用户名: 密码: 验证码:
金属材料多轴棘轮—疲劳交互作用的实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料和构件的疲劳破坏问题一直是国内外学者和工程界研究和关心的热点课题。航空航天、核工业、化工以及铁路机车车辆中许多金属构件在复杂加载条件下服役的,要对这些结构构件的可靠性、安全性和疲劳寿命进行合理的评估,必须要得到能够精确描述复杂加载条件下材料变形行为的本构方程与描述材料衰坏过程的损伤演化方程以及相应的失效准则。复杂加载条件下材料的本构行为描述和疲劳失效准则的研究一直是固体力学界的研究重点、难点与热点之一。近二十年来,国内外学者对材料的循环变形行为进行了大量的研究,并已建立了一些循环塑性和粘塑性本构模型,但对于非对称应力控制循环中产生的棘轮行为(塑性应变的循环累积)的本构描述尚不尽完善。对于材料的低周疲劳行为,目前绝大多数的研究都是针对应变控制循环加载工况,对于应力控制循环加载下的低周疲劳研究较少。特别是在有平均应力的应力循环下,材料将产生逐渐增长的棘轮变形,这种情况下,估算材料的疲劳寿命,必须同时考虑棘轮行为和疲劳损伤及它们之间的相互作用。因此,有必要对应力控制循环下的棘轮-疲劳交互作用做更加深入的研究,并发展非比例多轴应力复杂加载条件下的考虑棘轮效应的疲劳失效模型。这对于固体力学学科及其相关学科具有重要的理论意义,对工程构件更可靠的设计和使用也具有重要的应用价值。
     为了对金属材料的非比例多轴棘轮-疲劳交互作用行为进行深入系统的实验和理论研究,本论文开展了如下工作:
     1.在室温下,对三类材料(循环硬化材料304不锈钢;循环软化材料调质42CrMo钢;循环稳定的退火42CrMo钢)室温单轴和非比例多轴应力循环加载条件下的棘轮变形、疲劳失效行为及损伤演化规律进行系统的实验研究。通过研究,得到了材料棘轮-疲劳交互作用行为的基本特性,为耦合损伤循环本构模型以及考虑棘轮效应的低周疲劳失效模型的理论研究奠定了基础。
     2.在连续介质损伤力学和统一粘塑性循环本构的框架下,提出了一个新的耦合损伤的粘塑性本构模型,对调质42CrMo钢的全寿命棘轮行为进行了描述,并结合所选用的失效判据,对材料在应力循环下的疲劳寿命进行了预测。该模型在粘塑性本构模型中引入了疲劳损伤,将损伤分为宏观弹性损伤和塑性损伤两部分,并采用不同的损伤演化方程来描述这两类损伤。针对材料不同的失效模式,分别采用损伤变量门槛值和最大应变作为失效判据。模型的模拟结果表明,发展的耦合损伤本构模型合理地描述了调质42CrMo钢单轴和多轴全寿命棘轮行为,并较准确地预测了相应的疲劳寿命。
     3.根据材料不同的特性,以系统的实验研究为基础,建立了考虑棘轮效应的简化疲劳失效模型。这些模型以应力作为基本参量,反映了棘轮效应对疲劳寿命的影响,能方便地估算各种非对称应力循环加载工况下的疲劳寿命。
The fatigue of material and structure components is always concerned by scholars and engineers. In the area of aerospace, nuclear industry, chemical industry and railway, many metal components are subjected to a complex loading condition. In order to evaluate the reliability, security and fatigue life of such componetnts reasonablely, it is necessary to obtain an accurate constitutive model to describe the material deformation behavior of materials under the complex loading conditions, and a damage evolution quation to describe the performance deterioration of materials during the loading, as well as a fatigue failure criterion to predict the failure life of materials. At present, the constituitve modelling for materials subjected to complex loading conditions and the construction of relative fatigue failure model are one of the key issues for solid mechanics. In the last two decades, many experimental and theoretical studies on the cyclic deformation of metal have been achieved. The cyclic plastic and visco-plastic constitutive models have advanced significantly. However, the constitutive modelling to the ratchetting of the metals has not been perfectely solved yet, and much further effort is necessary. For the low cycle fatigue of materials, most of referable literatures concern the cases under the strain-controlled loading, while few literatures discusss the low cycle faituge under the stress-controlled loading. Ratchetting, a cyclic accumulation of inelastic deformation, will occur under asymmetrical cyclic stressing. It is extremely necessary to consider the ratchetting, fatigue and their interaction simultaneously in order to simulate the cyclic deformation and fatigue failure of the materials subjected to the stress cyclic loading. Therefore, it is very significant to discusss the ratchetting -fatigue interaction experimentally and theoretically.
     In order to realize the ratchetting-fatigue interaction of metal materials and develop a damage-coupled constitutive model and fatigue failure model, this thesis has carried out the studies as follows:
     1. An experimental study was performed to the uniaxial and non-proportionally multiaxial ratchetting deformation, fatigue failure and damage evolution of the materials (i.e., SS304 stainlesss steel, annealed 42CrMo steel and tempered 42CrMo steel) under asymmetrical stress cyclic loading and at room temperature. Some significant results of ratchetting-fatigue interaciton are obtained by analyzing the experimental data, which are very useful to construct corresponding constitutive model and fatigue failure model.
     2. Based on the framework of unified visco-plasticity and continuum damage mechanics, a damage-coupled visco-plastic cyclic constitutive model is proposed to simulate the whole-life ratchetting. Combined with the corresponding fatigue criterion, the model can predict the fatigue failure life too. In the proposed model, the damage is introduced, and the damage is divided into two parts, i.e., macroscopic elastic damage and plastic damage, which were described by different evolution equations, respectively. The threshold value of damage and maximum strain are adopted as failure criterion to reflect fatigue failure and ductile failure respectively. It is shown that the model simulates the whole-life ratchetting behavior and fatigue life of tempered 42CrMo steel reasonably.
     3. Based on the systemic experimental study, a stress-based simplified fatigue failure models were proposed to predict the fatigue life of the materials by addressing the ratchetting-fatigue interaction. In the model, the stress paramters are adopted as basic parameter, and the effects of ratchetting deformation and multiaxial loading path on the fatigue life are also included. The fatigue lives of the materials under various cyclic stressing cases can be predicted directly by the simplified failure model.
引文
[1]ASME Boiler and Pressure Vessel Code,Section Ⅲ.American Society of Mechanical Engineers,New York,2005.
    [2]Kerntechnischer Ausschu β(KTA),Sicherheitstechnische Regel des KTA;Teil:Auslegung,Konstruktion und Berchnung,Regeladerungsentwurf,1995.
    [3]Design Rules for Class I Equipment.RCC-MR,June,1985,RB3000.
    [4]D.L.McDowell.Stress state dependence of cyclic ratchetting behavior of two rail steels.Int.J.Plast.1995,11:397-421.
    [5]T.Hassan,S.Kyriakides.Ratchetting of cyclically hardening and softening materials,PartⅠ:Uniaxial behavior.Int.J.Plast.1994,10(2):149-184.
    [6]T.Hassan,S.Kyriakides.Ratchetting of cyclically hardening and softening materials,PartⅡ:Multiaxial behavior.Int.J.Plast.1994,10(2):185-212.
    [7]G Z.Kang,Q.Gao,X.J.Yang.Uniaxial cyclic ratchetting and plastic flow properties of SS304 stainless steel at room and elevated temperatures.Mech Mater,2002,34:145-159.
    [8].X.J.Yang.A viscoplastic model for 316L stainless steel under uniaxial cyclic straining and stressing at room temperature.Mech Mater,2004,36:1073-1086.
    [9]M.Mizuno,et al.Uniaxial ratchetting of 316FR steel at room temperature:I.Experiments.ASME J Eng Mate Tech,2000,122:29.
    [10]杨显杰,高庆,蔡力勋.紫铜的循环棘轮行为研究.西南交通大学学报,1997,32(6):604-610.
    [11]康国政,高庆,蔡力勋.304不锈钢非比例循环棘轮行为的实验研究.金属学报,2000,36(5):497-501.
    [12]田涛,陈旭,安柯.1Cr18Ni9Ti不锈钢多轴棘轮效应实验研究.机械工程材料,2002,26(1):19-21.
    [13]T.Hassan,E.Corona.Ratchetting in cyclic plasticity,PartⅠ:Uniaxial behavior.Int.J.Plast.1992,8:91-116.
    [14]T.Hassan,E.Corona.Ratchetting in cyclic plasticity,PartⅡ:Multiaxial behavior.Int.J.Plast.1992,8:117-146.
    [15]杨显杰,高庆,蔡力勋等.纯铝在单轴应力循环作用下棘轮行为的实验研究.固体力学学报,1998,19(2):133-138.
    [16] Y. Jiang, H. Sehitogu. Cyclic ratchetting of 1070 steel under multiple stress state.Inter. J. Plasticity, 1994, 10(5): 579-608
    [17] Y. Jiang, H. Sehitogu. Multiaxial cyclic ratchetting under multiple steps loading.Inter. J. Plasticity, 1994, 10(5): 849-870.
    [18] G. Z. Kang , Q. Gao. Uniaxial and non-proportionally multiaxial ratchetting of U71Mn rail steel: experiments and simulations. Mech. of Mater., 2002, 34:809-820
    [19] Yang X. J., Chow CL, Lau K.J. . Time-dependent cyclic deformation and failure of 63Sn/37Pb solder alloy. Int. J. Fatigue 2003;25:533~546
    [20] Chen X., Yu D.H., Kim K. S. Experimental study on ratchetting Behavior of eutectic tin-lead solder unde rmultiaxial loading. Mate. Sci. Eng A 2005;406:86-94
    [21] G. Z. Kang, Q. H. Kan , J. Zhang. Experimental study on the uniaxial cyclic deformation of 25CDV4.11 steel. J. Mater. Sci. Technol., 2005, 21(1): 5-9.
    [22] Yaguchi M,Takahashi Y. Ratchetting of viscoplastic material with cyclic softening, part1:experiments on modied 9Cr-1Mo steel.Int. J. Plasticity,2005;21:43-65
    [23] Kwoe S. Cyclic creep behaviour described in terms of one- parameter kinetic model. Mater Sci Eng A. 2005;392:23~30
    [24] Jansson S.,Leckie F. A. Mechanical behavior of acontinuous fiber einforce aluminum matrix composite subjected to transverse and thermal loading. J.Mech.Phys Solid 1992; 12:593-612
    [25] Daehn GS., Zhang H, Chen Y C,Wagoner RH. Approaches to modeling the plastic deformation of metal matrix composites under thermal cycling conditions.In: Lowe TC etal., editors. Modeling the deformation of crystalline solids:physicaltheory, applications, and experimental comparisons. New Orleans,Louisiana:TMS;1991.
    [26] Zhang H, Daehn GS,Wagoner RH. The temperature-cycling deformation of particle reinforce dmetal matrix composites:anite element study. Scripta Metall 1990;24:2151-5
    [27] Zhang H, Daehn GS, Wagoner RH. Simulation of theplastic response of whisker reinforced metal matrix composites under thermalcycling conditions. Scripta Metall 1991;25:251-6
    [28] Kang GZ.Uniaxial time-dependent ratchetting of SiC/6061Al alloy composites at room and high temperature. Compos Sci Technol 2006;66:1418-30
    [29] KangGZ, LiuYJ. Uniaxial and multiaxial cyclic deformation behaviors of SiC/6061Al alloy composites at room temperature. Key Eng Mater 2007;353-8:1247-50
    [30] Chen X,Hui SC. Ratchetting behavior of PTFE under cyclic compression. Polym Test 2005;24:829-33
    
    [31] Xia Z, Kujawki D, Ellyin F. Effect of mean stress and ratchetting strain on fatigue life of steel. Int. J. Fatigue, 1996,18:335-341
    
    [32] Rider R J, Harvey S J, Chandler H D. Fatigue and ratchetting interactions [J].International Journal of Fatigue, 1995, 17(7):507-511.
    
    [33] Yang X J. Low cycle fatigue and cyclic stress ratchetting failure behavior of carbon steel 45 under uniaxial cyclic loading [J]. International Journal of Fatigue, 2005, 27(9):1124-1132.
    [34] Kwofie, S., Chandler, H.D.,Low cycle fatigue under tensile mean stresses where cyclic life extension occurs. Int. J. Fatigue 2001,23, 341-345.
    [35] Gang Tao, Zihui Xia, Ratchetting behavior of an epoxy polymer and its effect on fatigue life. Polym Test 2007;26:451-460
    
    [36] Shingo Date, Hiroshi Ishikawa, Tomomi Otani, Yukio Takahashi, Effect of ratchetting deformation on fatigue and creep-fatigue life of 316FR stainless steel.Nuclear Engineering and Design, 2008, 238:336-346
    [37] C.-B. Lim, K.S. Kim, J.B. Seong, Ratchetting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress. Int. J. Fatigue 2008
    [38] N. Ohno. Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Appl. Mech. Rev., 1990, 43(11): 283-295.
    
    [39] 陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展.力学进展,2003, 33(4): 461-470.
    [40] Guozheng Kang, Ratchetting: recent progresses in phenomenon observation,constitutive modeling and application. Int. J. Fatigue, 2008, 30:1448-1472
    [41] J. F. Besselling. A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening creep recovery and secondary creep. ASME J. Appl. Mech., 1958, 25: 529-536.
    [42] Z. Mroz. On the description of anisotropic work hardening. J. Mech. Phys. Solid., 1967, 15: 165-175.
    [43] Y. F. Dafalias, E. P. Popov. Plasticity internal variables formalism of cyclic plasticity. ASME J. Appl. Mech., 1976,43: 645-651.
    [44] P. J. Armstrong, C. O. Frederick. A mathematical representation of the multiaxial Bauschinger effect. Report RD/B/N 731, Central Electricity Generating Board,Report RD/B/N731,1968
    [45] A. F. Brower. Cyclic hardening properties of hard-drawn copper and rail steel. J.Mech. Phys. Solid., 1989, 37: 445
    [46] J. L. Chaboche. On some modification of kinematic hardening to improve the description of ratchetting effect. Inter. J. Plasticity, 1991, 7: 661-678.
    [47] N. Ohno, J. D. Wang. Kinematic hardening rules with critical state of dynamic recovery: Part I: Formulation and basic features for ratchetting behavior. Inter. J.Plasticity, 1993, 9: 375-390.
    [48] N. Ohno, J. D. Wang. Kinematic hardening rules with critical state of dynamic recovery: Part II: Application to experiments of ratchetting behavior. Inter. J.Plasticity, 1993,9:391-403.
    [49] Chaboche, J. L., Nouailhas, D.,Constitutive modeling of ratchetting effect: Part II, Possibilities of some additional kinematic rules. ASME J. Eng. Mater.Tech.,1989, 111 (4): 409-416.
    [50] G Z. Kang, Q. Gao, X. J. Yang. A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratchetting of SS304 stainless steel at room temperature. Mech. Mater., 2002, 34: 521-531.
    [51] G Z. Kang, Q. Gao, X. J. Yang. Uniaxial and multiaxial ratchetting of SS304 stainless steel at room temperature: experiments and visco-plastic constitutive model,Int. J. Non-linear Mech., 2004, 39: 843-857.
    [52] N. Ohno, M. Abdel-Karim, et al. Ratchetting characteristics of 316FR steel at high temperature: part I strain-controlled ratchetting experiments and similations.1998, Int. J. Plast. 14(4-5): 355-372 .
    [53] M. Kobayashi, N. Ohno, T. Igari. Ratchetting characteristics of 316FR steel at high temperature: part II . analysis of thermal ratchetting induced by spatial variation of temperature. 1998, Int. J. Plast. 14(4-5): 373-390.
    [54] H. Burlet, G Cailletaud. Numerical techniquea for cyclic plasticity at variable temperature. Engineering. Computation, 1986, 3: 143-153.
    [55] M.Abdel-Karim, N. Ohno. Kinematic hardening model suitable for ratchetting with steady- state. Int. J. Plast. 2000, 16: 225-240.
    [56] Kang GZ, Gao Q, Cai LX ,Sun YF. Experimental study on the uniaxial and nonproportionally multiaxial ratchetting of SS304 stainless steel at room and high temperatures. Nucl Eng Design, 2002, 216:13-26
    [57] Kang GZ, Gao Q, Yang XJ. Uniaxial and multiaxial ratchetting of SS304 stainless steel at room temperature: experimentsandvisco- plastic constitutive model. Int. J. Non-linear Mech, 2004, 39:843-857
    [58] S. Ban, T. Hassan. An advancement in cyclic plasticity modeling for multiaxial ratchetting simulation. Int. J. Plast. 2002,18: 873-894.
    [59] X. Chen, R. Jiao. Modified kinematic hardening rule for multiaxial ratchetting prediction. Int. J. Plast. 2004, 20: 871-898.
    [60] Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal.Transaction of ASTM, Vol 76, 1954, 931-950.
    [61] Manson S S. Behavior of materials under conditions of thermal stress. NACA report 1170. Cleverland: Lewis Flight Propulsion Laboratory.
    [62] Manson S S, Hirschberg M H. Fatigue: an interdisciplinary approach. Syracuse University Presss. Syracuse: 1964
    
    [63] Halford G R. The energy required for fatigue, J.Mater., Vol 1(1), 1966,3-18.
    [64] Wetzel R M. Mechanical testing of materials using an analog computer.Materials Research and Standard. 1971, Vol 11(2): 19-22, 51
    [65] Morrow J, Fatigue properties of meatals, Fatigue desing handbook, SAE Advances in Engineering, Vol 4, 1968, 21-29.
    [66] Morrow J. Cyclic plastic strain energy and the fatigue of metals. In:Internal friction, damping and cyclic plasticity. ASTM STP 378; 1965.
    [67] Smith K N, Watson P, Topper T H. A stress-strain function for the fatigue of metals. J Mater 1970, Vol 5(4a): 768-78.
    [68] Halford G R, Nachtigall A J. The strainrang partitioning behavior of an advanced gas turbine disk alloy. NASA TM-79179, 1979.
    [69] Coffin, L.F., 1970. The deformation and fracture of a ductile metal under superimposed cyclic and monotonic strain. In: ASTM STP 567. ASTM, Philadelphia, pp. 53-76.
    [70] Xia Z, Kujawki D, Ellyin F. Effect of mean stress and ratchetting strain on fatigue life of steel [J]. Int. J. Fatigue, 1996,18:335-341.
    [71] Jiang Y, Sehitoglu H. A model foe rolling contact failure [J], wear, 1999, 224(1):38-49.
    [72] Kwofie S, Chandler HD. Low cycle fatigue under tensile mean stresses where cyclic life extension occurs. Int J Fatigue 2001 ;23:341 -345.
    [73] 高桦, Brown MW. 多轴疲劳研究.机械强度, 1996, 18(1):9-13
    [74] Morrow J. Cyclic plastic strain energy and fatigue of metals. In: Internal Friction,Damping and Cyclic Plastisity, ASTM STP 378, American Society for Testing Materials, West Conshohocken, PA, 1965, 45-87
    [75] Garud YS. A new approach to the evaluation of fatigue under multiaxial loadings.Journal of Engineering Materials and Technology, 1981, 103:118-126
    [76] Tipton SM. Fatigue behaviour under multiaxial loading in the presence of a notch: methodologies for the prediction of life to crack initiation and life spent in crack propagation. PhD thesis, Mechanical Engineering Department, Stanford University, Stanford, CA, 1984
    [77] Adrews RM. High temperature fatigue of AISI 316 stainless steel under complex biaxial loading. PhD thesis, University of Sheffield, UK, 1986
    [78] Ellyin F, Kujawski D. Plastic strain energy in fatigue failure. ASME J. Press.Vess. Tech., 1984, 106:342-347
    [79] Socie D. Multiaxial fatigue damage models. J. Engng Mater. Tech. 1987,109:293-298
    [80] Chen X, Xu S, Huang D. A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading. Fatigue Fract.Engng Mater. Struct. 1999, 22: 679-686
    [81] Chu CC, Conle FA, Bonnen JJ. Multiaxial stress-strain modeling and fatigue life prediction of SAE axle shafts. In: Edited by McDowell DL, Ellis R. Advances in Multiaxial Fatigue, ASTM STP 1191. Philadelphia: ASTM, 1993, 37-54
    [82] Liu KC. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. In: Edited by McDowell DL, Ellis R. Advances in Multiaxial Fatigue, ASTM STP 1191. Philadelphia: ASTM, 1993, 67-8
    [83]Glinka G,Plumtree A,Shen G.A multiaxial fatigue strain energy parameter related to the critical plane.Fatigue Fract Engng Mater.Struct 1995,18(1):37-46
    [85]Pan WF,Hung CY,Chen LL.Fatigue life estimation under multiaxial loadings.Int.J.Fatigue 1999,21:3-10
    [86]陈旭,田涛,安柯.1Cr18Ni9Ti不锈钢的非比例循环强化性能,力学学报,2001,33(5):698-705
    [87]Kachanov,L.M.,On the creep fracture time.Izvestiya Akademii,Nauk USSR Otd.Tech.,1958.8,26-31
    [88]Rabotnov,Y.U.N.,1968.Creep rupture.In:Proceedings of the ⅩⅡ International Congress on Applied Mechanics.Stanford-Springer,pp.342-349.
    [89]Lemaitre,J.Evaluation of dissipation & damage in metals submitted to dynamic loading.Proceeding of ICM-1,Kyoto,1971.
    [90]唐雪松,郑健龙,蒋持平.连续损伤理论与应用.北京:人民交通出版社,2006.
    [91]余寿文,冯西桥,损伤力学,北京:清华大学出版社,1997.
    [92]Lemaitre,J.A continous damage machanics model for ductile fracture.J.Eng.Mater.& Tech.1985,107:83-85.
    [93]Lemaitre,J.,Desmorat,R..Engineering damage mechanics:ductile,creep,fatigue and brittle failures.Springer-Verlag,Heidelberg.2005
    [94]Voyiadjis,G.Z.,Kattan,P.I.,A plasticity-damage theory for large deformation of solids,part Ⅰ:Theoretical formulation.Int.J.Eng.Sci.,1992,30,1089-1108.
    [95]Voyiadjis,G.Z.,Deliktas,B.,A coupled anisotropic damage model for the inelastic response of composite materials.Computer Meth.Appl.Mech.Eng.,2000,183,159-199.
    [95]Kunc,R.,Prebil,I.,Low-cycle fatigue properties of steel 42CrMo4.Mater.Sci.Eng.A,2003,345,278-285
    [96]Menzel,A.,Ekh,M.,Runesson,K.,Steinmann,P.,A framework of multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage.Int.J.Plasticity,2005,21,397-434.
    [97]张娟,循环硬化材料高温非比例循环棘轮行为的本构描述及其有限元实现,博士学位论文,西南交通大学,2006
    [98]Kang G Z,Gao Q,Cai L X,et al.Experimental study on the uniaxial and nonproportionally multiaxial of SS304 stainless steel at room and high temperatures.Unclear Engineering and design,2002,216:13-26.
    [99]G.Z.Kang,Q.Gao,X.J.Yang.A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratchetting of SS304 stainless steel at room temperature.Mech.Mater.,2002,34:521-531.
    [100]Basquin OH.The exponential law of endurance test.Proc.ASTM 1910,10:625-30.
    [101]Goodman J.Mechanics applied to engineering.London:Longmans Green,1899.
    [102]Soderberg CR,Sweden V.Factor of safety and working stress.ASME Trans,AER-IS 1930,52(2):13C28
    [103]Kapoor A,Johnson KL.Plastic ratchetting as a mechanism of metallic wear[J],Proc.R.Soc.London A,1994,445:367-381
    [105]Kwofie S,Chandler H D.Fatigue life prediction under conditions where cyclic creep-fatigue interaction occurs.Int.J.Fatigue,2007,29(12):2117-2124.
    [106]乔艳江,孙强,李春旺等.合金钢与铝合金疲劳极限的理论估算方法分析,力学与实践,2007,29(4):47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700