用户名: 密码: 验证码:
隧道洞口段落石灾害研究与防治
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以隧道洞口区段落石灾害为研究对象,在国家自然科学基金(编号:50678182)的资助下,以隧道洞口段落石灾害有效防治为目标,系统进行了落石运动影响因子现场试验,隧道洞口落石危险性分级和风险决策,落石运动路径与运动特性参数计算,落石冲击力计算和落石灾害威胁地段隧道洞口段布置与灾害防治等研究,取得了以下研究成果:
     (1)通过不同质量、不同形状落石现场试验发现,落石于坡面的运动模式以弹跳和滚动为主,仅在少数落石起始和停止运动阶段有小段滑动情形,且越接近球形该规律越明显。不同形状落石中,球形、方形和短柱状落石在运动过程中会有更大的威胁范围、运动速度和弹跳能力,相应的长方形和片状落石最差,且长径比越大、长细比越大,扁度越大则运动能力越差。不管何种形状及质量大小的落石,在运动可达范围、弹跳高度、横向偏移、运动速度等方面均表现出了极大的随机性,且质量越小随机性越明显。从落石运动模态和运动能力来看,短柱状落石基本能够反映方形、球形落石运动特征,而长柱状落石运动特征与长方形落石相仿,但不管何种形状落石,坡表的碰撞阶段会急剧改变落石运动路径与模式。从落石运动偏移比来看,试验所得结果较已有建议值0.1要大,但均在0.3以内,96%的落石偏移比在0.25以内,89%的落石偏移比在0.2以内,偏移比在0.1以内的约占57%。
     (2)鉴于落石运动的随机性特征,以及隧道洞口段落石灾害防治决策的需要,建立了隧道洞口段落石灾害危险性分级系统。将隧道洞口段落石灾害危险性以危岩崩落的可能性、崩落后落石到达隧道洞口区域的可能性和致灾能力,以及危害严重性等三个方面进行评价,建立了经验性量化评分系统,将隧道洞口发生落石灾害的危险性等级分为一至四级,一级为隧道洞口受落石灾害威胁最为严重状态,而四级为不受落石灾害威胁状态。
     (3)通过假定落石为均质圆柱体,将落石于坡表的运动归结为飞行、碰撞和滚动三种模式,以运动学和动力学有关原理来表达各种运动模式下落石运动路径及运动特性参数(弹跳高度、运动速度、总动能等)。并以法向(e_n)、切向恢复系数(e_t)和滚动摩擦系数(μ)等敏感参数的区间变动取值,通过多次计算来反映落石运动随机性特点对落石运动路径及运动特性参数的影响,得到运动特性参数计算结果相应的随机变动区间,并通过统计分析得到不同危险性等级落石防治所需代表参数。建议对于一级落石灾害危险性等级隧道洞口可取相应多次计算结果最不利值作为落石灾害防治依据,对于二级隧道洞口,可取95%保证率参数作为设计依据,对于三级隧道洞口可取计算参数平均值控制设计。
     (4)落石威胁区域的确定是进行隧道洞口布置、用地规划和防治结构布置的依据。威胁区域可在计算得到落石二维威胁区间后,通过偏移比指标划定落石三维的威胁范围,建议对于一级落石灾害危险性等级隧道洞口,可取偏移比为0.3控制落石横向威胁范围,对于二级洞口可取偏移比为0.25,相应三级洞口可取偏移比为0.2。
     (5)基于落石冲击过程冲量变化原理,考虑冲击过程中重力项、反弹效应对冲击力的影响,通过有关试验实测数据、不同计算公式对比分析和三维冲击动力数值模拟,并以冲击力放大系数建立平均冲击力和最大冲击力之间的联系,建立了适用于不同冲击速度、不同缓冲土层厚度、不同冲击角度的落石冲击力计算方法,为明洞、棚洞落石冲击力作用下的结构计算提供荷载依据。冲击力计算和比较分析表明,落石冲击角度越小相应冲击力也越小,缓冲土层越厚,不仅计算得到的冲击力越小,而且扩散之后的分布荷载更小,但过大的厚度会增加覆土自重,且仅通过增加缓冲层厚度来抵抗落石冲击作用,对于大尺寸落石防护而言效果不明显,实际工程中,需要依据落石尺寸、冲击力计算结果和洞口结构特征进行优选。冲击力作用的最不利位置对于明洞而言为拱顶或拱腰,而对于棚洞结构通常为跨中。
     (6)明洞和棚洞既可是隧道进出口结构,也可是线状工程落石灾害防治技术手段,对于落石威胁地段隧道洞口,应在落石灾害威胁区域预测、落石计算的基础上优化布置,可在抗落石冲击设计的前提下以棚洞和明洞结构直接通过落石威胁区域,或者在主动防治落石、被动拦截落石确保安全的前提下,按一般隧道洞口布置即可。主动防治技术适用于勘察确定的危岩体、以及大型崩塌体的治理;被动防护系统可作为主动防治技术的补充,也可单独用来防治小型的、易发生漏勘漏治的或多点、线状、面状分布落石,以被动防护系统自身拦截能力为原则。拦石网和半刚性拦石墙是两种较优的被动防治技术手段,隧道洞口、拦石网和半刚性拦石墙的布设可依据落石威胁区域预测、运动路径、弹跳高度、运动速度、动能、冲击力等计算结果确定。
With financial support of the National Natural Science Foundation (ID: 50678182), the author chooze rockfall hazards at tunnel entrance as research object, and aimed at its effective mitigation, throw systemic rockfall field experiments, tunnel entrance rockfall hazard rating, rockfall trajectories and movement parameters calculation, rockfall impact forces calculation, tunnel entrance arrangement, rockfall mitigation at tunnel entrance and so on, get the following concludings:
     (1) Through different quality, different shapes rockfall filed experiments, the auther found that the movement mode of rockfalls are mainly rolling and bouncing, only a small number of rockfall has a short phase sliding at start, and the more spherical the the law is more obvious. For different shape rockfalls, spherical, square, and short cylindrical rockfalls have greater threaten scope, faster speed and stronger jumping ability. But the rectangular and sheet rockfalls have the worst movement ability, and the greater the Slenderness Ratio or the Flat Degree, the rockfalls have worse movement ability. No matter what shape , quality and size of rockfalls, up to the threaten scope, a high bouncing hight, lateral distance, velocity, and so on, have shown great randomness, and the smaller the quality of rockfall, the randomness are more obvious. From the movement mode and ability of rockfalls, the cylindrical rockfalls' movement features like spherical and square rockfalls. and the cylindrical rockfalls' like rectangular rockfalls. But no matter what shapes, the inpact on the slope will be a sharp change of rockfall movement trajectories and mode.From the Offset Ratio of rockfall movements, test results have been greater than some proposals value of under 0.1, but all Offset Ratio value is smaller than 0.3. And about 96% of rockfalls Offset Ratio is less than 0.25, about 89% less than 0.2, about 57% less than 0.1.
     (2) In view of the random characteristics of rockfall movement, as well as the needs of rockfall mitigation decision-making at tunnel entrance, the hazards rating ystem was established. The author evaluated measured the hazard rating by the possibility of rockfall avalanche, the possibility of rockfall reached the tunnel entrance after its avalanche and seriousness of rockfall hazards. A quantitative empirical rating system was founded and divided the risk dgreed into 4 grades named Grade 1 to Grade 4 tunnel entrance, for a tunnel entrance thretened by rockfall hazards Grade 1 means the most serious state, and Grade 4 means the tunnel ertrance has no rackfall hazard.
     (3) Through the homogeneous cylinder assumption, the author decomposed the rockfall movement mode into flight, collision and rolling, and introduced kinematics and dynamics principles to express movement parameters of rockfall(bouncing hight, movement speed, the total kinetic energy, etc.). Through choosing random value of sensitive parameters such as the normal coefficients of restitution( e_n), the tangential coefficients of restitution(e_t), and rolling friction coefficient(μ) in a identified range, and through a number of calculating by different parameter value to reflect the movement characteristics parameters random range of rockfalls. And through statistical analysis we can get the necessary parameters for the mitigation of rockfalls at the tunnel entrance.The author recommends that, for Grade 1 tunnel entrance, should choose the most adverse value as rockfall mitigation design basis. Accordingly, 95% ensuring rate parameter for Grade 2 tunnel entrance and mean value for Grade 3 tunenel entrance.
     (4) The threaten area by rockfall hazards is basis of tunnel entrance design, land planing and rockfall mitigation structure design. By 2D rockfall trajectory and movement parameter calculation and combination with the Offset Ratio, the 3D rackfall threaten area can be delineated. The author recommends that, for Grade 1 tunnel entrance, the Offset Ratio is 0.3. Accordingly, 0.25 for Grade 2 tunnel entrance and 0.2 for Grade 3 tunenel entrance.
     (5) Based on the Impulse Principle, considering gravity and rebounding effect in the rockfall impacting process, throught field experiment data, different formulas calculating results and the 3D dynamic numerical simulation, the author presented rockfall impacting force calculation method. The method can apply in solving impacting forces problem for different impact speed, different thickness of the bufferlayer, different impact angle. And then the impacting force calculation method provided load basis for the design of rockfall mitigation structure such as cut-and-cover tunnel and shed-tunnel. The calculation of impact impacting force and its comparative analysis showed that the smaller the impact angle the corresponding impact force is also smaller, and the thicker the buffer layer, the impact force is smaller. and after the distribution of buffer layer, the impacting force on structure is much more smaller. But with the increasing of the thickness of buffer layer, the weight on the stucture is also increaed. And to enhance the anti-impact capacity only by increasing the thickness of buffer layer is usually expensive. In the actual engineering, the buffer layer design need considered rockfall size, impact force and structure optimization. The adverse location by impacting force for cut-and-cover tunnel is arch crown or arch back. But for shed tunnel the adverse location is usually at mid span.
     (6) The cut-and-cover tunnel and shed tunnel not only can serve as tunnel entrance or exit, but also one type of rockfall mitigation techniques for linear engineering such as roads. To tunnel entrance and exit which threatened by rockfall hazards, we can design the tunnel based on forecasts of rockfall threaten area, rockfall trajectory and impacting force calculation. And also can be designed like a tunnel in general area in the premise of ensuring safety by mittigation the rockfall hazards using systemtic active and passive mitigation techniques. The active control techniques are applicable to the large scale and well investigated rockfalls. And the passive protection system can be used as supplementary to the active control techniques, or can also be used to prevent and treatment of small, bad investigated, linear distributed rockfalls. The safty net and semi-rigid rockfall barrier wall are two kinds of good passive mitigation system. And the design of passive mitigation techniques or tunnel entrance must be based on the results of rockfall threaten forecasting, trajectories, bouncing hight, velocity, kinetic energy, and impact force calculation.
引文
[1]陈洪凯,唐红梅,王蓉.三峡库区危岩稳定性计算方法及应用[J].岩石力学与工程学报.2004,23(4):614-619
    [2]陈洪凯,唐红梅,叶四桥,等.危岩防治原理[M].北京:地震出版社,2006
    [3]胡厚田.崩塌与落石[M].北京:中国铁道出版社,1989,78-105
    [4]张路清,杨志法.公路沿线遭遇滚石的风险分析-案例研究[J].岩石力学与工程学报.2004,23(21):3700-3708
    [5]陈洪凯,唐红梅,刘光华,等.危岩支撑和支撑-锚固技术计算方法研究[J].岩土工程学报,2004b,26(3):383-388
    [6]陈洪凯,唐红梅,胡明.危岩锚固计算方法研究[J].岩石力学与工程学报.2005,24(8):1321-1327
    [7]CHEN Hong-kai,TANG Hong-mei,YE Si-qiao.Research on damage model of control fissure in perilous rock[J].Applied Mathematics and Mechanics.2006,27(7):967-974
    [8]曾廉.崩塌与防治[M].成都:西南交通大学出版社.1990,23-50
    [9]张钧.焦柳线危岩落石整治工程勘测设计回顾[J].路基工程,1998,78(6):59-63
    [10]王立人.崩塌的形成及危岩体的稳定分析[J].水文地质工程地质,1994,(2):16-22
    [11]陈洪凯,唐红梅,叶四桥,等.三峡库区危岩发育链式机理及失稳运动路径研究[C].第八次全国岩石力学与工程学术大会论义集.北京:科学出版社,2004,820-825
    [12]重庆市地方标准.地质灾害防治工程勘查规范[S].(DB50/143-2003):20-30
    [13]重庆市地方标准.地质灾害防治工程设计规范[S].(DB50/5029-2004):25-27
    [14]CHEN Hong-kai,TANG Hong-mei,WANG Rong et al.Research on equivalent processes of rock mass parameters with anchor pile[J].Applied Mathematics and Mechanics.2001,22(8):965-971
    [15]唐红梅,易朋莹.危岩落石运动路径研究[J].重庆建筑大学学报.2003,25(1):17-23
    [16]张奇华.链子岸危岩体变彤破坏系统辨识[J].岩石力学与工程学报.1998,17(5):544-551
    [17]刘国明.三峡链子岸危岩体静力稳定性有限元分析[J].河海大学学报,1996,24(4):95-101
    [18]夏元友,李梅.崩塌体稳定性检算方法优化研究[J].中国地质灾害与防治学报,2002,13(4):56-58
    [19]谢全敏.危岩块体稳定性分析的蒙特卡罗边界法[J].灾害学,1998,13(2):37-41
    [20]孟晖,胡海涛.我国主要人类工程活动引起的滑坡、崩塌和泥石流灾害[J].工程地质学报.1996,4(4):69-74
    [21]何川,佘健.高速公路隧道维修与加固[M].北京:人民交通出版社,2006
    [22]Richards J.A,Inspection,maintenance and repair of tunnels:international lessons and practice[J].Tunnelling and Underground Space Technology,1998,13(4):369-375
    [23]关宝树.隧道维修管理要点集[M].北京:人民交通出版社.2004
    [24]Toshihiro Asakura,Yoshiyuki Kojima.Tunnel maintenance in Japan[J].Tunnelling and Underground Space Technology,2003,18(2):161-169
    [25]杨新安,黄宏伟.隧道病害与防湔M].上海:同济大学出版社.2003
    [26]李现宾.拱桥-框架棚洞在落石病害整治中的应用[J].西部探矿工程.2004,10:198-199
    [27]中国灾害防御协会铁道分会.中国铁路自然灾害及其防治[M].中国铁道出版社.1993,361-398
    [28]中华人民共和围行业标准.铁路隧道设计规范TB10003-2005[S].2005,42-44
    [29]中华人民共和国行业标准.公路隧道设计规范JTG D70-2004[S].2004,31-45
    [30]铁道第二勘测设计院.铁路工程设计技术手册.隧道[M].北京:中国铁道出版社,1999,141-191
    [31]王梦恕.客运专线隧道设计的基木原则[J].隧道建设.26(1):1
    [32]周佳媚,严松宏,王英学.单线铁路隧道洞门结构分项系数的研究[J].西南交通大学学报.2001,36(5):505-508
    [33]刘贵应,张斌,张庭拄.四角田下行隧道进口段深长裂缝形成及变形机理的探讨[J].岩石力学与工程学报.2001,20(增1):927-931
    [34]蒋树屏,刘元雪,黄伦海.隧道出口段环保型结构稳定性分析[J].岩土工程学报.2005,27(5):577-580
    [35]高峰,石玉成,严松宏.隧道洞口段的抗震设防长度[J].中国公路学报.2006,19(3):65-69
    [36]高新强,仇文革.新型铁路隧道洞口段结构受力特征现场试验研究[J].岩石力学与工程学报.2005,24(12):2155-2159
    [37]国欣,谢雄耀,黄宏伟.公路隧道洞口滑坡的机制分析及监控预报[J].岩石力学与工程学报.2006,25(2):268-274
    [38]徐林生,孙钧,蒋树屏.洋碰隧道进口右线施工中的现场监控量测[J].岩石力学与工程学报.2002,21(5):675-678
    [39]李伦贵,高波.翼墙式隧道洞门可靠性分析[J].西南交通大学学报.2002,37(5):496-499
    [40]刘小兵,彭立敏,王薇.隧道洞口边仰坡的甲衡稳定分析[J].中国公路学报.2001,14(4):80-84
    [41]刘小兵.隧道洞口边仰坡稳定性影响因素的综合性评价[J].铁道工程学报.2002,1:38-41
    [42]关向群.隧道洞口景观设计实用方法和工程应用[J].铁道学报.2005,27(1):132-136
    [43]关向群.隧道洞口景观设计研究[J].土木工程学报.2003,36(1):36-40
    [44]张弥,沈永清.用响应面方法分析铁路明洞结构荷载效应[J].土木工程学报.1993,26(2):58-66
    [45]周心培.双线电化铁路Ⅱ类围岩拱形明洞衬砌设计中若干问题的探讨[J].铁道勘测与设计.1991,3:9-12
    [46]杨成水,张弥.铁路明洞结构的可靠性设计方法[J].岩石力学与工程学报.1999,18(1):40-45
    [47]胡厚田.崩塌落石研究[J].铁道工程学报,2005,增:387-391
    [48]胡厚田.崩塌落石综合预测方法的研究[J].铁道工程学报,1996,2:182-190
    [49]胡厚田,陈彪.崩塌落石区段预测的研究[J].铁道学报.1996,18(4):95-99
    [50]张路清,许兵,尚彦军,等.川藏公路南线八宿-林芝段滚石灾害的工程地质调查与评价[J].岩石力学与工程学报.2004,23(9):1551-1557
    [51]A.Singh.FRHI-a system to evaluate and mitigate rockfall hazard in stable rock excavations[J].Journal of the Institution of Engineering,India,Civil Engineering Division.2004,Vol.85,62-75
    [52]H.Aksoy,Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation[J].Nat.Hazards Earth Syst.Sci.,2006,6:941-954
    [53]D.Hantz,C.Dussauge-peisser,M.Jeannin et al.Rockfall hazard assessment:From qualitative to quantitative failure probability.Fast Slope Movement, Naples,2003,263-267
    [54]D.Hantz,J.M.Vengeon,C.Dussauge-peisser.An historical,geomechanical and probabilistic approach to rock-fall hazard assessment[J].Nature Hazards and Earth System Sciences.2003,3:693-701
    [55]N.H.Maerz.Highway rock cut stability assessment in rock masses not conducive to stability calculations[C].Proceedings of the 51~(st) Annual Highway Geology Symposium,Seattle,Washington,2000,249-259
    [56]M.Janeras,M.Navarro,Georgina Arno,et aI.LIDAR applications to rock fall hazard assessment in Vail DE NURIA[C].4~(th) ICA Mountain Cartography Workshop,Catalonia,Spain,2004,1-14
    [57]F.Baillifard,M.Jaboyedoff,M.Sartori.Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach[J].Nature Hazards and Earth System Sciences,2003,3:431-438
    [58]M Pritchard,M Porter,W Savigny,et al.CN Rockfall Hazard Risk Management System:Experience,Enhancements,and Future Direction[C].Landslide Risk Management:Proceedings of the International Conference on Landslide Risk Management,Vancouver.Edited by:Hungr,O.et al.A.A.Balkema.2005
    [59]Federal Highway Administration of USA.Rockfall Hazard Rating System:Participant's ManuaI[M].FHWA SA-93-057,1993
    [60]M.Porter,A.Baumgard,K.W.Savigny.A hazard and risk management system for large rock slope hazards affecting pipelines in mountatinous terrain[C].Proceedings of IPC:4~(th) International Pipeline conference,Clgary,Canada,2002,1-8
    [61]F.Guzzetti,P.Reichenbach,S.Ghigi.Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley,Central Italy[J].Environmental management.2004,34(20:191-208
    [62]郑黎明.宝成线略广段崩塌落石灾害发展速度的预测[J].水文地质工程地质.1994,1:13-15
    [63]胡厚田.成昆线共和-尼日岩质边坡崩塌落石强度等级预测的研究[J].西南交通大学学报1989,1:52-59
    [64]张路清,杨志法,张英俊.公路沿线遭遇滚石的风险分析-方法研究[J].岩石力学与工程学 报.2005,24(增2):5543-5548
    [65]Hungr,O.Evans,S.G.Engineering evaluation of fragmental rockfall hazards[C].Proceedings of the 5~(th) International Symposium on Landslides in Lausanne.Rotterdam:Balkema,685-690
    [66]Azzoni,A.,Barbera,G.L.,Zaninetti,A.Analysis and prediction of rockfalls using a mathematical model[J].International Journal of Rock Mechanics and Mining Science,1995,32(7):709-724
    [67]Jaboyedoff,M.,Labiouse,V.Preliminary assessment of rockfall hazard based on GIS data[C].lSRM2003-Technology roadmap for rock mechanics,South African.2003,575- 578
    [68]F.Guzzetti,P.Reichenbach,G.F.Wieczorek.Rockfall hazard and risk assessment in the Yosemite Valley California,USA[J].Natural Hazards and Earth System Sciences.2003,3:491-503
    [69]L.K.A.Dorren.A review of rockfall mechanics and modeling approaches[J].Progress in Physical Geography,2003,27(1):69-87
    [70]亚南,王兰生,赵其华,等.崩塌落石运动学的模拟研究[J].地质灾害与环境保护.1996,7(2):25-32
    [71]Giani,G.P.Rock slope stability analysis[M].Balkema,Rotterdam,1992,361
    [72]Hoek,Evert.Unpublished notes:NSERC Industrial Research Professor of Rock Engineering,Department of Civil Engineering,University of Toronto,St George Street,Toronto,Ontario,Canada M5S 1A4
    [73]Martin J.Woodard.Development of a rockfall hazard rating matrix for the state of Ohio[D].Ph.d dissertation of Kent State University.2004,91-95
    [74]Pfeiffer,T.J.,Higgens,J.D.Rockfall Hazard Analysis Using the Colorado Rockfall Simulation[R].Transportation Research Record 1288,TRB,National Research Council,Washington,D.C.,1990,117-126.
    [75]G.P.Giani,A.Giacomini,M.Migliazza,et al.Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design[J].Rock Mech.Rock Engng.2004,37(5):369-389
    [76]Chau,K.T.,Wong,R.H.C.,Lee,C.F.Rockfall Problems in Hong Kong and some new experimental results for coefficients of Restitution[J].International Journal of rock mechanics and mining sciences and geomechanics,1996,35,Section 4-5.662-663
    [77]K.T.Chau,R.H.C.Wong,J.J.Wu.Coefficient of restitution and rotational motions of rockfall impacts[J].International Journal of Rock Mechanics & Mining Sciences,2002,39:69-77
    [78]A.Azzoni,M.H.de Freitas.Experimentally Gained Parameters,Decisive for Rock Fall Analysis[J].Rock Mech.Rock Engng.1995,28(2):111-124
    [79]黄润秋,刘卫华,周江平,等.滚石运动特征试验研究[J].岩土工程学报,2007,29(9):1296-1302
    [80]程谦恭,胡厚田,胡广韬,等.高速岩质滑坡撞击弹落冲击夯实成坝的动力学机理[J].岩石力学与工程学报,2000,19(1):43-46
    [81]吴顺川,高永涛,杨占峰.基于正交试验的露天矿高陡边坡落石随机预测[J].岩石力学与工程学报.2006,25(增1):2826-2832
    [82]叶义成.边坡滚石水平抛掷距离的多元分析[J].西部探矿工程.1998,10(6):48-50
    [83]BOZZOLO D,PAMINI R.Simulation of rockfalls down a valleyside[J].Acta Mech,1986,63:113-130.
    [84]DAY R W.Case studies of rockfall in soft versus hard rock[J].Environmental and Engineering Geoscience,1997,3(1):133-140.
    [85]GUZZETTI Fausto,CROSTA Giovanni,DETTI Riccardo,et al.Stone:a computer program for the three dimensional simulation of rock-falls[J].Computers &Geosciences,2002,28:1079-1093
    [86]Joachim Schweigl,Carlo Ferretti,Ludwig No"ssing.Geotechnical characterization and rockfall simulation of a slope:a practical case study from South Tyrol(Italy)[J].Engineering Geology.2003,67:281-296
    [87]汤吉班.露天采场边坡滚石水平位移及数学分析方法[J].矿业快报.2001,20:8-11
    [88]L.K.A.Dorren,F.Berger,U.S.Putters.Real-sized experiments and 3D simulation of rockfall on forested and non-forested slopes[J].Natural Hazards and Earth System Sciences.2006,6:145-153
    [89]D.Peila,S.Plizza,F.Sassudelli.Evaluation of behaviour of rockfall restraining nets by full scale tests[J].Rock Mechanics and Rock Engineering.1998,31(1):1-24
    [90]余军.RX-050型SNS柔性防护网系统拦截落石试验总结报告及应用前景分析[J].路基工程.2002,1:12-22
    [91]铁道部工务局.铁路工务技术手册.路基[M].北京:中国铁道出版社.1993,361-398
    [92]Urska Petje,Mihael Pibicic,Matjaz Mikos.Computer simulation of stone falls and rockfalls[J].Acta geographica Slovenica.2005,45(2):93-120
    [93]赵旭,刘汉东.水电站高边坡滚石防护计算研究[J].岩石力学与工程学报.2005,24(20):3742-3748
    [94]刘永平,佴磊,李广杰.某高陡边坡崩塌落石运动特征分析及其防治[J].水文地质工程地质.2005,30.33
    [95]Ushiro Takeshi,Tsutsui Hideki.Movement of rockfall and a study on its prediction[C].proceedings of the international symposium on geotechnical & environmental challenges in mountainous terrain.Nepal Engineering College and Ehime University,2001,1-11
    [96]高云河,雷建海,田景富,等.刘怀池小区危岩落石运动特征分析及其防治建议[J].地球与环境.2005,33(3):150-154
    [97]吕庆,孙红月,翟三扣,等.边坡滚石运动的计算模型[J].自然灾害学报.2003,12(2):79-84
    [98]严义荣,丁德义.危石塌落的调查及其防治[J].水文地质工程地质.1994,1:20-23
    [99]CHEN Guangqi.Numerical modeling of rock fall using extended DDA[J].Chinese Journal Of Rock Mechanics and Engineering.2003,22(6):926-931
    [100]G.B.Crosta,F.Agliardi.Parametric evaluation of 3D dispersion of rockfall trajectories[J].Natural Hazards and Earth System Sciences.2004,4:583-598
    [101]SONG Shuzhi,KONG Jiming,WANG Chenhua,et al.Analysisi of rockfall and its impact on the Cut-and-Cover yunnel in dynamics[J].Wuhan University Journal of Nature Sciences.2006,11(4):905-909
    [102]Thornton C,Ning Z.A theoretical model for the stick/bounce behavior of adhesive,elastic-plastic spheres[J].Powder Technology.1998,99:154-162
    [103]Labiouse V,Descoeudres F,Montani S.Experimental study of rock sheds impacted by rock blocks[J].Struct Eng Int,1996,3(1):171-175
    [104]S.Kawahara,T.Muro.Effects of dry density and thickness of sandy soil on impact response due to rockfall[J].Journal of Terramechanics.2006,43:329-340
    [105]B.Pichler,Ch.Hellmich,H.A.Mang.Impact of rocks onto gravel Design and evaluation of experiments[J].International Journal of Impact Engineering.2005,31:559-578
    [106]B.Cagnoli,M.Manga.Pumice-pumice collisions and the effect of the impact angle[J].Geophysical Research Letters.2003,30(12):38-1-4
    [107]杨其新,关宝树.落石冲击力计算方法的试验研究[J].铁道学报.1996,18(1):101-106
    [108]B.Pichler,C.Hellmich,S.Scheiner,et al.Assessment of protection systems for gravel-buried pipelines considering impact and recurrent shear loading caused by thermal deformations of the pipe[C].8~(th) International Conference on computational plasticity,Ed.By E.Onate,D.R.J.Owen.Barcelona,Spain,2005
    [109]C.Dussauge.Statistical analysis of rockfall volume distributions:Implications for rockfall dynamics[J].Journal of Geophysical Research.2003,108(B6):2-1-11
    [110]阳友奎,周迎庆,姜瑞琪,等.坡面地质灾害柔性防护的理论与实践[M].北京:科学出版社,2005.
    [111]贺咏梅,阳友奎.崩塌落石SNS柔性防护系统的设计选型与布置[J].公路.2001,11:14-19
    [112]SPANG,R.M.Rockfall Barriers-Design and Practise in Europe[C].-Proc.One Day Seminar on Planning,Design and Implementation of Debris Flow and Rockfall Hazards Mitigation Measures.-Hong Kong,1998,91-98.
    [113]L.A.Pierso,C.F.Gullixson,R.G.Cjassie.Rackfall catchment Design guide[R].FHWA-OR-RD-02-04,2001
    [114]王金玉.箱形墙悬臂棚洞在路基崩塌落石综合防治工程中的应用[J].路基工程.2000,5:44-46
    [115]蒋良潍,姚令侃,蒋忠信.冷竹关水电站开关战谷坡落石防护[J].地质灾害与环境保护.2002,13(4):36-39
    [116]陈喜昌,陈莉.扩离-落石灾害防治浅论[J].岩石力学与工程学报.2002,21(9):1430-1432
    [117]L.R.Alejano,B.Pons,F.G.Bastante,E.Alonso,H.W.Stockhausen.Slope geometry design as a means for controlling rockfalls in quarries[J].International Journal of Rock Mechanics & Mining Sciences,2007,44:903-921
    [118]陈江,夏雄.金温铁路危石治理中柔性防护技术应用研究[J].岩石力学与工程学报.2006,25(2):312-317
    [119]候拥.钢轨道栅栏基座尺寸及钢轨埋深的计算初探[J].路基工程,1995,2:20-22
    [120]E.Anderheggen,A.Volkwein.Numerical simulation of highly flexible rockfall protection systems[C].Proceeding of the 5~(th) World Congress on Computational Mechanics.Eds:H.A.Mang et al.Vienna,Austria.2002,7-12
    [121]M.Stoffel,A.Wehrti,R.Kuhne,et al.Assessing the protective effect of mountain forests against rockfall using a 3D simulation model[J].Forest Ecology and Management.2006,225(1-30):113-122
    [122]F.Nicot,B.Cambou,G.Mazzoleni.Design of rockfall restraining nets from a discrete element modeling[J].Rock Mechanics and Rock Engineering.2001,34(2):99-118
    [123]J.Corominas,R.Copons,J.Moya.et al.Quantitive assessment of the residual risk in a rockfall protected area[J].Landslides,2005,2:343-357
    [124]R.T.Pack,K.Boie,S.Mather,et al.UDOT rockfall hazard rating system:final report and user's manual[R].2006,Utah Department of Transportation.Report No.UT-06.07
    [125]叶四桥,唐红梅,祝辉.基于AHP-Fuzzy方法的危岩危险度评价[J].武汉理工大学学报(交通版)2006.10,30(5):800-803
    [126]叶四桥,唐红梅,石晋旭.万州地区危岩发育的典型成因[J].水力发电2007,33(2):31-33
    [127]Habibagahi G,Meidani M.Reliability of slope stability analysis evaluated using fuzzy set approach[A].Proc.Of 5th Int.Conf.on Civil Eng[C].Ferdowsi University,2000.29-36.
    [128]谢全敏,夏元友.岩体边坡治理决策的模糊层次分析方法研究[J].岩石力学与工程学报.2003,22(7):1117-1120
    [129]樊晓一,乔建平,陈永波.层次分析法在典型滑坡危险度评价中的应用[J].自然灾害学报.2004,13(1):72-76
    [130]重庆市地勘总公司南江水文地质工程地质队.万州区首立山危岩详细勘查报告[R],2005.9
    [131]谢明和.落石尺寸与坡形对于单粒落石弹跳行为之影响[D].国立云林科技大学硕士论文.2004
    [132]Yoichi Okura,Hikaru Kitahara,Toshiaki Sammori,et al.The efects of rockfall volume on runout distance[J].Engineering Geology.2000,58:109-124
    [133]叶四桥,唐红梅,祝辉.基于落石运动特性分析的拦石网设计理念[J].岩土工程学报,2007,29(4):566-571
    [134]叶四桥,陈洪凯,唐红梅.基于落石计算的半刚性拦石墙设计[J].中国铁道科学.2008,29(2):17-22
    [135]叶四桥,唐红梅,祝辉.危岩落石威胁区域预测[C].第二届全国岩土与工程学术大会论文集.北京:科学出版社,2006,570-575
    [136]唐红梅.危岩拦石墙计算方法研究[J].中国地质灾害与防治学报,2005,16(3):12-15
    [137]ADINA:Theory and Modeling Guide,Volume I:ADINA Solids & Structures P39-592.
    [138]ADINA:ADINA User Interface Primer.
    [139]Bath,K.J.and Chaudhary,A.,A.Solution Method for Planar and Axisymmetric Contact Problems,Int.J.Num.Meth.in Eng.1985,21:65-88.
    [140]Eterovic,A.and Bath,K.J.On the Treatment of Inequality Constraints Arising From Contact Conditions in Finite Element Analysis.J.Computers &Structures,1991,40(2):203-209.
    [141]Pantuso.,Bath,K.J.,Bouzinov,P.A.A Finite Element Procedure for the Analysis of Thermo-mechanical Solids in Contact.J.Computers & Structures.2000,75(6):551-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700