,裴先治,等.2003a.南秦岭康县-琵琶寺-南坪构造混杂带蛇绿岩与洋岛火山岩地球化学及其大地构造意义.中国科学(D辑),33(1):10-19.
    赖绍聪,张国伟,董云鹏,等.2003b.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布.中国科学(D辑),33(12):1174-1183.
    赖绍聪,张国伟,李永飞,等.2007.青藏高原东缘麻当新生代钠质碱性玄武岩成因及其深部 动力学意义.中国科学(D辑),37(增刊):271-278.
    黎敦朋,樊晶,肖爱芳.2002.东昆仑西段祁漫塔格群早志留世笔石化石的发现.地质通报,21(3):136-139.
    李怀坤,陆松年,赵风清,等.1999.柴北缘的新元古代主要地层事件的年代学.地球化学,13(2):224-225.
    李怀坤,陆松年,相振群,等.2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘,13(6):311-321.
    李继亮,孙枢,郝杰,等.1999.论碰撞造山带的分类.地质科学,34(2):129-138.
    李继亮.2004.增生型造山带的基本特征.地质通报,23(9~10):947-951.
    李荣社,许文化,赵振明,等.2007.昆仑早古生代造山带研究进展.地质通报,26(4):373-382.
    李三忠,张国伟,李亚林,等.2000.勉县地区勉略带内麻粒岩的发现及构造意义.岩石学报,16(2):220-226.
    李曙光,Hart S R,郑双根,等.1989.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学(B辑),19(3):312-319.
    李曙光.1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报,9(2):146-157.
    李曙光,陈移之,张宗清,等.1993.北秦岭垃圾庙苏长辉长岩的痕量元素和Sr,Nd同位素地球化学.地质学报,67(4):310-321.
    李曙光.1994.ENd-La/Nb、BafNb、Nb/Th图对地幔不均一性研究的意义--岛弧火山岩分类及EMⅡ端元的分解.地球化学,23(2):105-114.
    李曙光,孙卫东,张国伟,等.1996.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学--古生代洋盆及其闭合时代的证据.中国科学(D辑),26(3):223-230.
    李曙光,侯振辉,杨永成,等.2003.南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成时代.中国科学(D辑),33(12):1163-1173.
    李廷栋.1973.我国地层和岩浆岩研究上若干新进展.地质科技,(1):1-14.
    李伍平,王涛,王晓霞.2000.北秦岭灰池子复式岩体单颗粒锆石年龄及其地质意义.中国区域地质,19(2):172-174.
    李伍平,王涛,王晓霞.2001.北秦岭灰池子花岗质复式岩体的源岩讨论--元素-同位素地球化学制约.地球科学--中国地质大学学报,26(3):269-278.
    李亚林,张国伟,王成善,等.2001.秦岭勉略缝合带两期韧性剪切变形及其动力学意义.成都理工学院学报,28(1):28-33.
    李永军,李景宏,孔德义,等.2003.西秦岭温泉混浆花岗岩的微量与稀土元素地球化学特征.西北地质,26(3):7-12.
    李永军,李注苍,丁仨平,等.2004.西秦岭温泉花岗岩体岩石学特征及岩浆混合标志.地球 科学与环境学报,36(3):7-13.
    李曰俊,贾承造,郝杰,等.2000.东昆仑铁石达斯群发现放射虫动物群.科学通报,45(2):205-207.
    刘本培,冯庆来,Chonglakmani C,等.2002.滇西古特提斯多岛洋的结构及其南北延伸.地学前缘,9(3):161-171.
    刘成东,张文秦,莫宣学,等.2002.东昆仑约格鲁岩体暗色微粒包体特征及成因.地质通报,21(11):739-744.
    刘成东,张文秦,莫宣学,等.2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报,49(6):596-602.
    刘红涛.2001.祁漫塔格陆相火山岩:塔里木陆块南缘印支期活动大陆边缘的岩石学证据.岩石学报,17(3):337-351.
    刘会彬,裴先治,丁仨平,等.2006.西秦岭天水市元龙地区新元古代花岗质片麻岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报,25(11):1315-1320.
    龙晓平,王立社,余能.2004.东昆仑山清水泉镁铁质-超镁铁质岩的地球化学特征.地质通报,23(7):664-669.
    龙晓平,金巍,葛文春,等.2006.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义.地球化学,35(4):333-345.
    卢欣祥,董有,常秋玲,等.1996.秦岭印支期沙河湾奥长环斑花岗岩及动力学意义.中国科学(D辑),26(3):244-248.
    卢欣祥,尉向东,肖庆辉,等.1998.西秦岭发现奥长环斑花岗岩带.地质论评,44(5):535-540.
    卢欣祥,尉向东,肖庆辉,等.1999.秦岭环斑花岗岩的年代学研究及意义.高校地质学报,5(4):373-377.
    陆松年.2002.青藏高原北部前寒武纪地质初探.北京:地质出版社,1-125.
    陆松年,李怀坤,陈志宏,等.2003.秦岭中-新元古代地质演化及对RODINIA超级大陆事件的响应.北京:地质出版社,1-194.
    陆松年,李怀坤,陈志宏,等.2004a.新元古代时期中国古大陆与罗迪尼亚超大陆的关系.地学前缘,11(2):515-523.
    陆松年,陈志宏,李怀坤,等.2004b.秦岭造山带中-新元古代(早期)地质演化.地质通报,23(2):107-112.
    陆松年,陈志宏,李怀坤,等.2005.秦岭造山带中两条新元古代岩浆岩带.地质学报,79(2):165-173.
    陆松年,于海峰,李怀坤,等.2006.“中央造山带”早古生代缝合带及构造分区概述.地质通报,25(12):1368-1380.
    罗照华,柯珊,曹永清,等.2002.东昆仑印支晚期幔源岩浆活动.地质通报,21(6):292-297.
    骆庭川,张宏飞,张本仁.1993.北秦岭丹凤-西峡地区古岛弧花岗岩类成分极性及原因探讨.地球科学--中国地质大学学报,18(1):67-72.
    毛景文,杨建民,张作衡,等.2000a.甘肃肃北野牛滩含钨花岗质岩岩石学、矿物学和地球化学研究.地质学报,74(2):142-155.
    毛景文,张作衡,简平,等.2000b.北祁连西段花岗质岩体的锆石U-Pb年龄报道.地质论评,46(6):616-620.
    孟繁聪,张建新,杨经绥,等.2003.柴北缘锡铁山榴辉岩的地球化学特征.岩石学报,19(3):435-442.
    孟庆任,张国伟,于在平,等.1996.秦岭晚古生代裂谷-有限洋盆沉积作用及构造演化.中国科学(D辑),26(增刊):28-33.
    莫宣学,邓晋福,董方浏,等.2001.西南三江造山带火山岩-构造组合及其意义.高校地质学报,7(2):121-138.
    莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135-148.
    莫宣学,潘桂棠.2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘,13(6):43-51.
    莫宣学,罗照华,邓晋福,等.2007.东昆仑造山带花岗岩及地壳生长.高校地质学报,13(3):403-414.
    潘桂棠.1994.全球洋-陆转换中的特提斯演化.特提斯地质,18:23-40.
    潘桂棠,陈智樑,李兴振,等.1996.东特提斯多弧-盆系统演化模式.岩相古地理,16(2):52-65.
    潘桂棠,李兴振,王立全,等.2002.青藏高原及邻区大地构造单元初步划分.地质通报,21(11):701-707.
    潘桂棠,丁俊.2004.青藏高原纪邻区地质图探.成都:成都地图出版社,1-133.
    潘桂棠,朱弟成,王立全,等.2004.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据.地学前缘,11(4):371-382.
    潘裕生.1990.西昆仑山构造特征与演化.地质科学,25(3):224-232.
    潘裕生.1991.青藏高原西北部大地构造演化,中国科学院地质研究所岩石圈构造演化开放研究实验室1989-1990年报.北京:中国科学技术出版社,80-84.
    潘裕生.1994.青藏高原第五缝合带的发现与论证.地球物理学报,37(2):184-192.
    潘裕生,周伟明,许荣华,等.1996.昆仑山早古生代地质特征与演化.中国科学(D辑),26(4):302-307.
    潘裕生.1999.青藏高原的形成与隆升.地学前缘,6(3):153-163.
    裴先治,李厚民,李国光,等.1997.北秦岭富水基性杂岩体岩石谱系单位划分及演化.中国区域地质,16(3):231-238.
    裴先治,张国伟,赖绍聪,等.2002.西秦岭南缘勉略构造带主要地质特征.地质通报,21(8-9):486-494.
    裴先治,李勇,丁仨平,等.2004a.天水市幅1:25万区域地质调查(修测)成果报告.西安:长安大学地质调查研究院.
    裴先治,丁仨平,胡波,等.2004b.西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义.地质通报,23(12):1202-1208.
    裴先治,李勇,陆松年,等.2005a.西秦岭天水地区关子镇中基性岩浆杂岩体锆石U-Pb年龄及其地质意义.地质通报,24(1):23-29.
    裴先治,李佐臣,丁仨平,等.2005b.西秦岭天水地区岛弧型基性岩浆杂岩的地球化学特征及形成时代.中国地质,32(4):529-540.
    裴先治,丁仨平,张国伟,等.2007a.西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.地质学报,81(6):772-786.
    裴先治,丁仨平,张国伟,等.2007b.西秦岭天水地区百花基性岩浆杂岩的LA-ICP-MS锆石U-Pb年龄及地球化学特征.中国科学(D辑),37(增刊):224-234.
    钱青,王岳明,李惠民,等.1998.甘肃老虎山闪长岩的地球化学特征及其成因.岩石学报,14(4):520-528.
    钱青,孙晓猛,张旗,等.1999.北祁连九个泉蛇绿岩及其上覆岩系的岩石地球化学和地球动力学意义.地质论评,45(增刊):1038-1046.
    钱青,张旗,孙晓猛,等.2001.北祁连九个泉玄武岩的形成环境及地幔源区特征:微量元素和Nd同位素地球化学制约.岩石学报,17(3):385-394.
    秦江锋,赖绍聪,李永飞.2005.扬子板块北缘碧口地区阳坝花岗闪长岩体成因研究及其地质意义.岩石学报,2l(3):697-710.
    秦江锋,赖绍聪,李永飞.2007.南秦岭勉县-略阳缝合带印支期光头山埃达克质花岗岩的成因及其地质意义.地质通报,26(4):466-471.
    青海省地质矿产局.1991.青海省区域地质志.北京:地质出版社.
    邱家骧,曾广策,王思源,等.1995.青海拉脊山造山带早古生代火山岩.西北地质科学,16(1):69-83.
    邱家骧,曾广策,王思源,等.1997.拉脊山早古生代海相火山岩与成矿.北京:中国地质大学出版社.
    任纪舜,牛宝贵,刘志刚.1999.软碰撞、叠覆造山和多旋回缝合作用.地学前缘,6(3):85-93.
    任纪舜,肖黎薇.2004.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质 通报,23(1):1-11.
    尚瑞钧,严阵.1988.秦巴花岗岩.武汉:中国地质大学出版社,1-200.
    沈远超,杨金中,刘铁兵,等.2000.新疆东昆仑祁漫塔格地区上三叠统火山岩的年代学及构造环境研究.地质与勘探,36(3):32-35.
    史仁灯,杨经绥,吴才来.2003.柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义.岩石矿物学杂志,22(3):229-236.
    史仁灯,杨经绥,吴才来,等.2004a.北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据.地质学报,78(5):649-657.
    史仁灯,杨经绥,吴才来,等.2004b.柴达木北缘超高压变质带中的岛弧火山岩.地质学报,78(1):52-64.
    宋彪,张玉海,万渝生.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    宋述光.1997.北祁连山俯冲杂岩带的构造演化.地球科学进展,12(4):351-365.
    宋述光,杨经绥.2001.柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体:超高压变质作用的证据.地质学报,75(2):180-185.
    宋述光,张立飞,Niu Y,等.2004a.青藏高原北缘早古生代板块构造演化和大陆深俯冲.地质通报,23(9-10):918-925.
    宋述光,张立飞,Niu Y,等.2004b.北祁连山榴辉岩SHRIMP定年及其构造意义.科学通报,49(6):592-595.
    苏建平,张新虎,胡能高,等.2004a.中祁连西段野马南山埃达克质花岗岩的地球化学特征及成因.中国地质,31(4):365-371.
    苏建平,胡能高,付国民.2004b.祁连西段龚岔口地区榴闪岩的高压变质作用及其地质意义.矿物学报,24(4):391-397.
    苏建平,胡能高,张海峰,等.2004c.中祁连西段黑沟梁子花岗岩的锆石U-Pb同位素年龄及成因.现代地质,18(1):70-74.
    苏犁,宋述光,宋彪,等.2004.松树沟地区石榴辉石岩和富水杂岩SHRIMP锆石U-Pb年龄及其对秦岭造山带构造演化的制约.科学通报,49(12):1209-1211.
    孙卫东,李曙光,Chen Y D,等.2000.南秦岭花岗岩锆石U-Pb定年及其地质意义.地球化学,29(3):209-216.
    孙延贵.2004.西秦岭-东昆仑造山带的衔接转换与共和坳拉谷.西北大学博士学位论文,1-195.
    孙延贵,张国伟,郭安林,等.2004a.秦昆三向联结构造及其构造过程的同位素年代学证据.中国地质,31(4):372-378.
    孙延贵,张国伟,王瑾,等.2004b.秦昆结合区两期基性岩墙群~(40)Ar/~(39)Ar定年及其构造意义. 地质学报,78(1):65-71.
    孙勇,于在平,张国伟.1988.东秦岭蛇绿岩的地球化学.见张国伟等编.秦岭造山带的形成及其演化.西安:西北大学出版社,65-74.
    孙勇,卢欣祥,韩松,等.1996.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学.中国科学(D辑),26(增刊):49-55.
    索书田,钟增球,周汉文,等.2004.中国中央造山带内两个超高压变质带关系.地质学报,78(2):156-165.
    万渝生,许志琴,杨经绥,等.2003.祁连造山带及邻区前寒武纪变质基底的时代和组成.地球学报,24(4):319-324.
    王秉璋,张智勇,张森琦,等.2000.东昆仑东段苦海-赛什塘地区晚古生代蛇绿岩的地质特征.地球科学--中国地质大学学报,25(6):592-598.
    王二七,张旗,Burchfiel C B.2000.青海拉鸡山:一个多阶段抬升的构造窗.地质科学,35(4):493-500.
    王非,朱日祥,李齐,等.2004.秦岭造山带的差异隆升特征--花岗岩~(40)Ar/~(39)Ar年代学研究.地学前缘,11(4):445-459.
    王非,贺怀宇,朱日祥,等.2005.~(40)Ar/~(39)Ar年代学国内国际标样的对比标定.中国科学(D 辑),35(7):617-626.
    王国灿,张天平,梁斌,等.1999.东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义.地球科学--中国地质大学学报,24(2):129-133.
    王国灿,王青海,简平,等.2004.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义.地学前缘,11(4):481-490.
    王惠初,陆松年,袁桂邦,等.2003.柴达木盆地北缘滩间山群的构造属性及形成时代.地质通报,22(7):487-493.
    王惠初,陆松年,莫宣学,等.2005.柴达木盆地北缘早古生代碰撞造山系统.地质通报,24(7):603-612.
    王荃,刘雪亚.1975.我国西部祁连山区的古海洋地壳及其大地构造意义.地质科学,10(1):42-55.
    王涛,李伍平,王晓霞.1998.秦岭杂岩牛角山花岗岩质片麻岩体锆石U-Pb同位素年龄及其地质意义.中国区域地质,17(3):262-265.
    王涛,张国伟,王晓霞,等.1999.一种可能的多陆块、小洋盆、弱俯冲的动力学特征及其花岗岩演化特点--以秦岭造山带核部花岗岩为例.南京大学学报(自然科学),35(6):659-667.
    王涛,张国伟,裴先治,等.2002.北秦岭新元古代北北西向碰撞造山带存在的可能性及两俱陆块的汇聚与裂解.地质通报,21(8~9):216-222.
    王涛,张宗清,王晓霞,等.2005.秦岭造山带核部新元古代碰撞变形及其时代--强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定.地质学报,79(2):220-231.
    王晓霞,王涛,卢欣祥.2002a.北秦岭中生代沙河湾岩体环斑结构及有关问题的讨论.地球学报,23(1):30-36.
    王晓霞,王涛,卢欣祥.2002b.秦岭梁、老君山环斑结构花岗岩岩浆混合的岩相学证据及其意义.地质通报,21(8-9):523-529.
    王晓霞,王涛,卢欣祥,等.2003.北秦岭老君山和秦岭梁环斑结构花岗岩及构造环境--一种可能的造山带环斑花岗岩.岩石学报,19(4):650-660.
    王晓霞,王涛,Ilmari H.2005.秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义--元素和Nd、Sr同位素地球化学证据.岩石学报,21(3):935-946.
    王学仁,华洪,孙勇.1995.河南西峡湾潭地区二郎坪群微体化石研究.西北大学学报(自然科学版),25(3):353-358.
    王毅智,拜永山,陆海莲.2001.青海天峻南山蛇绿岩的地质特征及其形成环境.青海地质,21(1):29-35.
    王永标,杨浩.2003.东昆仑-阿尼玛卿-巴颜喀拉地区早二叠世的生物古地理特征.中国科学(D辑),33(8):775-780.
    王岳军,沈远超,林舸,等.1999.中昆仑北部古生代构造岩浆作用及其演化.地球学报,20(1):1-9.
    魏春景,杨崇辉,张寿广,等.1998.南秦岭佛坪地区麻粒岩的发现及其地质意义.科学通报,43(9):982-985.
    吴才来,杨经绥,Ireland T,等.2001a.祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义.岩石学报,17(2):215-221.
    吴才来,杨经绥,Wooden J,等.2001b.柴达木山花岗岩锆石SHRIMP定年.科学通报,46(20):1743-1747.
    吴才来,杨经绥,杨宏仪,等.2004a。北祁连东部两类Ⅰ型花岗岩定年及其地质意义.岩石学报,20(3):425-432.
    吴才来,杨经绥,Wooden J L,等.2004b.柴达木北缘都兰野马滩花岗岩锆石SHRIMP定年.科学通报,49(16):1667-1672.
    吴才来,杨经绥,许志琴,等.2004c.柴达木盆地北缘古生代超高压带中花岗质岩浆作用.地质学报,78(5):658-673.
    吴汉泉.1980.东秦岭和北祁连山的蓝闪片岩.地质学报,54(3):195-207.
    吴汉泉.1982.北祁连山高级变质带的岩石学和矿物学.西安地质矿产研究所所刊,4:5-21.
    吴汉泉.1987.北祁连多硅白云母矿物学和多型特征及对K-Ar年龄的思考.西安地质矿产研究所所刊,15:33-46.
    吴汉泉,冯益民,霍有光,等.1990.北祁连山中段甘肃肃南变质硬柱石蓝闪片岩的发现及其意义.地质论评,36(3):277-280.
    吴汉泉,冯益民,霍有光,等.1991.甘肃玉门昌马地区的蓝闪片岩.西安地质矿产研究所所刊,32:1-13.
    夏林圻,夏祖春,任有祥,等.1991.祁连、秦岭山系海相火山岩.武汉:中国地质大学出版社,1-227.
    夏林圻,夏祖春,徐学义.1995.北祁连的构造-火山岩浆动力学.西北地质科学,16(1):1-28.
    夏林圻,夏祖春,徐学义等.1996.北祁连海相火山岩岩石成因.北京:地质出版社,1-153.
    夏林圻,夏祖春,徐学义.1998.北祁连早古生代洋脊-洋岛和弧后盆地火山作用.地质学报,72(4):301-312.
    向必伟,朱光,王勇生.2007.糜棱岩化过程中矿物变形温度计.地球科学进展,22(2):126-135.
    相振群,陆松年,李怀坤,等.2007.北祁连西段熬油沟辉长岩的锆石SHRIMP U-Pb年龄及地质意义.地质通报,26(12):1686-1691.
    肖爱芳.2005.东昆仑祁漫塔格山西段鸭子泉志留纪火山岩特征.陕西地质,23(2):50-61.
    肖序常,陈国铭,朱志直.1974.祁连山古板块构造的一些认识.地质科技,(3):73-78.
    肖序常,陈国铭,朱志直.1978.祁连古蛇绿岩的地质构造意义.地质学报,52(1):287-295.
    肖序常,李廷栋.1988.喜马拉雅岩石圈构造演化(总论).北京:地质出版社.
    解玉月.1998.昆中断裂东段不同时代蛇绿岩特征及形成环境.青海地质,(1):27-36.
    徐旺春,张宏飞,柳小明.2007.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义.科学通报,52(10):1174-1180.
    许继锋,韩吟文.1996.秦岭古MORB型岩石的高放射成因铅同位素组成:特提斯型古洋幔存在的证据.中国科学(D辑),26(增刊):34-41.
    许继锋,于学元,李献华,等.1997.高度亏速的N-MORB型火山岩的发现:勉略古洋盆存在的新证据.科学通报,42(22):2414-2418.
    许继锋,于学元,李献华,等.2000.秦岭勉略带中鞍子山蛇绿杂岩的地球化学--古洋壳碎片的证据及意义.地质学报,74(1):39-50.
    许荣华,Harris N,Lewis C,等.1990.拉萨至格尔木的同位素地球化学.见中英青藏高原地质考察队编:青藏高原地质演化.北京:科学出版社,282-302.
    许荣华,张玉泉,谢应雯,等.1994.西昆仑山北部早古生代构造-岩浆带的发现.地质科学,29(4):313-328.
    许志琴,徐惠芬,张建新,等.1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,68(1):1-15.
    许志琴,杨经绥,吴才来,等.2003.柴达木北缘超高压变质带形成与折返的时限及机制.地质学报,77(2):163-176.
    许志琴,杨经绥,李海兵,等.2006.中央造山带早古生代地体格架与高压/超高压变质带的形成.地质学报,80(12):1793-1806.
    许志琴,杨经绥,李海兵,等.2007.造山的高压:青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社,1-458.
    薛锋,张国伟.1993.秦岭造山带丹凤变质岛弧火山岩系的岩石组合与地球化学特征.地球化学,22(1):80-92.
    闰全人,王宗起,刘树文,等.2006.青藏高原东缘构造演化的SHRIMP锆石U-Pb年代学框架.地质学报,80(9):1285-1294.
    严阵.1985.陕西花岗岩.西安:西安交通大学出版社,1-146.
    杨崇辉,魏春景,张寿广,等.1999.南秦岭佛坪地区麻粒岩相岩石锆石U-Pb年龄.地质论评,45(2):173-179.
    杨建军,朱红,邓晋福,等.1994.柴达木北缘石榴子石橄榄岩的发现及其意义.岩石矿物学杂志,13(2):97-105.
    杨金中,沈远超,李光明,等.1999.新疆东昆仑鸭子泉蛇绿岩的基本特征及其大地构造意义.现代地质,13(3):309-314.
    杨金中,沈远超,刘铁兵.2000.新疆东昆仑祁漫塔格群火山岩建造成因初析.新疆地质,18(2):105-112.
    杨经绥,许志琴,李海兵,等.1998.我国西部柴北缘地区发现榴辉岩.科学通报,43(14):1544-1548.
    杨经绥,许志琴,宋述光,等.2000.青海都兰榴辉岩的发现及对中国中央造山带内高压-超高压变质带研究的意义.地质学报,74(2):156-168.
    杨经绥,宋述光,许志琴,等.2001.柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物--柯石英.地质学报,75(2):175-179.
    杨经绥,许志琴,裴先治,等.2002.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报,76(4):484-495.
    杨经绥,张建新,孟繁聪,等.2003a.中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨.地学前缘,10(3):291-314.
    杨经绥,刘福来,吴才来,等.2003b.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据.地质学报,77(4):463-477.
    杨经绥,王希斌,史仁灯,等.2004.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳.中国地质,31(3):225-239.
    杨经绥,许志琴,李海兵,等.2005.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系. 岩石矿物学杂志,24(5):369-380.
    杨军录,冯益民,潘晓平.2001.武山蛇绿岩的特征、同位素年代及地质意义.前寒武纪研究进展,24(2):98-106.
    杨钊,董云鹏,柳小明,等.2006.西秦岭天水地区关子镇蛇绿岩锆石LA-ICP-MS U-Pb定年.地质通报,25(11):1321-1325.
    姚建新,许志琴,杨经绥,等.2004.祁连和秦岭地区寒武纪和奥陶纪古生物区系关系的探讨.古地理学报,6(3):347-354.
    殷鸿福,张克信.1998.中央造山带的演化及其特点.地球科学--中国地质大学学报,23(5):438-442.
    殷鸿福,吴顺宝,杜远生,等.1999.华南是特提斯多岛洋体系的一部分.地球科学--中国地质大学学报,24(1):1-12.
    于在平,孙勇,张国伟.1988.商丹地区秦岭缝合带弧前沉积楔形体初探.见张国伟等编.秦岭造山带的形成及其演化.西安:西北大学出版社,75-85.
    喻学惠,赵志丹,莫宣学,等.2004.甘肃西秦岭新生代钾霞橄黄长岩和碳酸盐的微量,稀土和Sr,Nd,Pb同位素地球化学:地幔柱-岩石圈交换的证据.岩石学报,20(30):483-494.
    喻学惠,赵志丹,莫宣学,等.2005.甘肃西秦岭新生代钾霞橄黄长石的~(40)Ar/~(39)Ar同位素定年及其地质意义.科学通报,50(23):2638-2643.
    袁桂邦,王惠初,李惠民,等.2002.柴达木绿梁山地区辉长岩的锆石U-Pb年龄及意义.前寒武纪研究进展,25(1):36-40.
    袁洪林,吴福元,高山,等.2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,48(4):1511-1520.
    袁万明,莫宣学,喻学惠,等.2000.东昆仑印支期区域构造背景的花岗岩记录.地质论评,46(2):203-211.
    曾建元,杨怀仁,杨宏仪,等.2007.北祁连东草河蛇绿岩:一个早古生代的洋壳残片.科学通报,52(7):825-835.
    张本仁,高山,骆庭川,等.1994.秦巴岩石圈、构造及成矿规律地球化学研究.武汉:中国地质大学出版社,1-427.
    张本仁,张宏飞,许继锋,等.1995.同位素地球化学填图与化学地球动力学在东秦岭造山带研究中的应用.地球科学--中国地质大学学报,20(5):551-555.
    张本仁,高山,张宏飞,等.2002.秦岭造山带地球化学.北京:科学出版社,1-187.
    张成立,周鼎武,韩松.1994.陕西商州地区丹凤变质火山岩的地球化学特征.地质科学,29(4):384-392.
    张成立,张国伟,晏云翔,等.2005.南秦岭勉略带光头山花岗岩体群的成因及其构造意义. 岩石学报,21(3):711-720.
    张德全,孙桂英,徐洪林.1995.祁连山金佛寺岩体的岩石学和同位素年代学.地球学报,16(4):375-385.
    张国伟,梅志超,周鼎武,等.1988.秦岭造山带的形成及其演化.见张国伟等编.秦岭造山带的形成及其演化.西安:西北大学出版社,1-16.
    张国伟,张宗清,董云鹏.1995a.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报,11(2):101-114.
    张国伟,孟庆任,赖绍聪.1995b.秦岭造山带的结构构造.中国科学(B辑),25(9):994-1003.
    张国伟,孟庆任,于在平,等.1996.秦岭造山带的造山过程及其动力学特征.中国科学(D 辑),26(3):193-200.
    张国伟,柳小明.1998.关于“中央造山带”几个问题的思考.地球科学--中国地质大学学报,23(5):443-448.
    张国伟,张本仁,袁学诚,等.2001.秦岭造山带与大陆动力学.北京:科学出版社,1-855.
    张国伟,董云鹏,赖绍聪,等.2003.秦岭-大别造山带南缘勉略构造带与勉略缝合带.中国科学(D辑),33(12):1121-1135.
    张国伟,郭安林,姚安平.2004a.中国大陆构造中的西秦岭-松潘大陆构造结.地学前缘,11(3):23-32.
    张国伟,程顺有,郭安林,等.2004b.秦岭-大别中央造山系南缘勉略古缝合带的再认识--兼论中国大陆主体的拼合.地质通报,23(9-10):846-853.
    张宏飞,骆庭川,张本仁.1996.北秦岭漂池岩体的源区特征及其形成的构造环境.地质论评,42(3):209-214.
    张宏飞,靳兰兰,张利,等.2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制.中国科学(D辑),35(10):914-926.
    张宏飞,靳兰兰,张利,等.2006.基底岩系和花岗岩类Pb-Nd同位素组成限制祁连山带的构造属性.地球科学--中国地质大学学报,31(1):57-65.
    张宏飞,王婧,徐旺春,等.2007.俯冲陆壳部分熔融形成埃达克质岩浆.高校地质学报,13(2):224-234.
    张建新,许志琴.1995.北祁连中段加里东俯冲一增生杂岩/火山弧带及其变形特征.地球学报,18(2):154-163.
    张建新,许志琴,陈文,等.1997.北祁连中段俯冲-增生杂岩/火山弧带的时代探讨.岩石矿物杂志,16(2):112-119.
    张建新,许志琴,徐惠芬,等.1998.北祁连加里东俯冲-增生楔及动力学.地质科学,33(3):290-299.
    张建新,杨经绥,许志琴,等.2000.柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb及AR-Ar 同位素测定的证据.地球化学,29(3):217-222.
    张建新,万渝生,孟繁聪,等.2003a.柴北缘夹榴辉岩的片麻岩(片岩)地球化学、Sm-Nd 和U-Pb同位素研究--深俯冲的前寒武纪变质基底?.岩石学报,19(3):443-451.
    张建新,孟繁聪,万渝生,等.2003b.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据.地质通报,22(6):397-404.
    张建新,孟繁聪.2006.北祁连和北阿尔金含硬柱石榴辉岩:冷洋壳俯冲作用的证据.科学通报,51(14):1683-1688.
    张克信,黄继春,骆满生,等.1999.东昆仑阿尼玛卿混杂岩带沉积地球化学特征.地球科学--中国地质大学学报,24(2):111-115.
    张克信,林启祥,朱云海,等.2004.东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义.中国科学(D辑),34(3):210-218.
    张理刚.1995.东亚岩石圈块体性质.北京:科学出版社,1-252.
    张旗,李达周,张魁武,等.1990.义敦型镁铁-超镁铁岩的主要特征及其与蛇绿岩的对比.岩石学报,6(3):33-42.
    张旗,张宗清,孙勇,等.1995.陕西商县-丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学.岩石学报,11(1):43-54.
    张旗,孙晓猛,周德进,等.1997a.北祁连蛇绿岩的特征、形成环境及其构造意义.地球科学进展,12(4):366-393.
    张旗,王岳明,钱青,等.1997b.甘肃景泰县老虎山地区蛇绿岩及其上覆岩系中枕状熔岩的地球化学特征.岩石学报,13(1):92-99.
    张旗,ChenY,周德进,等.1998.北祁连大岔大坂蛇绿岩的地球化学特征及其成因.中国科学(D辑),28(1):30-34.
    张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社,1-182.
    张旗,王焰,钱青,等.2001.中国东部埃达克岩的特征及其构造成矿意义.岩石学报,17(2):236-244.
    张旗,周国庆,王焰,等.2003.中国蛇绿岩的分布、时代及其形成环境.岩石学报,19(1):1-8.
    张维吉,孟宪恂,胡健民,等.1994.秦岭-北秦岭造山带接合部位构造特征与造山过程.西安:西北大学出版社,1-283.
    张雪亭,吕惠庆,陈正兴,等.1999.柴北缘造山带沙柳河地区榴辉岩相高压变质岩石的发现及初步研究.青海地质,(2):1-13.
    张泽军.1991.富水杂岩体地球化学特征及成因探讨.西安地质学院学报,13(2):14-21.
    张正伟.1991.东秦岭灰池子花岗岩基岩石地球化学特征及其成因.岩石学报,7(3):88-94.
    张智勇,殷鸿福,王秉璋,等.2004.昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据. 地球科学--中国地质大学学报,29(6):691-696.
    张宗清,张国伟,傅国民,等.1994.北秦岭变质地层同位素年代学研究.北京:地质出版社,1-191.
    张宗清,张国伟,唐索寒,等.1999.秦岭沙河湾奥长环斑花岗岩的年龄及其对秦岭造山带主造山期时间的限制.科学通报,44(9):981-983.
    张宗清,张国伟,唐索寒,等.2002.秦岭勉略带中安子山麻粒岩的年龄.科学通报,47(22):1751-1755.
    张宗清,张国伟,刘敦一,等.2006.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学.北京:地质出版社,1-348.
    赵风清,郭进京,李怀坤.2003.青海锡铁山地区滩间山群的地质特征及同位素年代学.地质通报,22(1):28-31.
    郑德文,张培震,万景林,等.2004.西秦岭北缘中生代构造活动的~(40)Ar/~(39)Ar、FT热年代学证据.岩石学报,20(3):697-706.
    钟大赉,丁林.1993.从三江及邻区特提斯带演化讨论冈瓦纳大陆离散与亚洲大陆增生.北京:地震出版社,5-8.
    钟大赉.1998.滇川西部古特提斯造山带.北京:科学出版社,1-231.
    周鼎武,赵重远,李银德.1994.鄂尔多斯盆地西南缘地质特征及其与秦岭造山带的关系.北京:地质出版社,97-163.
    周鼎武,张成立,韩松,等.1995.东秦岭早古生代两条不同构造-岩浆带的形成构造环境.岩石学报,11(2):115-126.
    朱云海,张克信,Pan Y M,等.1999.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学--中国地质大学学报,24(2):134-138.
    朱云海,王国灿,贾春兴,等.2003.东昆仑造山带诺木洪郭勒早古生代火山活动.地球科学--中国地质大学学报,28(6):606-614.
    朱云海,林启祥,贾春兴,等.2005.东昆仑造山带早古生代火山岩锆石SHRIMP年龄及其地质意义.中国科学(D辑),35(12):1112-1119.
    左国朝,刘寄陈.1987.北祁连早古生代大地构造演化.地质科学,22(1):14-24.
    左国朝,李志林,张崇.2001.青海拉鸡山构造带是裂谷还是构造窗--与王二七研究院商榷.地质论评,47(6):561-566.
    Allegre C J.1982.Chemical geodynamics.Tectonophysics,81:109-132.
    Altenberger U,Wilhelm S.2000.Ductile deformation of K-feldspar in dry eclogite facies shear zones in Bergen Arcs,Norway.Tectonophysics,320:107-121.
    Atherton M P, Petord N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362:144-146.
    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report ~(204)Pb. Chem. Geol., 192:59-79.
    Batchlor R B, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., 48:43- 55.
    Bian Q T, Li D H, Pospelov I, et al. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J. Asian Earth Sci., 23: 577- 596.
    Bullard E, Everett J E, Smith A G. 1965. The fit of continents around the Atlantic. In: A symposium on continental drift, Philos. Trans. Royal Soc. London, London, Ser. A: Mathematical and Physical Sciences, 258; 1088:41-51. Royal Soc. London, Londoa
    Chen F K, Hegner E, Todt W. 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc. Int. J. Earth Sci., 88: 791-802.
    Chen F K, Siebel W, Satir M, et al. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int. J. Earth Sci., 91: 469- 481.
    Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284: 101-133.
    Cohen R S, Evensen N M, Hamiltor P J, et al. 1980. U-Pb, Sm-Nd and Rb-Sr systematics of mid-ocean ridge basalt glasses. Natrue, 283:149-153.
    Cohen R S, O'Nions R K. 1982. The lead, neodymium and strontium isotopic structure of ocean ridge basalts. J. Petrol., 23: 299- 324.
    
    Coleman R G, Peterman Z E. 1975. Oceanic Plagiogranite. J. Geophys. Res., 80:1099-1108.
    Coleman R G. 1977. Ophiolites, Ancient Oceanic Lithosphere? Springer-Verlag, Berlin, 1- 229.
    
    Compston W, Williams I S. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res., 89: 525- 534.
    Corfu F, Hanchar J M, Hoskin P W O, et al. 2003. Atlas of zircons texture. In: Hanchar J M and Hoskin P W O (Eds.), Zircon reviews in mineralogy and geochemistry, 469- 500.
    Darby B J, Gehrels G. 2006. Detrital zircon reference for the North China block. J. Asian Earth Sci, 26: 637- 648.
    Davidson J P. 1983. Lesser Antilles isotopic evidence of the role of subducted sedment in island arc magma genesis. Nature, 306: 253- 256.
    Davies J H, Blanckenburg F V. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and defomation of collisional ogogents. Earth Planet. Sci. Lett., 129: 85- 102.
    Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662- 665.
    Defant M J, Drummond M S. 1993. Mount St Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21: 547- 550.
    Ding L, Kapp P, Zhong D L, et al. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J. Petrol., 44:1833-1865.
    Dosso L, Bougault H, Beuzart P, et al. 1988. The geochemical structure of the South-East Indian Ridge. Earth Planet. Sci. Lett., 88: 47- 59.
    Dunlap W J. 1997. Neocrystallization of cooling? ~(40)Ar/~(39)Ar ages of white mica of low-grade mylonites. Chem. Geol., 143:181- 203.
    Dupre B, Allegre C J. 1980. Pb-Sr-Nd isotopic correlation and the chemistry of the North Atlantic mantle. Nature, 286: 17- 22.
    Dupre B, Allegre C J. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303:142-146.
    Foland K A, Allen J C. 1991. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA. Contrib. Miner. Petrol., 109: 195- 211.
    Gao S, Zhang B R, Gu X M, et al. 1995. Silurian-Devonian provenance of South Qinling basins: implications for accretion of the Yangtze (South China) to the North China cratons. Tectonophysics, 250: 183-197.
    
    Gao S, Ling W L, Qiu Y M, et al. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangzte craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta, 63: 2071-2088.
    
    Gast P W, Tilton G E, Hedge C F. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145: 1181.
    Gast P W. 1969. The isotopic composition of lead from St. Helena and Ascension Islands. Earth Planet. Sci. Lett., 5: 353- 359.
    Gehrels G E, Yin A, Wang X F, et al. 2003. Detrital-zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Amer. Bull., 115: 881- 896.
    Girardeau J, Mereier J C, Yougong Z. 1985. Origin of the Xigaze ophiolite, Yarlung Zangbo Suture zone, southern Tibet. Tectonophysics, 119: 407- 433.
    Govindaraju G. 1994. Compilation of working values and sample description for 383 geostandards. Geostandards Newslett., 18 (special issue): 1-158.
    Gradstein F M, Ogg J G, Smith A G, et al. 2004. A geologic time scale. New York: Columbia University Press.
    Hacker B R, Wang Q. 1995. ~(40)Ar/~(39)Ar geochronology of ultrahigh-pressure metamorphism in Central China. Tectonics., 14: 994-1006.
    Hacker B R, Ratschbacher L, Webb L, et al. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-press Qinling-Dabie Orogen, China. Earth Planet. Sci. Lett., 161:215- 230.
    Hamelin B, Allegre C J. 1985. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature, 315:196-199.
    Hamelin B, Dupre B, Allegre C J. 1986. Pb-Sr-Nd isotopic data of Indian Ocean ridges: New evidence of large-scale mapping of mantle heterogeneities. Earth Planet. Sci. Lett., 76: 288- 298.
    Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward M P and Ries A C (Eds.), Collision Tectonics, Geol. Soc. Spec. Publ., No. 19:67-81.
    
    Harrison T M. 1981. Diffusion of ~(40)Ar in hornblende. Contrib. Miner. Petrol., 78: 324- 331.
    Hart S R, Davis K E. 1978. Nickel partitioning between olivine and silicate melt. Earth Planet. Sci. Lett., 40: 203-219.
    Hart S R. 1984. A large isotopic anomaly in the Southern Hemisphere mantle. Nature, 309: 753- 757.
    Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett., 90: 273- 296.
    Hickey-Vargas R, Hergt J M, Spadea P. 1995. The Indian Ocean-type isotopic signatures in western Pacific marginal basins: Origin and significance. In: Taylor B and Natland J H (Eds.), Active Margins and Marginal Basins of the Western Pacific, Geophys. Mono., AGU 88, 175- 197.
    Hofmann A W. 1988. Chemical differentiation of the Earth: Relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett., 90:297- 314.
    Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219-229.
    
    Horn I, Rudnick R L, McDonough W F. 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology. Chem. Geol., 167: 405- 425.
    Ishikawa T, Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370: 205- 208.
    Isma A, Mathieu B, Georges C. 1996. Tectonic setting for the genesis of oceanic plagiogranites: Evidence from a paleo-spreading structure in the Oman ophiolite. Earth Plant. Sci. Lett., 139: 177-194.
    Ito E, White W M, Gopel C. 1987. The O, Sr, Nd, and Pb isotope geochemistry of MORB. Chem. Geol., 62:157-176.
    Klein E M, Langmuir C H, Zindler A, et al. 1988. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature, 297: 43- 46.
    Kroner A, Wilde S A, Li J H, et al. 2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. J. Asian Earth Sci., 24: 577- 595.
    Lai S C, Liu C Y, Yi H S. 2003. Geochemistry and petrofenesis of Cenozoic andisite-dacite association from the Hoh Xil region, Tibetan pleteau. Int. Geol. Rev., 45: 998-1019.
    le Roex A P, Dick H J B, Fisher R L. 1989. Petrology and geochemistry of MORB from 25°E-46°E along the Southwest Indian Ridge: Evidence for contrasting styles of mantle enrichment. J. Petrol., 30: 947- 986.
    Lee J K W, Wiliams I S, Ellis D J. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390: 159-161.
    Lerch M F, Xue F, Kroner A, et al. 1995. A Middle Silurian-Early Devonian magmatic arc in the Qinling mountains of Central China. J. Geol., 103: 437- 449.
    Li S G, Wang S S, Chen Y Z, et al. 1994. Excess argon in phengite from eclogite: Evidence from dating of eclogite minerals by Sm-Nd, Rb-Sr and ~(40)Ar/~(39)Ar methods. Chem. Geol., 112: 343- 350.
    Li S G, Jagoutz E, Chen Y Z, et al. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochim. Cosmochim. Acta, 64: 1077- 1093.
    Li Z X, Powell C M. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Sci. Rev., 53: 237- 277.
    Li Z X, Li X H, Zhou H W, et al. 2002. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30: 163-166.
    Liou J G, Wang X M, Coleman R G. 1989. Blueschists in major zones of China. Tectonics, 8: 609- 619.
    Ludwig K R. 2001a. Squid 1.02: Auser manual. Berkeley Geochronology Center, Special Publication, 219.
    Ludwig K R. 2001b. Users Manual for Isoplot/Ex (rev. 2.49): A Geochronology toolkit for microsoft Excel, la. Berkeley Geochronology Center, Special Publication, 55.
    Lugmair G W, Marti K. 1978. Lunar initial ~(143)Nd/~(144)Nd: Differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett., 39: 349- 357.
    Mahoney J J, Natland J H, White W M, et al. 1989. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J. Geophys. Res., 94: 4033- 4053.
    Mahoney J J, le Roex A P, Peng Z, et al. 1992. Southwestern limits of Indian Ocean Ridge mantle and the origin of low ~(206)Pb/~(204)Pb Mid-Ocean Ridge basalts: Isotope systematics of the Central Southwest Indian Ridge (17°-50°E). J. Geophys. Res., 97:19771-19790.
    Mahoney J J, Frei R, Tejada M L G, et al. 1998. Tracing the Indian Ocean mantle domain through time: Isotopic results from old west Indian, east Tethyan, and South Pacific seafloor. J. Petrol., 39:1285-1306.
    
    Mancktelow N S, Pennacchioni G. 2004. The influence of grain boundary fluids on the microstructure of quartz feldspar mylonites. J. Struc. Geol., 26: 47- 69.
    Matte P, Tapponnier P, Arnaud N, et al. 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett., 142: 311-330.
    Mattauer M, Matte P, Malavieille J, et al. 1985. Tectonics of the Qinling Belt: build-up and evolution of eastern Asia. Nature, 317: 496- 500.
    Mattern F, Schneider W. 2000. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China). J. Asian Earth Sci., 18:637- 650.
    Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China blocks: controversy and reconciliation. Geology, 27:123-126.
    Meng Q R, Zhang G W. 2000. Geological framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323: 183-196.
    Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian J. Earth Sci., 43: 605- 623.
    Michard A, Montigny R, Schlich R. 1986. Geochemistry of the mantle beneath the Rodriguez triple junction and the South-East Indian Ridge. Earth Planet. Sci. Lett., 78:104-114.
    Miller C, Schuster R, Klotzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr, Nd, Pb, O isotopic constraints for mantle source characteristics and petrogenesis. J. Petrol., 40:1399-1424.
    Nance R D, Murphy J B. 1994. Contrasting basement isotopic signatures and the Palinspastic restoration of peripheral orogens: Example from the Neoproterozoic Avalonian - Cadomian belt. Geology, 22: 617-620.
    Neubauer F, Ebner F, Wellbrecher E. (eds.). 1995. Tectonics of the Alpine - Carpathian - Pannonian region. Tectonophysics, 242 (1-2).
    Pallister J S, Hopson C A. 1981. Samail ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J. Geophys. Res, 86: 2593-2644.
    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25: 956- 983.
    Petord N, Atherton M P. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith. J. Petrol., 37:1491-1521.
    Puchkov V N. 1988. Correlation and geodynamic features of Pre-Alpine tectonic movements throughout and around the Alpine orogen. Studia. Geologica. Polanica.,XCI: 77-92.
    Price R C, Kennedy A K, Riggs-Sneeringer M, et al. 1986. Geochemistry of basalts from the Indian Ocean triple junction: Implications for the generation and evolution of Indian Ocean ridge basalts. Earth Planet. Sci. Lett, 78: 379- 396.
    Raumer J F, Stampfli G M, Borel G, et al. 2002. Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int. J. Earth Sci, 91: 35- 52.
    Sengor A M C. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279: 590-593.
    Sengor A M C. 1984. The Cimmeride orogenic system and the tectonic of Eurasia. Geol. Soc. Am. Spec. Paper, 195: 82.
    Sengor A M C, Altmer D, Cin A, et al. 1989. Origin and assembly of the Tethyside orogenic collagenic at the expense of Gondwana Land. In: Gondwana and Tethys, Geol. Soc. Spec. Publ, Oxford, 37: 119-181.
    Song S G, Yang J S, Xu Z Q, et al. 2003a. Metamorphic evolution of the coesite-bearing ultra-pressure terrane in the North Qaidam, northern Tibet, NW China. J. Meta. Geol, 21: 631-644.
    Song S G, Yang J S, Liou J G, et al. 2003b. Petrology, geochemistry and isotopic ages of eclogites in the Dulan UHPM terrane, the North Qaidam, NW China. Lithos, 70: 195- 211.
    Song S G, Zhang L F, Niu Y L. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am. Miner, 89: 1330-1336.
    Song S G, Zhang L F, Chen J, et al. 2005a. Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: implication for ultradeep-origin and hydroxyl defects in mantle garnets. Am. Miner, 90: 814- 820.
    Song S G, Zhang L F, Niu Y L, et al. 2005b. Geochronology of diamond-bearing zircons from garnet-peridotite in the North Qaidam UHPM belt, North Tibetan Plateau: a record of complex histories associated with continental collision. Earth Planet. Sci. Lett., 234:99-118.
    Song S G, Zhang L F, Niu Y L, et al. 2006. Evolution from oceanic subduction to continental collision: a case study from the Northern Tibetan Plateau based on geochemical and geochronological data. J. Petrol., 47:435- 455.
    Song S G, Su L, Niu Y L, et al. 2007. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China. Lithos, 96: 243- 265.
    Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett., 196:17-33.
    Steiger R H, Jager. 1977. Subcommission on geochronology: Convention on the use of dacay constants in geochronology and cosmochronology. Earth Planet. Sci. Lett., 36: 359- 362.
    Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral volcanic zone. Contrib. Miner. Petrol., 123: 263- 281.
    Stipp M, Stiinitz H, Heilbronner R, et al. 2002. The eastern Tonale fault zone: A natural laboratory for crystal plastic deformation of quartz over a temperature range from 250°C to 700°C. J. Struc. Geol., 24: 1861-1884.
    Stocklin J. 1974a. Northern Iran: Alborz Mountains. Geol. Soc. London, Spec. Publ. No. 4: 213- 234.
    Stocklin J. 1974b. Possible ancient continental margins in Iran. In: Burk C A and Drake C L (Eds.), The geology of continental margin, Springer-Verlag, Berlin, 873- 887.
    Suess E. 1893. Are great ocean depths permanent? In: Sonnenfeld P (Eds.), Tethys: The ancestral Mediterranean, Benchmark Papers in Geol., Vol. 53, 1981, pp. 1-11, Hunchinson Ross Publishing Company. Reprinted from Natural Science, pp. 180-187 (1983).
    Sun S S, Tatsumoto M, Schilling J G. 1975. Mantle plume mixing along the Reykjanes ridge axis: Lead isotope evidence. Science, 190:143.
    Sun S S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos. Trans. Roy. Soc. London (Ser. A), 297: 409- 445.
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders A D and Norry M J (Eds.), Magmatism in the Ocean Basins, Geol. Soc. London, London, Vol. 42: 313- 345.
    Sun W D, Li S G, Sun Y, et al. 2002a. Mid-paleozoic collision in the north Qinling: Sm-Nd. Rb-Sr and ~(40)Ar/~(39)Ar ages and their tectonic implications. J. Asian Earth Sci., 21: 69- 76.
    Sun W D, Li S G, Chen Y D, et al. 2002b. Timing of synorogenic granitoids in the south Qinling, central China: constraints on the evolution of the Qinling-Dabie Orogenic Belt. J. Geol., 110: 457- 468.
    Tatsumoto M. 1966. Genetic relations of oceanic basalts as indicated by lead isotopes. Science, 153:1094-1101.
    Tatsumoto M. 1978. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet. Sci. Lett., 38: 63- 87.
    Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev. Geophys,33:241-265.
    Taylor R N, Nesbitt R W. 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet. Sci. Lett., 164: 79- 98.
    von Raumer J F, Stampfli G M, Borel G. 2002. Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int. J. Earth Sci., 91: 35- 52.
    Wan Y S, Zhang J X, Yang J S, et al. 2006. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance. J. Asian Earth Sci., 28:174-184.
    Wang T, Wang X X, Zhang G W, et al. 2003. Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China). Gondwana Res., 6: 699- 710.
    Wang T, Pei X Z, Wang X X, et al. 2005. Orogen-parallel westward oblique uplift of the Qinling basement complex in the core of the Qinling Orogen (China): An example of oblique extrusion of deep-seated metamorphic rocks in a collisional orogen. J. Geol., 113: 181- 200.
    Wang C Y, Zhang Q, Qian Q, et al. 2005.Geochemistry of the early Paleozoic Baiyin volcanic rocks (NW China): Implications for the tectonic evolution of the North Qilian orogrnic belt. J. Geol., 113:83-94.
    Wang S Q, Li X Y, Chen N S, et al. 2006. LA-ICPMS U-Pb ages of zircon from mataleucosomes, Olongbuluke microcontinent, North Qaidam, and implications on the response to the global Rodinia supercontinent assembly event in NW China. J. China University Geosci., 17: 238- 245.
    Weis D, Frey F A. 1996. Role of the Kerguelen plume in generating the eastern Indian Ocean seafloor. J. Geophys. Res., 101: 13841-13849.
    White W M, Schilling J G. 1978. The nature and origin of geochemical variation in Mid-Atlantic Ridge basalts from the central North Atlantic. Geochim. Cosmochim. Acta, 42: 1501- 1516.
    White W M. 1993.~(238)U/~(204)Pb in MORB and open system evolution of the depleted mantle. Earth Planet. Sci. Lett, 115:211-226.
    Williams I S. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C III and Ridley W I (Eds.), Applications of microanalytical techniques to understanding mineralizing process, Rev. Econ. Geol., 1- 35.
    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20:325- 343.
    Wu F Y, Zhao G C, Wilde S A, et al. 2005. Nd isotopic constraints on crustal formation in the north China craton. J. Asian Earth Sci., 24: 523- 545.
    Wu H Q, Feng Y M, Song S G. 1993. Metamorphism and deformation of blueschist belts and their tectonic implications, North Qilian Mountains, China. J. Meta. Geol., 11: 523- 536.
    Xia L Q, Xia Z C, Xu X Y. 2003. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. Geol. Soc. Am. Bull., 115: 1510-1522.
    Xu J F, Castillo P R, Li X H, et al. 2002a. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low ~(206)Pb/~(204)Pb and high ~(143)Nd/~(1444)Nd mantle component in the Indian Ocean. Earth Planet. Sci. Lett, 198: 323- 337.
    Xu J F, Wu Q, Yu X Y 2002b. Geochemistry of high-Mg andesites and adakitic andedite from the Sanchazi Block of the Mian-Lüe ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust. Geochemica. J, 34: 359- 377.
    Xu J F, Castillo P R. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393: 9- 27.
    Xu Z Q, Yang J S, Wu C L, et al. 2006. Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metamorphic belt. J. Asian Earth Sci, 28: 160-173.
    Yang J S, Robinson P T, Jiang C F et al. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258: 215- 231.
    Yang J S, Xu Z Q, Zhang J X. 2002. Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan Plateau and a paired subduction model. Terra Nova, 14: 397- 404.
    Yang J S, Liu F L, Wu C L. 2005. Two ultrahigh-pressure metamorphic events in the Central Orogenic Belt of China: Evidence from the U-Pb dating of coesite-bearing zircons. Int. Geol. Rev, 47: 327- 343.
    Yin A, Nie S. 1993. An indentation model for the North and South China collision and the development of the Tanlu and Honam fault systems, eastern Asia. Tectonics, 12: 801- 813.
    Yin A, Nie S. 1998. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A and Harrison T M (Eds.), The tectonics of Asia, Cambridge Univ. Press, New York, 442- 485.
    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan - Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28: 211- 280.
    Yin H F, Zhang K X, Feng Q L. 2004. The archipelagic ocean system of the eastern Eurasian Tethys. Acta Geol. Sin, 78:230- 236.
    Yuan H L, Gao S, Liu X M, et al. 2004. Accurate U-Pb age and trace element determinations of zircons by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Geoanlytical Res., 11: 357- 370.
    
    Zartman R E, Doe B R 1981. Plumbotectonics-the model. Tectonophysics, 75: 135-162.
    Zhang H F, Zhang B R, Harris N, et al. 2006. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constraints on petrogenesis and tectonic affinity. J. Asian Earth Sci., 27: 751- 764.
    Zhang J X, Xu Z Q, Yang J S, et al. 2000. The Altun-North Qaidam eclogite belt in western China: another HP-UHP metamorphic belt truncated by large scale strike-slip fault in China. Earth Sci. Front, 7: 254- 255.
    Zhang J X, Yang J S, Xu Z Q, et al. 2002. Two contrasting eclogite types on the northern margin of Qaidam basin, western China. Acta Geol. Sin, 76: 331- 338.
    Zhang J X, Yang J S, Martinson C G, et al. 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos, 84: 51-76.
    Zhang J X, Yang J S, Meng F C, et al. 2006. U-Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam mountains, western China: New evidence for an early Paleozoic HP-UHP metamorphic belt. J. Asian Earth Sci, 28: 143-150.
    Zhang Q, Zhou D J, Zhao D S, et al. 1994. Ophiolites of the Hengduan Mountains, China: Characteristics and tectonic settings. J. Southeast Asian Earth Sci, 9: 335- 344.
    Zhang S B, Zheng Y F, Wu Y B, et al. 2006. Zircon U-Pb ages and Hf isotope evidence for 3.8Ga crustal remnant and episodic reworking of Archean crust in South China. Earth Planet. Sci. Lett, 252:56-71.
    Zhang S Q, Mahoney J J, Mo X X, et al. 2005. Evidence for a widespread Tethyan upper mantle with Indian-ocean-type isotopic characteristics. J. Petrol, 46: 1- 30.
    Zhao X, Coe R S. 1987. Paleomagnetic constraints on the collision and rotation of North and South China. Nature, 327: 141-144.
    Zindler A, Jagoutz E, Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective. Natrue, 298: 519- 523.
    Zindler A, Hart S R. 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 14:493- 571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700