用户名: 密码: 验证码:
光镊测量胶体粒子间及界面与粒子间相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光镊是利用强会聚光束与微粒之间线性动量的传递实现了光对微粒的三维捕获及操控,这种操控具有非接触式操控、无机械损伤、不干扰粒子周围环境等优点。光镊的捕获力在皮牛量级,刚好处在大多数胶体粒子间作用力的量级之内,所以很适用于研究胶体粒子间相互作用。
     本文设计了以机械斩光器为关键器件、以双光镊为核心的双同步闪烁光镊。该系统利用光镊实现捕获、悬浮和排布粒子,而当光镊关闭时,粒子会在热随机力和其它作用力的作用下运动,利用数字显微摄像技术可以精确的测量粒子的运动轨迹,根据统计力学对粒子运动轨迹分析可得出粒子间的相互作用。这使我们能从粒子层次直接测量胶体粒子间相互作用。由于胶体粒子之间的相互作用决定了胶体的稳定程度,光镊成为我们从微观层面研究胶体稳定性的一种实用工具。而胶体稳定性研究在各个生产和生活领域都具有极其重要的地位和意义,历来受到人们的重视。
     利用胶体粒子间相互作用势测量系统及相应的实验方法测量了聚苯乙烯球悬浮液中两个小球之间的相互作用势,其结果与经典DLVO理论相符,直接从微观层次验证了该理论的正确性。结合实验具体讨论了影响测量精度和效率的因素。
     胶体与聚合物的相互作用是胶体体系稳定性的关键问题之一。有关聚合物调控的胶体稳定和絮凝方面的研究对于食品工业、油漆生产、石油开采等领域有着重要的实用价值。稳定还是絮凝与聚合物是否在粒子表面发生吸附有关。我们利用上述设备及方法测量了聚苯乙烯小球在嵌段共聚物水溶液中的空间相互作用,结合浊度和Zeta电位测量系统研究了嵌段共聚物对分散体系稳定性的影响,几种实验结果都较为一致。
     在很多实验研究中出现了带同种电荷胶体粒子间相互吸引的现象,科研工作者提出了很多理论去解释该现象。我们基于粒子表面双电层形变的考虑,对这种现象进行了初步的计算机模拟,模拟结果和已有的实验结果比较符合。
     胶体粒子与界面之间的流体动力学相互作用会影响粒子的布朗运动和扩散特性,同时也会影响到粒子之间的碰撞过程,影响到体系的稳定性。我们利用光与粒子之间角动量的传递产生的光致旋转效应测量了粒子在受到单平行界面限制下的扩散特性,取得了和已有的流体动力学理论相一致的结果。
     本文总结了各种光镊光致旋转现象的产生方法,系统研究了利用光与粒子之间角动量传递产生的光致旋转现象,初步研究了利用光束对粒子线性动量传递导致的旋转现象。光致旋转的系统研究为微机械马达、全光学开关的研制提供了一种有效手段。
     光与粒子之间角动量的传递产生的光致旋转现象研究中,波片是控制旋转方向的关键元件。本文提出用迈克尔逊干涉仪测量波片的相位延迟量及快轴方向的新方法,测量结果表明方法是可靠的。
     本文的主要创新点在于:
     1、本文设计了一个可编程的同步斩光器,该机械斩光器主要由控制器、伺服电机、编码器和斩光盘等部件组成,斩光器控制器主要包括可编程控制器、伺服电机放大器及控制开关。根据粒子的布朗运动规律,研制出以机械斩光器为关键器件、以双光镊为核心的双同步闪烁光镊系统,该系统能够测量不同类型的胶体粒子间的相互作用。
     2、本文利用胶体粒子间相互作用测量系统(双同步闪烁光镊)测量了聚苯乙烯球悬浮液中两个小球间的相互作用势,其结果与经典DLVO理论相符,直接从微观层次验证了该理论的正确性。结合实验具体讨论了影响测量精度和效率的因素。
     3、本文利用胶体粒子间相互作用测量系统(双同步闪烁光镊)测量了聚苯乙烯小球在嵌段共聚物水溶液中的空间相互作用,结合浊度法、Zeta电位法系统研究了嵌段共聚物对分散体系稳定性的影响,几种实验结果都较为一致。为实际胶体体系的配置提供了微观理论指导。
Optical tweezers are a noninvasive way to manipulate fluid suspended microscopic objects in three dimensions using a single laser beam focused by a microscope objective lens of high numerical aperture (NA). Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics for their ability to easily measure piconewton forces and subnanometer motions of micron-sized objects. Optical techniques offer a highly controlled driving mechanism that avoids any physical contact with the outside world.
     It is very important to measure the interaction potential between two micro-scale colloidal particles in the domination of scientific research and manufacture. A mechanical chopper was designed based on a programmable logic controller, servo motor amplifier, servo motor and encoder. The interaction potential measurement system is constructed by the mechanical chopper and dual optical tweezers. The programmable chopper was synchronized with a CCD camera and switch the optical tweezers on and off accurately. The apparatus was very highly automatic. The characteristic of the system such as the design of the chopper, the switching time of the blinking optical tweezers, the tuning scope, the origin position return function, the compatibility and the usability of the system was discussed. The system was used to measure the interaction potential of a pair of polystyrene spheres. The consistency between the measured result and the Darjaguin-Landau-Verwey-Overbeek theory demonstrates the reliability of DLVO theory. The apparatus provides an effective technique for measuring the interaction potential between two micro colloid particles.
     In recent years, reports of an attractive pair potential of a like charged pair of colloids, a pair of dielectric plates, and a plate and a sphere embedded in an electrolyte solution have appeared. An attractive minimum has been reported at small as well as large interparticle distance in bulk solution and at large interparticle distance in a confined fluid. This paper presents a computer simulation model, for studying the regulation and equilibrium of electric double-layer while two colloidal particles approach each other. The computer results and reports of some important papers are in good agreement.
     The steric stabilization, which is imparted by polymer molecules grafted onto the colloidal particles, is extensively employed. This paper attempts to study the steric stabilization of Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)(PEO-PPO-PEO) triblock copolymers using the blinking optical tweezers, the turbidity and the zeta potential. The results of three methods are in good agreement.
     A particle's hydrodynamic coupling to interfaces is an interaction existed widely in dispersion. The hydrodynamic interactions can exert an influence on the Brownian motion and diffusion of particles, which will affect the particles' collision kinetics. In this article, we investigate the diffusion of particles confined by one parallel plane interface using optical induced rotation. The experimental results are consistent with the theory on the hydrodynamic interactions of the particles with interfaces.
     The methods, which are based on measuring the intensity of polarized components of the light, for determining the phase retardation and identifying the fast axis of a wave plate are discussed. It is concluded that the real phase retardation and fast axis of a wave plate cannot be determined by this kind of methods because the phase retardation of a wave plate is a multiple valued function of the light intensity. A method for measuring phase retardation and fast axis of a wave plate using Michelson Interferometer is brought forward, in which the rainbow fringe of the Michelson Interferometer could be used as an indicator for the zero optical path difference. The method was demonstrated by measuring a commercial wave plate. The influence of the optical dispersion of the wave plate material to the measurement is analyzed and the applicable scope of the method is discussed.
引文
1. A.Ashkin, J.M.Dziedzic, J.E.Bjorkholm, and S.Chu. (1986) "Observation of a single-beam gradient force optical trap for dielectric particles," Opt.Lett. 11, 288-290 J. B. Perrin, Comptes Rendus. 1908,146: 967
    2. Greenleaf, W. J., M. T. Woodside, et ah (2007). "High-resolution, single-molecule measurements of biomolecular motion." Annual Review of Biophysics and Biomolecular Structure 36:171-190.
    3. Buosciolo, A., G. Pesce, et al. (2004). "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers." Optics Communications 230(4-6): 357-368.
    4. van Oijen, A. M. (2007). "Honey, I shrunk the DNA: DNA length as a probe for nucleic-acid enzyme activity." Biopolymers 85(2): 144-153.
    5. Healy, K. (2007). "Nanopore-based single-molecule DNA analysis." Nanomedicine 2(4): 459-481.
    6. Hegner, M. and W. Grange (2002). "Mechanics and imaging of single DNA molecules." Journal of Muscle Research and Cell Motility 23(5-6): 367-375.
    7. Chiou, A. (2005). Cellular mechanics and DNA mechanics via optical manipulation, Sydney, Australia, Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States.
    8. Smith, D. E., G. J. Gemmen, et al. (2005). "Using optical tweezers to study protein-DNA interactions." Proceedings of the SPIE - The International Society for Optical Engineering 5930(1): 593012-1-593012-593012-10.
    9. J.C.Crocker. (1997). "Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres," J. Chem. Phys. 106,2837-2840.
    10. J.C.Crocker, and D.GGrier, (1994). "Microscopic measurement of the pair interaction potential of charge-stabilized colloid," Phys. Rev. Lett. 73, 352-355
    11. D.GGrier, (1997). "Optical tweezers in colloid and interface science," Curr. Opin. Colloid Interface Sci. 2,264-270
    12. R.J.Owen, J.C.Crocker, R.Verma, and A.GYodh. (2001)."Measurement of long-range steric repulsions between microspheres due to an adsorbed polymer," Phys. Rev. E. 64, art. No.11401.
    13. Z.W.Sun, Y.M.Li, S.H.Xu, L.R.Lou, G.L.Dai, and X.Q.Dong, (2001)."A direct test on the possibility of an aggregate in dispersion being disrupted by shear flow," J.Colloid Interface Sci. 242, 158-163
    14. B.H.Lin, J.Yu, and S.A.Rice, (2000). "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919
    15. B.H.Lin, J.Yu, and S.A.Rice, (2000). "Diffusion of an isolated colloid sphere confined between flat plates," Colloids Surf. A 174,121-131
    16. J.C.Crocker, and D.G.Grier, (1996). "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179,298-310
    17. J.C.Crocker, and D.G.Grier, (1996). "When like charges attract: The effects of geometrical confinement on long-range colloidal interactions," Phys. Rev. Lett. 77, 1897-1900
    18. A.D.Dinsmore, A.G.Yodh, and D.J.Pine, (1996). "Entropic control of particle motion using passive surface microstructures," Nature 383,239-242
    19. R.Verma, J.C.Crocker, T.C.Lubensky, and A.G.Yodh, (1998). "Entropic colloidal interactions in concentrated DNA solutions," Phys. Rev. lett. 81,4004-4007
    20. J.C.Crocker, J.A.Matteo, A.D.Dinsmore, and A.G.Yodh, (1999). "Entropic attraction and repulsion in binary colloids probed with a line optical tweezers," Phys. Rev. Lett. 82, 4352-4355
    21. K.Sasaki, M.Koshio, H.Misawa, N.Kitamura, and H.Masuhara,(1991). "Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation," Opt. Lett. 16,1463-1465
    22. a)Maxwell, J. C. (1873) Treatise on electricity and magnetism. Oxford, UK: Clarendon Press; b)In a medium in which the waves are propagated there is a pressure in the direction normal to the wave, and numerically equal to the energy contained in unit volume.(Maxwell 1873)
    23. Lebedev, P. N. (1901) Experimental examination of light pressure. Ann. der Physik 6, 433.
    24. Nichols, E. F., and Hull, G. F., Phys. Rev. (1901) 13, 301
    25. J.E. Bjorkholm, R.R. Freeman, D.B. Pearson. (1981), Efficient transverse deflection of neutral atomic beams using spontaneous resonance-radiation pressure. Phys.Rev.A, 23:491
    26. W.D. Philips, H.J. Metcalf. (1985). Laser cooling and electromagnetic trapping of neutral atoms. J.Opt.Soc.Am,B, 2:1751.
    27. A. Aspect, J. Dalibard, A. Heidmann,et al. (1986). Cooling atoms with stimulated emission. Phys.Rev.Lett, 57:1688.
    28. 王义遒. 激光冷却捕陷原子的方法——1997年诺贝尔物理奖介绍
    29. A. Ashkin, (1970)."acceleration and trapping of particles by Radiation Pressure," Phys. Rev. Lett., vol. 24, p. 156,
    30. Ashkin, A. & Dziedzic, J. M. (1975). Optical levitation of liquid drops by radiation pressure. Sciencel87, 1073-1075.
    31. A. Ashkin,(1980)."Observation of Light Scattering from Nanospherical Particles Using Optical Levitation," Appl. Optics, vol. 19, p. 660.
    32. Ashkin, A. & Dziedzic, J. M. (1971) Optical levitation by radiation pressure. Appl. Phys. Lett. 19,283
    33. Ashkin, A. & Dziedzic, J. M. (1976) Optical levitation in high-vacuum. Appl. Phys. Lett. 28,333-335.
    34. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. (1976). Observation of a single beam gradient force optical trap for dielectric partices. Opt. Lett. 11, 288-290.
    35. Ashkin, A. & Dziedzic, J. M. (1977) Feedback stabilization of optically levitated particles. ApplJPhys. Lett. 30, 202-204
    36. Ashkin, A. & Dziedzic, J. M. (1977) Observation of resonances in radiation pressure on dielectric spheres. Phys. Rev. Lett. 38, 1351-1354.
    37. Ashkin, A. & Dziedzic, J. M. (1985). Observation of radiation-pressure trapping of particles by alternating light-beams. Phys. Rev. Lett. 54, 1245-1248.
    38. Emiliani Valentina, Sanvitto Daniele, Zahid Morad, et al.(2004). Multi force optical tweezers to generate gradients of forces. [J]. Optics Express.12:3906-3910
    39. Leach, Jonathan; Sinclair, (2005).An interactive approach to optical tweezer control. [J].Progress in Biomedical Optics and Imaging - Proceedings of SPIE.5736: 37-45
    40. A. A. Afanas'eV, V. M. Katarkevich, A. N. Rubinov.(2002). Modulation of particle concentrations in the interference laser radiation field.[J].Journal of Applied Spectroscopy.69:782-7
    41.A.N.Rubinov.(2003).Physical grounds for biological effect of laser radiation.[J].Journal of Physics D:Applied Physics.36:2317-2330
    42.Ogura Yusuke,Kagawa Keiichiro,Tanida Jun.(2001).Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources[J].Applied Optics.40:5430-5435
    43.Tam Jenny M,Biran Israel,Walt David R.(2004)An imaging fiber-based optical tweezers array for microparticle array assembly.[J].Applied Physics Letters.84:4289-4291
    44.Leach,J.,Sinclair,G,Jordn,R,Courtial,J.,Padgett,M.J.,Cooper,J.& Laczik,Z.J.(2004).3D manipulation of particles into crystal structures using holographic optical tweezers.Opt.Express.12,220-226.
    45.Leach,J.,Yao,E.& Padgett,M.J.(2004).Observation of the vortex structure of a non-integer vortex beam.New J.Phys.6,71
    46.Lee,S.& Grier,D.G.(2005)Flux reversal in a two-state symmetric optical thermal ratchet.Phys.Rev.E 71,060102(R).
    47.Lee,S.& Grier,D.G.(2005)Robustness of holographic optical traps against phase scaling errors.Opt.Express 13,7458-7465.
    48.Lee,S.& Grier,D.G.(2006)One-dimensional optical thermal ratchets.J.Phys.:Condens.Matter 17,S3685-S3695
    49.Lee,S.,Ladavac,K.,Polin,M.& Grier,D.G.(2005)Observation of flux reversal in a symmetric optical thermal ratchet.Phys.Rev.Lett.94,110601.
    50.Liesener,J.,Reicherter,M.,Haist,T.& Tiziani,H.J.(2000)Multi-functional optical tweezers using computer-generated holograms.Opt.Commun.185,77-82.
    51.MacDonald,M.P.,Spalding,G.C.& Dholakia,K.(2003)Microfluidic sorting in an optical lattice.Nature 426,3562.
    52.Magome,N.,Kohira,M.I.,Hayata,E.,Mukai,S.& Yoshikawa,K.(2003)Optical trapping of a growing water droplet in air.J.Phys.Chem.B 107,3988-3990.
    53.Rohrbach,A.(2005)Switching and measuring a force of 25 femtoNewtons with an optical trap.Opt.Express 13,9695.
    54.R.A.Beth.(1936),Mechanical Detection and Measurement of the Angualar Momentum of Light.Phys.Rev,50..115-125
    55.M.E.J.Friese,T.A.Nieminen,N.R.Heckenberg et al..(1998)Optical alignment and spinning of laser-trapped microscopic particles.Nature,394:348-359
    56.K.Svoboda,C.F.Schmidt,B.J.Schnapp,and SM Block.(1993).Direct observation of kinesin stepping by optical trapping interferometry.Nature,365:721-727.
    57.Y.Okada,N.Hirokawa,(1999).A Processive Single-Headed Motor:Kinesin Superfamily Protein KIF1A.Science,283:1152.
    58.Zhiwei Sun,Shenghua Xu,Guoliang Dai,(2003)a Microscopic Approach to Studying Colloidal Stability.Journal of Chemical Physics,119:2399.
    59.陈宗淇,王光信,徐桂英编(2001).《胶体与界面化学》高等教育出版社.
    60.章莉娟,郑忠编著(2006)《胶体与界面化学》华南理工大学出版社.
    61.(美)P.C.Hiemenz著,周祖康,马季铭译(1986)《胶体与表面化学原理》北京大学出版社.
    62.(阿根廷)Drew Myers著 吴大诚,朱谱新等译.(2005)《表面、界面和胶体——原理及应用》
    63.王果庭,(1990)《胶体稳定性》科学出版社.
    1.A.Einstein,(1905),Ann.Der Phys.17:549
    2.J.B.Perrin,(1908),Comptes Rendus.146:967
    3.J.B.Perrin,(1908),Comptes Rendus.147:475
    4.J.B.Perrin,(1909),Comptes Rendus.149:477
    5.J.B.Perrin,(1908),Comptes Rendus.147:549
    6.N.G.van Kampen.(1981)Stochastic processes in physics and chemistry[M],Amsterdam;North-Holland;
    7.MENG Bing-Huan(孟炳寰),ZHOU Jin-Hua(周金华),ZHONG Min-Cheng(钟敏成),LI Yin-Mei(李银妹),WU Jian-Guang(吴建光),REN Hong-Liang(任洪亮).(2008)Improvement of Transverse Trapping Efficiency of Optical Tweezers[J].Chinese Physics Letters.25(6)
    8.周城.(2007),高斯光束经望远镜和薄透镜组合系统的聚焦特性[J].光学精密工程.15(8),1203-1207
    9.姚新程,李兆霖,郭红莲等.(2001),光阱位置操纵系统的研究[J].光学精密工程.9(01),55-58
    10.H.T.Chen,Y.M.Li,L.R.Lou,et al.(2001)High precision measurements in an optical tweezers for studying single biomolecule motion.C.Britton Chance,Photonics and Imaging in Biology and Medicine,Proceedings of SPIE,Vol.4536:75-81
    11.H.L.Guo,X.C Yao,Z.L Li.et al.(2002)Measuring displacement and force applied on particles in optical tweezers.J.Science in China(A),32(2):97-102
    12.Jeff Gelles,B.J.Schnapp,M.P.Sheetz.(1998)Tracking kinesin-driven movements with nanometer-scale precision.J.Nature,331:450-453
    13.Robert M.Simmons,J.T.Finer,S.Chu et al.Quantitative Measurements of Force and Displacement Using an Optical Trap.Biophysical Journal,1996,70:1813-1822
    14.Mao,F.L.,Q.R.Xing,et al.(2007)."Calculation of axial optical forces exerted on medium-sized particles by optical trap." Optics and Laser Technology 39(1):34-39.
    15.Xu,S.H.,Y.M.Li,et al.(2006)."Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams." Chinese Physics 15(6):1391-1397.
    16.Im,K.B.,D.Y.Lee,et al.(2002)."Calculation of optical trapping forces on microspheres in the ray optics regime." Journal of the Korean Physical Society 40(5):930-933.
    17.Nieminen,T.A.,H.Rubinsztein-Dunlop,et al.(2001)."Numerical modelling of optical trapping." Computer Physics Communications 142(1-3):468-471.
    18.Sun,W.,Y.Q.Wang,et al.(2000)."Construction of an optical tweezers-Calculation and experiments." Chinese Physics 9(11):855-860.
    19.Gussgard,R.,T.Lindmo,et al.(1992)."Calculation of the Trapping Force in a Strongly Focused Laser-Beam." Journal of the Optical Society of America B-Optical Physics 9(10):1922-1930.
    20.Karl Otto Greulich.(1999)Micromanipulation by light in biology and medicine[M].Basel,Bostonr,
    21.M.W.Berns,J.B.Aist,W.H.Wright,et al.(1992,)Optical trapping in animal and fungal cells using a tunable near-infrared titanium-sapphire laser.Exp.Cell.Res.,188:375-378
    1.陈宗淇,王光信,徐桂英编(2001)《胶体与界面化学》高等教育出版社
    2.章莉娟,郑忠编著(2006)《胶体与界面化学》华南理工大学出版社.
    3.(美)P.C.Hiemenz著,周祖康,马季铭译(1986)《胶体与表面化学原理》北京大学出版社.
    4.(阿根廷)Drew Myers著 吴大诚,朱谱新等译.(2005)《表面、界面和胶体——原理及应用》
    5.王果庭,(1990)《胶体稳定性》科学出版社.
    6.Lin,B.H.,J.Yu,et al.(2000)."Direct measurements of constrained Brownian motion of an isolated sphere between two walls." Physical Review E 62(3):3909-3919.
    7.Lin,B.H.,J.Yu,et al.(2000)."Diffusion of an isolated colloidal sphere confined between flat plates." Colloids and Surfaces a-Physicochemical and Engineering Aspects 174(1-2):121-131.
    8.Dreyer,J.K.,K.Berg-So.rensen,et al.(2004)."Improved axial position detection in optical tweezers measurements." Applied Optics 43(10):1991-1995.
    9.Chen,H.-T.,Y.-M.Li,et al.(2004)."Detection of nanometer displacement in optical-tweezers and its related measuring errors." Zhongguo Jiguang/Chinese Journal of Lasers 31(6):729-734.
    10.Chen,H.D.,K.K.Ge,et al.(2007)."Application of optical tweezers in the research of molecular interaction between lymphocyte function associated antigen-1 and its monoclonal antibody." Cellular & Molecular Immunology 4(3):221-225.
    11.Chen,H.D.,L.Y.M.,et al.(2002)."High Precision Measurements in Optical Tweezers."Chinese Journal of Lasers A29:672-674.
    12.Chen,H.T.,Y.M.Li,et al.(2002)."Single molecules detection system of optical tweezer."Proceedings of SPIE 4923:98-105.
    13.Paul C.Hiemenz,(1986.)Principles of colloid and surface chemistry[M],New York:M.Dekker
    14.B.A.Pailthorpe,W.B.Russel.(1982,)The retarded van der Waals interaction between spheres,J.Colloid Interface Sci.89,563-566
    15.Luc Belloni.(1986)Electrostatic interaction in colloidal solutions:Comparison between primitive and one-component models[J].J.Chem.Phys.,85(1):519-526
    16.Gong,Z.,H.Chen,et al.(2005).Influence of the bandwidth of an acquisition system on the trap stiffness measurement.Proc.of SPIE,Beijing,China,International Society for Optical Engineering,Bellingham,WA 98227-0010,United States.
    17.Gong,Z.,H.T.Chen,et al.(2006)."Monte-Carlo simulation of optical trap stiffness measurement." Optics Communications 263(2):229-234.
    18.Tharwat F.Tadros;(2007)Colloids and interface Science Series Volume 1:Colloid Stability The role of surface forces-Part Ⅰ Chapter 10 Wiley-Vch
    19.赵国玺;朱步瑶;(2003)表面活性剂作用原理[M],中国轻工业出版社
    20.Zhiwei Sun;Jie Liu;Shenghua Xu;(2006,)Study on Improving the Turbidity Measurement of the Absolute Coagulation Rate Constant.Langmuir 22,4946-4951
    21.Aylin S;kar-Deliormanli;Synergistic effect of polymer-surfactant mixtures on the stability of aqueous silica suspensions.Journal of the European Ceramic Society 2007,27,611-618
    22.J.N.Smith;J.Meadows;P.A.Williams;(1996)Adsorption of Polyvinylpyrrolidone onto Polystyrene Latices and the Effect on Colloid Stability.Langmuir,12,3773-3778
    23.James A.Baker;John C.Berg;(1988)Investigation of the Adsorption Configuration of Poly(ethylene oxide)and Its Copolymers with Poly(propylene oxide)on Model Polystyrene Latex Dispersions.Langmuir,4,1055-1061
    24.S.Stolnik;N.C.Felumb;C.R.Heald;M.C.Garnett;L.Ilium;S.S.Davis;(1997)Adsorption behaviour and conformation of selected poly(ethyleneoxide)copolymers on the surface of a model colloidal drug carrier.Colloids Surfiwes A.122,151-159
    25.M.Bohner;T.A.Ring;K.D.Caldwell;(2002)Studies on the Effect of Particle Size and Copolymer Polydispersity on the Adsorption of a PEO/PPO/PEO Copolymer on PS Latex Particles.Macromolecules 35,6724-6731
    26.Timothy J.Barnes;Clive A.Prestidge;(2000,)PEO-PPO-PEO Block Copolymers at the Emulsion Droplet-Water Interface.Langmuir 16,4116-4121
    27.M.S.Romero-Cano;A.Martm-Rodriguez;G.Chauveteau;F.J.de las Nieves;(1998,)Colloidal Stabilization of Polystyrene Particles by Adsorption of Nonionic Surfactant Ⅱ.Electrosteric Stability Studies.Journal of Colloid and Interface Science 198,273-281
    28.M.S.Romero-Cano;A.Martm-Rodriguez;G.Chauveteau;F.J.de las Nieves;(1998)Electrokinetic characterization of polystyrene-non-ionic surfactant complexes.Colloids and Surfaces A 140,347-356
    29.张波,刘洪来,胡英,(2001)带同种电荷胶体颗粒间的相互吸引,化学进展,13
    30.like-charge attractions in metastable colloidal crystallites Amy E.Larsen and David G.Grier,
    31.C.Crocker and David G.Grier,(1994)Microscopic Measurement of the Pair Interaction Potential of Charge-Stabilized Colloid John phys.Rev.L 73,11
    32.B.V.R.Tata and Norio Ise,(1998)Monte Carlo study of structural ordering in charged colloids using a long-range attractive interaction.Phys.Rev.E 58,
    33.John C.Crocker and David G.Grier,(1996)When Like Charges Attract:The Effects of Geometrical Confinement on Long-Range Colloidal Interactions.Phys,Rev,L,77,8
    34.J.C.Crocker,J.A.Matteo,A.D.Dinsmore,and A.G.Yodh,(1999)Entropic Attraction and Repulsion in Binary Colloids Probed with a Line Optical Tweezer.82,5
    35.Ritu Verma,J.C.Crocker,T.C.Lubensky,and A.G.Yodh.(1998)Entropic Colloidal Interactions in Concentrated DNA Solutions Phys.Rev.L 81,2
    1.H.Faxen,Ark.Mat.Astron.Fys.17,27-1923;J.Happel,and H.Brenner,(1991)《Low Reynolds Number Hydrodynamics》 Dordrecht:Kluwer
    2.庄礼贤,(1991.7)流体力学,中国科学技术大学出版社
    3.希姆恩斯(Hiemenz,P.C.)(美),(1986)胶体与表面化学原理,北京大学出版社
    4.P.Ganatos,S.Weinbaum,and R.Pfeffer,(1980)J.Fluid Mech.99,739
    5.P.Ganatos,R.Pfeffer,and S.Weinbaum,(1980)J.Fluid Mech.99,755
    6.A.J.Goldman,R.G.Cox,and H.Brenner,(1967)Chem.Eng.Sci.22,637
    7.B.R Ho and L.G.Leal,(1974)J.Fluid Mech.65,365
    8.H.Brenner,Chem.(1961)Eng.Sci.16,242
    9.J.Happel and H.Brenner,(1983)Low Reynolds Number Hydrodynamics(Kluwer,Dordrecht,
    10.L.Lobry and N.Ostrowsky,(1996)Phys.Rev.B 53,12 050
    11.J.S.Halow and G.B.Wills,(1970)AIChE J.16,281
    12.M.I.M.Feitosa and O.N.Mesquita,(1991)Phys.Rev.A 44,6677
    13.Laurent Lobry 和 Nicole Ostrowsky,Diffusion of Brownian particles trapped between two walls:Theory and dynamic light-scattering measurements
    14.Friese,M.E.J.,T.A.Nieminen,et al.(1998)."Optical alignment and spinning of laser-trapped microscopic particles." Nature 394(6691):348-350.
    15.B.H.Lin,J.Yu,and S.A.Rice,(2000)."Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys.Rev.E 62,3909-3919
    16.Beth(1936)."Mechanical detection and measurement of the angular momentum of light."Physical Review A 50:115
    1. Beth (1936). "Mechanical detection and measurement of the angular momentum of light." Physical Review A 50: 115
    2. Friese, M. E. J., T. A. Nieminen, et al. (1998). "Optical alignment and spinning of laser-trapped microscopic particles." Nature 394(6691): 348-350.
    3. L.Allen, M.W.Beijersbergen, R.J.C.Spreeeuw, and J.P.Woerdman. Orbital angular momentum of light and the transformation of laguerre-gaussian laser mode's. Physical Review A, 1992, 45:8185-8189
    4. N.B.Simpson, K.Dholakia, L.Allen et al..( 1997) Mechanical equivalence of spin and orbital angular momentum of light :an optical spanner, Opt.Lett,22: 52-54
    5. M.E.J.Friese, J.Enger, H.Rubinsztein-Dunlop et al..(1996) Optical angular-momentum transfer to trapped absorbing particles. Phys.Rev.A, 54: 1593-1596
    6. S.M.Barnett and L.Allen. (1994) Orbital angular momentum and nonparaxial light beams. Opt.Commun, 110,670-678
    7. J.Courtial, D.A.Robertson, K.Dholakia et al.. (1998) Rotational Frequency Shift of a Light Beam.Appl. Phy. Lett, 81: 4828-4830
    8. J.Courtial, K.Dholakia, D.A.Robertson et al..(1998) Measurement of the Rotation Frequency Shift Imparted to a Rotating Light Beam Possessing Orbital Angular Momentum. Appl. Phy. Lett, 15: 3217-3219
    9. Anna T.O' Neil and Miles J.Padgett. (2002) Control within optical tweezers by use of a rotating aperture. Opt.Lett,, 27: 743-745
    10. K.Taguchi, H.Ueno and M.Ikeda. Rotational manipulation of a yeast cell using optcl fibres. Electron. Lett, 1997, 33 (14): 1249-1250
    11. V.Bingelyte, J.Leach, J.Courtial et al.. Optical controlled three-dimensional rotation of microscopic objects. Appl. Phy. Lett, 2003, 82: 829-831
    12. L.Paterson, M.P.MacDonald, J.Arlt et.al. Controlled rotation of Optically Trapped Microscopic Particles. Science, 2001, 292: 912-912
    13. Peter Galajda and Pal Ormos. Rotation of microscopic propellers in laser tweezers. J.Opt, 2002, B4: S78-S81
    14. Peter Galajda and Pal Ormos.Complex micromachines produced and driven by light. Appl. Phy. Lett, 2001, 78: 249-251
    15. J.E.Molloy and M.J.Padgett. Light ,action: optical tweezers. Cont.Phy, 2002, 43: 248-258
    16. Zong-Ping luo,Yu-Long sun,and Kai-Nan An. An optical spin micro-motor. Appl. Phy. Lett, 2000, 76: 1779-1781
    17. H.T.Chen,Y.M.Li,L.R.Lou et al. High precision measurements in an optical tweezers for studying single biomolecule motion[C],Proceedings of SPIE,2002 ,4536:75-81
    18. Tilo Pfeifer and Albert Hof. Aachen;Selbstkalibrierendes raumliches Wegmeβsystem zur Koordianatenbestimmung im Raum.VDI-Z,1985,Bd. 127,Nr. 12,441-444.
    19. Keith D.Bonin and Bakhit Kourmanov. Light torque nanocontrol,nanomotors and nanorockers, POTICS EXPRESS,2002,10(19),984-989
    20. T.A.Nieminen, N.R.Heckenberg and H.Rubinsztein-Dunlop. Optical measurement of microscopic torques[J], Journal of Modern Optics ,2001,48 :405-41
    21.E.Higurashi,R.Sawada,and T.Ito.Optically induced angular alignment of trapped birefringent micro-object by linearly polarized light[J].Phys.Rev.E,1999,59(3):3676-3681
    22.Saulius Juodkazis and Shigeki Matsuo,"High-efficiency optical transfer of torque to a nematic liquid crystal droplet," Appl.Phy.Lett 82(26),4657-4659(2003)
    23.Zhao kaihua and Zhong xihua.Optics(2)[M]Beijing University Press(1998),172-177.
    24.WANG Wei,LI Guo-hua,WU Fu-quan.A New Method of Measuring Wave Plate Phase Delay and Fast Axis Azimuth[J].CHINESE JOURNAL OF LASERS,2003,30(12):1121-1123
    25.CHENG Xiao-tian,LI Ying-zhu,LIU Cheng.Method for Measuring the Retardation of a Wave Plate[J].CHINESE JOURNALOFLASERS,2003,30(7):651-654
    26.HU Jian-ming,ZENG Ai-jun,WANG Xiang-zhao.New Method for Measuring Retardation of Quarter-wave Plate[J].CHINESE JOURNAL OF LASERS,2006,33(5):659-662
    27.WANG Gui-xia,XU Chang-jie,WANG Qing-song.A New Method of Confirming the Fast or Slow Axis Azimuth of Wave Plate[J].LASER & INFRARED,2006,36(8):699-702
    28.Yu Chunri.Determination of the phase delay angle of a wave-plate with a quarter wave-plate[J].LASER TECHNOLOGY,2003,24(4):383-384
    29.YAN Ming,GAO Zhi-shan.Phase Shitting Method for Measuring the Phase Retardation of Wave Plates[J].Journal of Optoelectronics·Laser,2005,16(2):183-187
    30.LI Hui,XIE Shu-sen,LU Zu-kang.DISPERSION,GROUP VELOCITY AND GROUP REFRACTIVE INDEX[J].ACTA PHOTONICA SINICA,1999,28(12):1075-1079
    31.Gorachand Ghosh.Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals[J].Optics Communications,1999,163(2):95-102
    32.SONG Lian-ke,LIN Chang-chun,LI Hua,et al..Impact of discrepant dispersion relations of birefringent indexes on mica waveplate designing[J].Journal of Qufu Normal University,2001,27(2):44-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700