用户名: 密码: 验证码:
无机功能纳米结构材料的软溶液过程合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的控制合成是纳米科技发展的重要组成部分,是探索纳米结构性能及其应用的基础。本论文就纳米材料的软溶液过程化学调控合成进行了研究,探讨了纳米材料的结构和性质的相关性,研究了碳水化合物,尤其是葡萄糖等简单糖类的主要水热碳化反应。详细内容可归纳如下:
     1.合成锌代氢氧化镍纳米结构及其内在性质
     不同锌含量的锌代氢氧化镍纳米结构可以由锌的纳米结构前驱物通过一种可控的液相均匀沉淀的方法合成出来。锌代氢氧化镍纳米结构是一类典型的层状双氢氧化物,其化学式可表示为NiZn_x(Cl)_y(OH)_(2(1+x)-y)·zH_2O(x=0.34-0.89,y=0-0.24,z=0-1.36)。锌代氢氧化镍纳米结构中锌含量的减少,导致产物的结构从α-Ni(OH)_2相转变到β-Ni(OH)_2相,形貌从三维花状纳米结构转变为薄层堆垛结构。锌代氢氧化镍纳米结构的形成过程可以解释为复杂的均匀沉淀机制。合成出的纳米结构表现出良好的内在性质,并且具有出色的光学、磁学和电学性质,随着其中锌含量的变化有着规律性的变化。不同锌含量的锌代氢氧化镍纳米结构在紫外到近红外区域有类似的吸收光谱,但是随着样品中锌浓度的减小,发射峰会发生蓝移并且锌代氢氧化镍纳米结构也会有不同的磁性质,从磁性到反铁磁性。另外,锌代α-氢氧化镍纳米结构显示出显著的稳定性,它们可以在强碱性(6 M KOH)溶液中保存40天以上。锌代氢氧化镍纳米结构,尤其是α-Ni(OH)_2具有良好的电极可逆性。
     2.微波辅助绿色合成均匀银纳米颗粒和自组装多层薄膜及其光学性质
     利用微波辅助“绿色”化学法,采用碱性氨基酸作为还原剂,如左旋赖氨酸或左旋精氨酸,采用可溶淀粉作为保护剂,在水系统中大量合成了几乎单分散的银纳米颗粒,整个过程对环境十分友好。在每个左旋赖氨酸或左旋精氨酸分子中都具有两个氨基基团,这种碱性氨基酸的存在对于得到均一分布的银纳米颗粒是不可或缺的。当前的合成过程能方便的应用在大规模生产中,譬如:一次反应即能在80毫升的微波密封管中产生0.1克几乎单分散的银纳米颗粒。这种淀粉包覆的银纳米颗粒能自组装在载玻片表层形成多层镜状薄膜。随着薄膜中银原子浓度的降低,其表面等离子体传输发生蓝移。银薄膜能对硫代水杨酸(4-MBA)分子产生显著的表面增强作用,而且该表面增强因子随着薄膜中银原子浓度的改变产生明显的改变。
     3.生物质水热碳化制备多功能碳基材料进展及葡萄糖的水热碳化主要反应
     对与利用水热碳化法和以生物质为原料制造功能碳基材料的最新研究进展进行了总结。这类碳基材料不仅合成出特殊的结构,诸如纳米球,纳米线,纳米纤维,亚纳米线,亚纳米管,和多孔材料,而且表面富集能显著改善其亲水性和化学活性的官能团。进一步详细研究了葡萄糖和果糖等六碳糖的水热碳化过程,发展了其水热碳化的主要反应,其中葡萄糖碳化过程包括葡萄糖的脱水、形成直链非共轭低聚物、发生共轭和交联反应、形成水不溶性碳基材料。由于失去羟基和碳离子的去质子化等过程不断的重复循环,沿着聚链的反应产生共轭结构,导致溶液颜色加深和pH值下降。当出现大量的未饱和共轭结构,它们进一步反应,形成交联结构,产生水不溶性碳基材料。葡萄糖水热碳化主要反应有效的解释了反应过程中溶液颜色加深、pH值下降和形成水不溶性碳基材料等有趣的现象。
Manipulated synthesis of nanostructures is one of the hot areas in nanoscience and nanotechnology,and also the base to investigate distinctive properties and applications of nanostructures.This thesis studies soft solution-based manipulated synthesis of functional nanostructures,emphasizing on the relationship between structures and properties,and main hydrothermal carbonization reaction of simple carbohydrates,especially glucose.The main results are summarized as the following:
     1.Controllable synthesis of zinc-substituted nickel hydroxide nanostructures and their collective intrinsic properties
     A controllable homogeneous precipitation approach has been developed to synthesize zinc-substituted nickel hydroxide nanostructures with different Zn content from a zinc nanostructured precursor.As a typical layered double hydroxides(LDHs), zinc-substituted nickel hydroxide nanostructures can be formulated as NiZn_x(Cl)_y(OH)_(2(1+x)-y)·zH_2O(x=0.34-0.89,y=0-0.24,z=0-1.36).It is interesting to find that the zinc-substituted nickel hydroxide nanostructure,with the decreasing of the zinc content,has not only the morphology evolution but also the structure evolution fromα-Ni(OH)_2 phase toβ-Ni(OH)_2 phase.The complex homogeneous precipitation mechanism has been proposed for explaining the formation process of zinc-substituted nickel hydroxide nanostructures.As prepared nanostructures exhibit some exciting intrinsic properties,and their useful optical,magnetic,and electrical properties can systemic change with the decreasing zinc content.The zinc-substituted nickel hydroxide nanostructures with different Zn content display the similar optical absorbance spectra,but emission peaks shift towards shorter wavelength with decreasing Zn content of samples.Zinc-substituted nickel hydroxide nanostructures with decreasing Zn content have different magnetic properties from the magnetic behavior to the antiferromagnetic behavior.Zinc-substitutedα-nickel hydroxide nanostructures exhibit such high stability that they can stand more than 40 days in 6 M KOH.Zinc-substituted nickel hydroxide nanostructures,especiallyα-Ni(OH)_2 phase,show well electrode reversibility.
     2.Microwave assisted "green" synthesis of uniform silver nanoparticles and self-assembly into multilayered films with interesting optical property
     An environmentally benign process for the synthesis of nearly monodisperse silver nanoparticles in large quantities has been developed via a microwave-assisted "green" chemistry method in aqueous system,using basic amino acids,such as L-lysine or L-arginine,as reducing agents and soluble starch as a protecting agent. The presence of such amino acids with basicity as L-lysine or L-arginine,having two amino groups in each molecule,is indispensable for the synthesis of uniform silver nanoparticles.The current synthetic process can be readily applied to large-scale production,for example,a reaction yielding 0.1 g of nearly monodisperse silver nanoparticles can be performed in a 80 mL microwave sealed vessel.Self-assembly of starch-capped silver nanoparticles result in multilayered mirror-like films forming on the glass slide surface.The surface plasmon transmission of the films has blue-shifted with decreasing the silver atom concentrations of the films.The silver films offer great surface enhancement for 4-mercaptobenzoic acid(4-MBA) molecules,and the surface enhancement factor can be efficiently changed by the silver atom concentrations of the films.
     3.Advances in functional carbonaceous materials from hydrothermal carbonization of biomass and main hydrothermal carbonization reactions of glucose
     An overview of the latest advances in the HTC process of functional carbonaceous materials from biomass is reviewed.These Carbonaceous materials not only have special morphology,such as nanospheres,nanocables,nanofibers, submicrocables,submicrotubes,porous structures,but also contain rich functional groups which can greatly improve hydrophilicity and chemical reactivity.A thorough investigation of the hydrothermal carbonization process of hexose,such as glucose and fructose,is conducted with the specific aim of understanding the main reactions, but more particularly for glucose including dehydration of glucose,forming linear unconjugated oligomers,conjugated and cross-linking reaction,transforming water insoluble carbonaceous materials.The formation of conjugated sequences along the poly-chains is achieved,according to repetitive cycles including the loss of hydride ions and the deprotonation of the carbenium ions,leading to the deep colour of the solution and the decreasing pH value.The branching reactions only occur after the appearance of the multiple unsaturations,forming cross-linking structures and producing water insoluble materials.The main hydrothermal carbonization reactions of glucose effectively explain some interesting phenomenon,such as the colour of the solutions becoming deeper,the decreasing of the pH value,and forming water insoluble carbonaceous materials.
引文
[1]王训.2004.过渡金属氧化物一维纳米结构液相合成、表征与性能研究[D]:[博士],北京:清华大学,1-13.
    [2]华彤文等译,R布里斯罗著.1998.化学的今天和明天[M],北京:科学出版社,1-20.
    [3]孙晓明.2005.低维功能纳米材料的液相合成、表征与性能研究[D]:[博士],北京:清华大学,1-14.
    [4]El-Sayed,M.A.2001.Some interesting properties of metals confined in time and nanometer space of different shapes[J],Accounts of Chemical Research,34:257-264.
    [5]Lieber,C.M.1998.One-dimensional nanostructures:Chemistry,physics & applications[J],Solid State Communications,107:607-616.
    [6]Templeton,A.C.,Wuelfing,M.P.,Murray,R.W.2000.Monolayer protected cluster molecules[J],Accounts of Chemical Research,33:27-36.
    [7]朱静.2003.纳米材料与器件[M],北京:清华大学出版社,2-12.
    [8]张立德,牟季美.2001.纳米材料和纳米结构[M],北京:科学出版社,2-18.
    [9]Alivisatos,A.P.1996.Perspectives on the physical chemistry of semiconductor nanocrystals[J],Journal of Physical Chemistry,100:13226-13239.
    [10]Alivisatos,A.P.1996.Semiconductor clusters,nanocrystals,and quantum dots[J],Science,271: 933-937.
    [11] Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., McEuen, P. L. 1997. A single-electron transistor made from a cadmium selenide nanocrystal[J], Nature, 389: 699-701.
    [12] Pool, R. 1994. The Smallest Chemical-Plants[J], Science, 263:1698-1699.
    [13] Hu, J. T., Li, L. S., Yang, W. D., Manna, L, Wang, L. W., Alivisatos, A. P. 2001. Linearly polarized emission from colloidal semiconductor quantum rods[J], Science, 292:2060-2063.
    [14] Hu, J. T., Odom, T. W., Lieber, C. M. 1999. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes[J], Accounts of Chemical Research, 32:435-445.
    [15] Xia, Y. N., Yang, P. D. 2003. Chemistry and physics of nanowires[J], Advanced Materials, 15: 351-356.
    [16] Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., Yan, Y. Q. 2003. One-dimensional nanostructures: Synthesis, characterization, and applications[J], Advanced Materials, 15: 353-389.
    [17] Caruso, F. 2003. Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly[J], Colloid Chemistry Ii, 227:145-168.
    [18] Duan, X. E, Lieber, C. M. 2000. General synthesis of compound semiconductor nanowires[J], Advanced Materials, 12: 298-302.
    [19] Li, Y. D., Li, X. L., Deng, Z. X., Zhou, B. C., Fan, S. S., Wang, J. W, Sun, X. M. 2001. From surfactant-inorganic mesostructures to tungsten nanowires[J], Angewandte Chemie-International Edition, 41: 333-336.
    [20] Pan, Z. W., Dai, Z. R., Wang, Z. L. 2001. Nanobelts of semiconducting oxides[J], Science, 291: 1947-1949.
    [21] Huang, Y., Duan, X. F., Cui, Y, Lauhon, L. J., Kim, K. H., Lieber, C. M. 2001. Logic gates and computation from assembled nanowire building blocks[J], Science, 294:1313-1317.
    [22] Morales, A. M., Lieber, C. M. 1998. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J], Science, 279:208-211.
    [23] Cui, Y., Lieber, C. M. 2001. Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J], Science, 291: 851-853.
    [24] Duan, X. F., Huang, Y., Cui, Y., Wang, J. F., Lieber, C. M. 2001. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J], Nature, 409: 66-69.
    [25] Huang, Y, Duan, X. F., Wei, Q. Q., Lieber, C. M. 2001. Directed assembly of one-dimensional nanostructures into functional networks[J], Science, 291: 630-633.
    [26] Xia, Y. N., Gates, B., Yin, Y. D., Lu, Y. 2000. Monodispersed colloidal spheres: Old materials with new applications[J], Advanced Materials, 12: 693-713.
    [27] Fudouzi, H., Xia, Y. N. 2003. Photonic papers and inks: Color writing with colorless materials[J], Advanced Materials, 15: 892-896.
    [28] Park, S. H., Xia, Y. N. 1999. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters[J], Langmuir, 15: 266-273.
    [29] Xia, Y. N., Gates, B., Li, Z. Y. 2001. Self-assembly approaches to three-dimensional photonic crystals[J], Advanced Materials, 13: 409-413.
    [30] Huang, M. H., Mao, S., Feick, H., Yan, H. Q., Wu, Y. Y., Kind, H., Weber, E, Russo, R., Yang, P. D. 2001. Room-temperature ultraviolet nanowire nanolasers[J], Science, 292: 1897-1899.
    [31] Huang, M. H., Wu, Y. Y., Feick, H., Iran, N., Weber, E., Yang, P. D. 2001. Catalytic growth of zinc oxide nanowires by vapor transport[J], Advanced Materials, 13:113-116.
    [32] Fan, S. S., Chapline, M. G., Franklin, N. R., Tombler, T. W, Cassell, A. M., Dai, H. J. 1999. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J], Science, 283: 512-514.
    [33] Jiang, K. L., Li, Q. Q., Fan, S. S. 2002. Nanotechnology: Spinning continuous carbon nanotube yarns - Carbon nanotubes weave their way into a range of imaginative macroscopic applications.[J], Nature, 419: 801-801.
    [34] Li, P., Jiang, K. L., Liu, M., Li, Q. Q., Fan, S. S., Sun, J. L. 2003. Polarized incandescent light emission from carbon nanotubes[J], Applied Physics Letters, 82: 1763-1765.
    [35] Yoshimura, M. 1998. Importance of soft solution processing for advanced inorganic materials[J], Journal of Materials Research, 13: 796-802.
    [36] Yoshimura, M., Livage, J. 2000. Soft processing for advanced inorganic materials[J], Mrs Bulletin, 25: 12-13.
    [37] Yoshimura, M., Suchanek, W. L., Byrappa, K. 2000. Soft solution processing: A strategy for one-step processing of advanced inorganic materials[J], Mrs Bulletin, 25: 17-25.
    [38] Assaaoudi, H., Fang, Z., Barralet, J. E., Wright, A. J., Butler, I. S., Kozinski, J. A. 2007. Synthesis, characterization and properties of erbium-based nanofibres and nanorods[J], Nanotechnology, 18: 445606.
    [39] Cao, M. H., He, X. Y, Chen, J., Hu, C. W. 2007. Self-assembled nickel hydroxide three-dimensional nanostructures: A nanomaterial for alkaline rechargeable batteries[J], Crystal Growth & Design, 7: 170-174.
    [40] Park, I. S., Jang, S. R., Hong, J. S., Vittal, R., Kim, K. J. 2003. Preparation of composite anatase TiO2 nanostructure by precipitation from hydrolyzed TiC14 solution using anodic alumina membrane[J], Chemistry of Materials, 15:4633-4636.
    [41] Zhang, M. E, Fan, H., Xi, B. J, Wang, X. Y., Dong, C., Qian, Y. T. 2007. Synthesis, characterization, and luminescence properties of uniform Ln(3+)-doped YF3 nanospindles[J], Journal of Physical Chemistry C, 111: 6652-6657.
    [42] Byrappa, K., Ohara, S., Adschiri, T. 2008. Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications[J], Advanced Drug Delivery Reviews, 60: 299-327.
    [43] Wang, W. H., Zhao, B., Li, P., Tan, X. J. 2008. Fabrication and characterization of Pd/Ag alloy hollow spheres by the solvothermal method[J], Journal of Nanoparticle Research, 10: 543-548.
    [44] Xiong, Y. J., Xie, Y, Du, G. A., Su, H. L. 2002. From 2D framework to quasi-1D nanomaterial: Preparation, characterization, and formation mechanism of Cu_3SnS_4 nanorods[J], Inorganic Chemistry, 41: 2953-2959.
    [45] Bousquet-Berthelin, C., Chaumont, D., Stuerga, D. 2008. Flash microwave synthesis of trevorite nanoparticles[J], Journal of Solid State Chemistry, 181: 616-622.
    [46] Cheng, H. B., Cheng, J. P., Zhang, Y. J., Wang, Q. M. 2007. Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition[J], Journal of Crystal Growth, 299: 34-40.
    [47] Zharkouskaya, A., Feldmann, C., Trampert, K., Heering, W., Lemmer, U. 2008. Ionic liquid based approach to luminescent LaPO4 : Ce,Tb nanocrystals: Synthesis, characterization and application[J], European Journal of Inorganic Chemistry: 873-877.
    [48] Reverchon, E., Adami, R. 2006. Nanomaterials and supercritical fluids[J], Journal of Supercritical Fluids, 37: 1-22.
    [49] Shah, P. S., Hanrath, T., Johnston, K. P., Korgel, B. A. 2004. Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids[J], Journal of Physical Chemistry B, 108: 9574-9587.
    
    [50] Xu, Q., Ni, W. 2007. Nanomaterials preparation in the supercritical fluid system[J], Progress in Chemistry, 19: 1419-1427.
    [51] Guo, S., Wang, E. 2007. Wet-chemical approach to three-dimensional gold nanocorallines: Synthesis and application in surface-enhanced Raman spectroscopy[J], Journal of Colloid and Interface Science, 315: 795-799.
    [52] Guo, S. J., Fang, Y. X., Dong, S. I, Wang, E. K. 2007. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: Spongelike AWN core/shell nanomaterial with hollow cavity[J], Journal of Physical Chemistry C, 111: 17104-17109.
    [53] Sastry, M., Swami, A., Mandal, S., Selvakannan, P. R. 2005. New approaches to the synthesis of anisotropic, core-shell and hollow metal nanostructures[J], Journal of Materials Chemistry, 15: 3161-3174.
    [54] Ballmann, J., Dechert, S., Bill, E., Ryde, U., Meyer, F. 2008. Secondary bonding interactions in biomimetic [2Fe-2S] clusters[J], Inorganic Chemistry, 47: 1586-1596.
    [55] Heinemann, S., Heinemann, C., Ehrlich, H., Meyer, M., Baltzer, H., Worch, H., Hanke, T. 2007. A novel biomimetic hybrid material made of silicified collagen: Perspectives for bone replacement[J], Advanced Engineering Materials, 9: 1061-1068.
    [56] Kniep, R., Simon, P. 2008. "Hidden" hierarchy of Microfibrils within 3D-periodic fluorapatite-gelatine nanocomposites: Development of complexity and form in a biomimetic system[J], Angewandte Chemie-International Edition, 47:1405-1409.
    [57] Dalgarno, S. J., Power, N. P., Warren, J. E., Atwood, J. L. 2008. Rapid formation of metal-organic nano-capsules gives new insight into the self-assembly process[J], Chemical Communications: 1539-1541.
    [58] Kim, S. H., Nederberg, F., Zhang, L., Wade, C. G., Waymouth, R. M., Hedrick, J. L. 2008. Hierarchical assembly of nanostructured organosilicate networks via stereocomplexation of block copolymers[J], Nano Letters, 8: 294-301.
    [59] Lai, P., Hu, M. Z., Shi, D., Blom, D. 2008. STEM characterization on silica nanowires with new mesopore structures by space-confined self-assembly within nano-scale channels[J], Chemical Communications: 1338-1340.
    [60] Ressier, L., Le Nader, V. 2008. Electrostatic nanopatterning of PMMA by AFM charge writing for directed nano-assembly[J], Nanotechnology, 19:115603.
    [61] Sacanna, S., Philipse, A. P. 2007. A generic single-step synthesis of monodisperse core/shell colloids based on spontaneous pickering emulsification[J], Advanced Materials, 19: 3824-3826.
    [62] Wang, D. S., Xie, T., Peng, Q., Zhang, S. Y., Chen, J., Li, Y. D. 2008. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals[J], Chemistry-a European Journal, 14: 2507-2513.
    [63] Yang, Y, Liu, H. J., Liu, D. S. 2008. DNA based nanomachines[J], Progress in Chemistry, 20: 197-207.
    [64] Arai, F., Asoh, H., Ono, S. 2008. Electroless deposition of noble metal nano particles as catalyst and subsequent micropatterning of silicon substrate by wet chemical etching[J], Electrochemistry, 76: 187-190.
    [65] Innocenzi, P., Kidchob, T., Falcaro, P., Takahashi, M. 2008. Patterning techniques for mesostructured films[J], Chemistry of Materials, 20: 607-614.
    [66] Vinu, A. 2008. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content[J], Advanced Functional Materials, 18: 816-827.
    [67] Alauzun, J., Besson, E., Mehdi, A., Reye, C., Corriu, R. J. P. 2008. Reversible covalent chemistry of CO2: An opportunity for nano-structured hybrid organic-inorganic materials[J], Chemistry of Materials, 20: 503-513.
    [68] Di Noto, V., Negro, E., Gliubizzi, R., Lavina, S., Pace, G., Gross, S., Maccato, C. 2007. A Pt-Fe carbon nitride nano-electrocatalyst for polymer electrolyte membrane fuel cells and direct-methanol fuel cells: Synthesis, characterization, and electrochemical studies[J], Advanced Functional Materials, 17: 3626-3638.
    [69] Wan, N., Lin, T., Xu, J., Xu, L., Chen, K. J. 2008. Preparation and luminescence of nano-sized In_2O_3 and rare-earth co-doped SiO_2 thin films[J], Nanotechnology, 19: 095709.
    [70] Wang, Q., Sun, X., Luo, S. J., Sun, L. N., Wu, X. L., Cao, M. H., Hu, C. W. 2007. Controllable synthesis of PbO nano/microstructures using a porous alumina template[J], Crystal Growth & Design, 7:2665-2669.
    [71] Izaki, M., Watanabe, M., Aritomo, H., Yamaguchi, I., Asahina, S., Shinagawa, T., Chigane, M., Inaba, M., Tasaka, A. 2008. Zinc oxide nano-cauliflower array with room temperature ultraviolet light emission[J], Crystal Growth & Design, 8: 1418-1421.
    
    [72] Luo, Z., Peng, A., Fu, H., Ma, Y., Yao, J., Loo, B. H. 2008. An application of AAO template: orderly assembled organic molecules for surface-enhanced Raman scattering[J], Journal of Materials Chemistry, 18: 133-138.
    [73] Reddy, B. S. B., Das, K., Datta, A. K., Das, S. 2008. Pulsed co-electrodeposition and characterization of Ni-based nanocomposites reinforced with combustion-synthesized, undoped, tetragonal-ZrO_2 particulates[J], Nanotechnology, 19: 095709.
    [74] Warakulwit, C., Nguyen, T., Majimel, J., Delville, M. H., Lapeyre, V., Garrigue, P., Ravaine, V., Limtrakul, J., Kuhn, A. 2008. Dissymmetric carbon nanotubes by bipolar electrochemistry [J],\ Nano Letters, 8: 500-504.
    [75] Walton, R. I. 2002. Subcritical solvothermal synthesis of condensed inorganic materials[J], Chemical Society Reviews, 31: 230-238.
    [76] Feng, S. H., Xu, R. R. 2001. New materials in hydrothermal synthesis[J], Accounts of Chemical Research, 34: 239-247.
    [77] Chen, Q. W., Qian, Y. T., Chen, Z. Y., Wu, W. B., Chen, Z. W, Zhou, G. E., Zhang, Y. H. 1995. Hydrothermal Epitaxy of Highly Oriented Tio2 Thin-Films on SiliconfJ], Applied Physics Letters, 66: 1608-1610.
    [78] Shi, E., Cho, C. R., Jang, M. S., Jeong, S. Y, Kim, H. J. 1994. The Formation Mechanism of Barium-Titanate Thin-Film under Hydrothermal Conditions[J], Journal of Materials Research, 9: 2914-2918.
    [79] Zhang, F., Wan, Y, Yu, T., Zhang, F. Q., Shi, Y. F., Xie, S. H., Li, Y. G., Xu, L., Tu, B., Zhao, D. Y. 2007. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J], Angewandte Chemie-International Edition, 46: 7976-7979.
    [80] Sheldrick, W. S., Wachhold, M. 1997. Solventothermal synthesis of solid-state chalcogenidometalates[J], Angewandte Chemie-International Edition in English, 36:207-224.
    [81] Michailovski, A., Grunwaldt, J. D., Baiker, A., Kiebach, R., Bensch, W., Patzke, G. R. 2005. Studying the solvothermal formation of Mo03 fibers by complementary in situ EXAFS/EDXRD techniques[J], Angewandte Chemie-International Edition, 44: 5643-5647.
    [82] Yan, Y., Yang, H. F., Zhang, F., Q., Tu, B., Zhao, D. Y. 2006. Surfactant-templated synthesis of 1D single-crystalline polymer nanostructures[J], Small, 2: 517-521.
    [83] Zhu, Y J., Wang, W. W., Qi, R. J., Hu, X. L. 2004. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids[J], Angewandte Chemie-International Edition, 43: 1410-1414.
    [84] Tompsett, G. A., Conner, W. C., Yngvesson, K. S. 2006. Microwave synthesis of nanoporous materials[J], Chemphyschem, 7: 296-319.
    [85] Stuerga, D. A. C., Gaillard, P. 1996. Microwave athermal effects in chemistry: A myth's autopsy.1.Historical background and fundamentals of wave-matter interaction.[J],Journal of Microwave Power and Electromagnetic Energy,31:87-100.
    [86]Stuerga,D.A.C.,Gaillard,P.1996.Microwave athermal effects in chemistry:A myth's autopsy.2.Orienting effects and thermodynamic consequences of electric field[J],Journal of Microwave Power and Electromagnetic Energy,31:101-113.
    [87]Demirel,A.L.,Meyer,M.,Schlaad,H.2007.Formation of polyamide nanofibers by directional crystallization in aqueous solution[J],Angewandte Chemie-International Edition,46:8622-8624.
    [88]Morris,R.E.2008.Ionic liquids and microwaves - Making zeolites for emerging applications[J],Angewandte Chemie-International Edition,47:442-444.
    [89]Rao,K.J.,Vaidhyanathan,B.,Ganguli,M.,Ramakrishnan,P.A.1999.Synthesis of inorganic solids using microwaves[J],Chemistry of Materials,11:882-895.
    [90]Katsuki,H.,Furuta,S.,Komarneni,S.2001.Microwave versus conventional-hydrothermal synthesis of NaY zeolite[J],Journal of Porous Materials,8:5-12.
    [91]Girnus,I.,Jancke,K.,Vetter,R.,Richtermendau,J.,Caro,J.1995.Large Alpo4-5 Crystals by Microwave-Heating[J],Zeolites,15:33-39.
    [92]Slangen,P.M.,Jansen,J.C.,vanBekkum,H.1997.The effect of ageing on the microwave synthesis of zeolite NaA[J],Microporous Materials,9:259-265.
    [93]Xu,X.H.,Yang,W.H.,Liu,J.,Lin,L.W.2001.Synthesis of NaA zeolite membrane by microwave heating[J],Separation and Purification Technology,25:241-249.
    [94]Cahn,R.W.1996.Biomimetic materials chemistry - Mann,S[J],Nature,382:684-684.
    [95]Cha,J.N.,Stucky,G.D.,Morse,D.E.,Deming,T.J.2000.Biomimetic synthesis of ordered silica structures mediated by block copolypeptides[J],Nature,403:289-292.
    [96]Ferrand,Y.,Crump,M.P.,Davis,A.P.2007.A synthetic lectin analog for biomimetic disaccharide recognition[J],Science,318:619-622.
    [97]Firouzi,A.,Kumar,D.,Bull,L.M.,Besier,T.,Sieger,P.,Huo,Q.,Walker,S.A.,Zasadzinski,J.A.,Glinka,C.,Nicol,J.,Margolese,D.,Stucky,G.D.,Chmelka,B.F.1995.Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies[J],Science,267:1138-1143.
    [98]Tanev,P.T.,Pinnavaia,T.J.1996.Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies[J],Science,271:1267-1269.
    [99]Yu,S.H.,Colfen,H.,Tauer,K.,Antonietti,M.2005.Tectonic arrangement of BaCO3nanocrystals into helices induced by a racemic block copolymer[J],Nature Materials,4:51-U55.
    [100] Discher, D. E., Kamien, R. D. 2004. Self-assembly - Towards precision micelles[J], Nature, 430: 519-520.
    [101] Fichthom, K., Scheffler, M. 2004. Nanophysics - A step up to self-assembly[J], Nature, 429: 617-618.
    
    [102] Joannopoulos, J. D. 2001. Self-assembly lights up[J], Nature, 414: 257-258.
    [103] Olenyuk, B., Whiteford, J. A., Fechtenkotter, A., Stang, P. J. 1999. Self-assembly of nanoscale cuboctahedra by coordination chemistry[J], Nature, 398: 796-799.
    [104] Terfort, A., Bowden, N., Whitesides, G. M. 1997. Three-dimensional self-assembly of millimetre-scale components[J], Nature, 386: 162-164.
    [105] Yin, P., Choi, H. M. T., Calvert, C. R., Pierce, N. A. 2008. Programming biomolecular self-assembly pathways[J], Nature, 451: 318-U314.
    
    [106] Klajn, R., Bishop, K. J. M., Fialkowski, M., Paszewski, M., Campbell, C. J., Gray, T. P., Grzybowski, B. A. 2007. Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates[J], Science, 316: 261-264.
    [107] Choi, I. S., Chi, Y. S. 2006. Surface reactions on demand: Electrochemical control of SAM-based reactions[J], Angewandte Chemie-International Edition, 45:4894-4897.
    [108] Gupta, P., Loos, K., Korniakov, A., Spagnoli, C., Cowman, M., Ulman, A. 2004. Facile route to ultraflat SAM-protected gold surfaces by "amphiphile splitting" [J], Angewandte Chemie-International Edition, 43: 520-523.
    [109] Caruso, F., Caruso, R. A., Mohwald, H. 1998. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J], Science, 282:1111-1114.
    [110] Hopkins, D. S., Pekker, D., Goldbart, P. M., Bezryadin, A. 2005. Quantum interference device made by DNA templating of superconducting nanowires[J], Science, 308: 1762-1765.
    [111] Mezzenga, R., Ruokolainen, J., Fredrickson, G. H., Kramer, E. J., Moses, D., Heeger, A. J., Ikkala, O. 2003. Templating organic semiconductors via self-assembly of polymer colloids[J], Science, 299: 1872-1874.
    
    [112] Che, S., Garcia-Bennett, A. E., Yokoi, T., Sakamoto, K., Kunieda, H., Terasaki, O., Tatsumi, T. 2003. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure[J], Nature Materials, 2: 801-805.
    
    [113] Pileni, M. P. 2003. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals[J], Nature Materials, 2: 145-150.
    [114]Sun,X.P.,Dong,S.J.,Wang,E.2004.Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route[J],Angewandte Chemic-International Edition,43:6360-6363.
    [115]Lu,Y.F.,Ganguli,R.,Drewien,C.A.,Anderson,M.T.,Brinker,C.J.,Gong,W.L.,Guo,Y.X.,Soyez,H.,Dunn,B.,Huang,M.H.,Zink,J.I.1997.Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating[J],Nature,389:364-368.
    [116]Wu,G.S.,Zhang,L.D.,Cheng,B.C.,Xie,T.,Yuan,X.Y.2004.Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach[J],Journal of the American Chemical Society,126:5976-5977.
    [117]Menke,E.J.,Thompson,M.A.,Xiang,C.,Yang,L.C.,Penner,R.M.2006.Lithographically patterned nanowire electrodeposition[J],Nature Materials,5:914-919.
    [118]Zach,M.P.,Ng,K.H.,Penner,R.M.2000.Molybdenum nanowires by electrodeposition[J],Science,290:2120-2123.
    [119]Tsai,W.L.,Hsu,P.C.,Hwu,Y.,Chen,C.H.,Chang,L.W.,Je,J.H.,Lin,H.M.,Groso,A.,Margaritondo,G.2002.Electrochemistry - Building on bubbles in metal electrodeposition[J],Nature,417:139-139.
    [120]郑忠.1989.胶体科学导论[M],北京:高等教育出版社,2-80.
    [121]Cushing,B.L.,Kolesnichenko,V.L.,O'Connor,C.J.2004.Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J],Chemical Reviews,104:3893-3946.
    [122]Eberl,D.D.,Srodon,J.,Kralik,M.,Taylor,B.E.,Peterman,Z.E.1990.Ostwald Ripening of Clays and Metamorphic Minerals[J],Science,248:474-477.
    [123]Hannon,J.B.,Kodambaka,S.,Ross,F.M.,Tromp,R.M.2006.The influence of the surface migration of gold on the growth of silicon nanowires[J],Nature,440:69-71.
    [124]钱逸泰.1999.结晶化学导论[M],合肥:中国科学技术大学出版社,1-19.
    [125]Burda,C.,Chen,X.B.,Narayanan,R.,E1-Sayed,M.A.2005.Chemistry and properties of nanocrystals of different shapes[J],Chemical Reviews,105:1025-1102.
    [126]Wohlrab,S.,Pinna,N.,Antonietti,M.,Colfen,H.2005.Polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructures[J],Chemistry-a European Journal,11:2903-2913.
    [127]Vanables,J.A.2000.Introduction to surface and thin film processes[M],Cambridge:Cambridge University Press,2-20.
    [128] Iijima, S. 1991. Helical Microtubules of Graphitic Carbon[J], Nature, 354: 56-58.
    
    [129] Dai, H. J. 2002. Carbon nanotubes: Synthesis, integration, and properties[J], Accounts of Chemical Research, 35: 1035-1044.
    [130] Balasubramanian, K., Burghard, M. 2005. Chemically functionalized carbon nanotubes[J], Small, 1:180-192.
    [131] Yi, J. Y., Bernholc, J. 1993. Atomic-Structure and Doping of Microtubules[J], Physical Review B,47: 1708-1711.
    [132] Anastas, P., Warner, J. 1998. Green Chemistry: Theory and Practice[M], New York: Oxford University Press.
    [133] Horvath, I. T., Anastas, P. T. 2007. Introduction: Green chemistry[J], Chemical Reviews, 107: 2167-2168.
    [134] Horvath, I. T., Anastas, P. T. 2007. Innovations and green chemistry[J], Chemical Reviews, 107: 2169-2173.
    [135] Dahl, J. A., Maddux, B. L. S., Hutchison, J. E. 2007. Toward greener nanosynthesis[J], Chemical Reviews, 107: 2228-2269.
    [136] Raveendran, P., Fu, J., Wallen, S. L. 2003. Completely "green" synthesis and stabilization of metal nanoparticles[J], Journal of the American Chemical Society, 125:13940-13941.
    [137] Titirici, M. M., Thomas, A., Antonietti, M. 2007. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?[J], New Journal of Chemistry, 31: 787-789.
    [138] Titirici, M. M., Thomas, A., Antonietti, M. 2007. Replication and coating of silica templates by hydrothermal carbonization[J], Advanced Functional Materials, 17: 1010-1018.
    [139] Titirici, M. M., Thomas, A., Yu, S. H., Muller, J. O., Antonietti, M. 2007. A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization[J], Chemistry of Materials, 19:4205-4212.
    [140] Yu, S. H., Cui, X. J., Li, L. L., Li, K., Yu, B., Antonietti, M., Colfen, H. 2004. From starch to metal/carbon hybrid nanostructures: Hydrothermal metal-catalyzed carbonization[J], Advanced Materials, 16: 1636-1638.
    [141] Cui, X. J., Antonietti, M., Yu, S. H. 2006. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates[J], Small, 2: 756-759.
    [142] Sun, X. M., Li, Y. D. 2004. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J], Angewandte Chemie-International Edition, 43: 597-601.
    
    [143] Wang, Q., Li, H., Chen, L. Q., Huang, X. J. 2001. Monodispersed hard carbon spherules with uniform nanopores[J], Carbon, 39: 2211-2214.
    
    [144] Luo, L. B., Yu, S. H., Qian, H. S., Gong, J. Y. 2006. Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach[J], Chemical Communications: 793-795.
    
    [145] Ng, S. H., Wang, J. Z, Wexler, D., Konstantinov, K., Guo, Z. P., Liu, H. K. 2006. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J], Angewandte Chemie-International Edition, 45: 6896-6899.
    
    [146] Qian, H. S., Antonietti, M., Yu, S. H. 2007. Hybrid "golden fleece": Synthesis and catalytic performance of uniform carbon nanoribers and silica nanotubes embedded with a high population of noble-metal nanoparticles[J], Advanced Functional Materials, 17: 637-643.
    
    [147] Qian, H. S., Yu, S. H., Luo, L. B., Gong, J. Y., Fei, L. F., Liu, X. M. 2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose[J], Chemistry of Materials, 18: 2102-2108.
    [1]Ovshinsky,S.R.,Fetcenko,M.A.,Ross,J.1993.A Nickel Metal Hydride Battery for Electric Vehicles[J],Science,260:176-181.
    [2]Shukla,A.K.,Venugopalan,S.,Hariprakash,B.2001.Nickel-based rechargeable batteries[J],Journal of Power Sources,100:125-148.
    [3]Cai,F.S.,Zhang,G.Y.,Chen,J.,Gou,X.L.,Liu,H.K.,Dou,S.X.2004.Ni(OH)(2)tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries[J],Angewandte Chemic-International Edition,43:4212-4216.
    [4]Drillon,M.,Panissod,P.1998.Long-range ferromagnetism in hybrid compounds:The role of dipolar interactions[J],Journal of Magnetism and Magnetic Materials,188:93-99.
    [5]Faure,C.,Delmas,C.,Fouassier,M.,Willmann,P.1991.Preparation and Characterization of Cobalt-Substituted Alpha-Nickel Hydroxides Stable in Koh Medium.1. Alpha'-Hydroxide with an Ordered Packing[J], Journal of Power Sources, 35: 249-261.
    [6] Faure, C., Delmas, C., Willmann, P. 1991. Preparation and Characterization of Cobalt-Substituted Alpha-Nickel Hydroxide Stable in Koh Medium .2. Alpha-Hydroxide with a Turbostratic Structure[J], Journal of Power Sources, 35: 263-277.
    [7] Kurmoo, M., Day, P., Derory, A., Estournes, C., Poinsot, R., Stead, M. J., Kepert, C. J. 1999. 3D long-range magnetic ordering in layered metal-hydroxide triangular lattices 25 angstrom apart[J], Journal of Solid State Chemistry, 145:452-459.
    [8] Taibi, M., Ammar, S., Jouini, N., Fievet, F., Molinie, P., Drillon, M. 2002. Layered nickel hydroxide salts: synthesis, characterization and magnetic behaviour in relation to the basal spacing[J], Journal of Materials Chemistry, 12: 3238-3244.
    [9] Evans, D. G., Xue, D. A. 2006. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine[J], Chemical Communications: 485-496.
    [10] Liu, B. H., Yu, S. H., Chen, S. F., Wu, C. Y. 2006. Hexamethylenetetramine directed synthesis and properties of a new family of alpha-nickel hydroxide organic-inorganic hybrid materials with high chemical stability[J], Journal of Physical Chemistry B, 110: 4039-4046.
    [11] Yang, D. N., Wang, R. M, He, M. S., Zhang, J., Liu, Z. F. 2005. Ribbon- and boardlike nanostructures of nickel hydroxide: Synthesis, characterization, and electrochemical properties[J], Journal of Physical Chemistry B, 109: 7654-7658.
    [12] Tessier, C., Guerlou-Demourgues, L., Faure, C., Demourgues, A., Delmas, C. 2000. Structural study of zinc-substituted nickel hydroxides[J], Journal of Materials Chemistry, 10:1185-1193.
    [13] Dixit, M., Kamath, P. V., Gopalakrishnan, J. 1999. Zinc-substituted alpha-nickel hydroxide as an electrode material for alkaline secondary cells[J], Journal of the Electrochemical Society, 146: 79-82.
    [14] Guerlou-Demourgues, L., Tessier, C., Bernard, P., Delmas, C. 2004. Influence of substituted zinc on stacking faults in nickel hydroxide[J], Journal of Materials Chemistry, 14:2649-2654.
    [15] Tessier, C., Guerlou-Demourgues, L., Faure, C., Basterreix, M., Nabias, G., Delmas, C. 2000. Structural and textural evolution of zinc-substituted nickel hydroxide electrode materials upon ageing in KOH and upon redox cycling[J], Solid State Ionics, 133: 11-23.
    [16] Dai, J. X., Li, S. F. Y., Xiao, T. D., Wang, D. M., Reisner, D. E. 2000. Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries[J], Journal of Power Sources, 89: 40-45.
    [17] Sugimoto, A., Ishida, S., Hanawa, K. 1999. Preparation and characterization of Ni/Al-layered double hydroxide[J], Journal of the Electrochemical Society, 146: 1251-1255.
    [18] Zhao, Y. L., Wang, J. M., Chen, H., Pan, T., Zhang, J. Q., Cao, C. N. 2004. Al-substituted alpha-nickel hydroxide prepared by homogeneous precipitation method with urea[J], International Journal of Hydrogen Energy, 29: 889-896.
    [19] Demourguesguerlou, L., Delmas, C. 1993. Structure and Properties of Precipitated Nickel-Iron Hydroxides[J], Journal of Power Sources, 45:281-289.
    [20] GuerlouDemourgues, L., Fournes, L., Delmas, C. 1996. In situ Fe-57 Mossbauer spectroscopy study of the electrochemical behavior of an iron-substituted nickel hydroxide electrode[J], Journal of the Electrochemical Society, 143:3083-3088.
    [21] Hu, M., Lei, L. X. 2007. Effects of particle size on the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)(10)]NO3[J], Journal of Solid State Electrochemistry, 11: 847-852.
    [22] Yang, L. J., Gao, X. P., Wu, Q. D., Zhu, H. Y., Pan, G L. 2007. Phase distribution and electrochemical properties of Al-substituted nickel hydroxides[J], Journal of Physical Chemistry C, 111:4614-4619.
    [23] Ma, R., Liu, Z., Takada, K., Iyi, N., Bando, Y., Sasaki, T. 2007. Synthesis and Exfoliation of Co2+-Fe3+ Layered Double Hydroxides: An Innovative Topochemical Approach[J], Journal of the American Chemical Society, 129: 5257-5263.
    [24] Jeevanandam, P., Koltypin, Y, Gedanken, A. 2001. Synthesis of nanosized alpha-nickel hydroxide by a sonochemical method[J], Nano Letters, 1: 263-266.
    [25] Uzunova, E., Klissurski, D., Kassabov, S. 1994. Nickel-Iron Hydroxide Carbonate Precursors in the Synthesis of High-Dispersity Oxides[J], Journal of Materials Chemistry, 4: 153-159.
    [26] Xu, Z. P., Zeng, H. C. 1999. Interconversion of brucite-like and hydrotalcite-like phases in cobalt hydroxide compounds[J], Chemistry of Materials, 11: 67-74.
    [27] Avena, M. J., Vazquez, M. V., Carbonio, R. E., Depauli, C. P., Macagno, V. A. 1994. A Simple and Novel Method for Preparing Ni(Oh)2 .1. Structural Studies and Voltammetric Response[J], Journal of Applied Electrochemistry, 24: 256-260.
    [28] Durandkeklikian, L., Haq, I., Matijevic, E. 1994. Preparation and Characterization of Weil-Defined Colloidal Nickel Compounds[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects, 92:267-275.
    [29] Zhu, J., Gui, Z., Ding, Y., Wang, Z., Hu, Y., Zou, M. 2007. A Facile Route to Oriented Nickel Hydroxide Nanocolumns and Porous Nickel Oxide[J], Journal of Physical Chemistry C, 111:5622-5627.
    [30] Portemer, F., Delahayevidal, A., Figlarz, M. 1992. Characterization of Active Material Deposited at the Nickel-Hydroxide Electrode by Electrochemical Impregnation[J], Journal of the Electrochemical Society, 139:671-678.
    [31] Soler-Illia, G. J. D. A., Jobbagy, M., Regazzoni, A. E., Blesa, M. A. 1999. Synthesis of nickel hydroxide by homogeneous alkalinization. Precipitation mechanism[J], Chemistry of Materials, 11:3140-3146.
    [32] Coudun, C., Hochepied, J. F. 2005. Nickel hydroxide "stacks of pancakes" obtained by the coupled effect of ammonia and template agent[J], Journal of Physical Chemistry B, 109: 6069-6074.
    [33] Liu, B., Yu, S. H., Zhang, F., Li, L. J., Zhang, Q., Ren, L., Jiang, K. 2004. Ring-like nanosheets standing on spindle-like rods: Unusual ZnO superstructures synthesized from a flakelike precursor Zn-5(OH)(8)Cl-2 center dot H2O[J], Journal of Physical Chemistry B, 108:4338-4341.
    [34] DelahayeVidal, A., Beaudoin, B., SacEpee, N., TekaiaElhsissen, K., Audemer, A., Figlarz, M. 1996. Structural and textural investigations of the nickel hydroxide electrode[J], Solid State Ionics, 84: 239-248.
    [35] Burda, C., Chen, X. B., Narayanan, R., El-Sayed, M. A. 2005. Chemistry and properties of nanocrystals of different shapes[J], Chemical Reviews, 105:1025-1102.
    [36] Cheng, Y., Wang, Y. S., Zheng, Y. H., Qin, Y. 2005. Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation[J], Journal of Physical Chemistry B, 109:11548-11551.
    [37] Park, J., Privman, V., Matijevic, E. 2001. Model of formation of monodispersed colloids[J], Journal of Physical Chemistry B, 105:11630-11635.
    [38] Perm, R. L. 2004. Kinetics of oriented aggregation[J], Journal of Physical Chemistry B, 108: 12707-12712.
    [39] Zhong, L. S., Hu, J. S., Liang, H. P., Cao, A. M., Song, W. G., Wan, L. J. 2006. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J], Advanced Materials, 18: 2426-2468.
    [40] Luo, Y. Y., Li, G. H., Duan, G. T., Zhang, L. D. 2006. One-step synthesis of spherical alpha-Ni(OH)(2) nanoarchitectures[J], Nanotechnology, 17: 4278-4283.
    [41] Jobbagy, M., Blesa, M. A., Regazzoni, A. E. 2007. Homogeneous precipitation of layered Ni(II)-Cr(III) double hydroxides[J], Journal of Colloid and Interface Science, 309: 72-77.
    [42] Faure, C., Delmas, C., Fouassier, M. 1991. Characterization of a Turbostratic Alpha-Nickel Hydroxide Quantitatively Obtained from an Niso4 Solution[J], Journal of Power Sources, 35: 279-290.
    [43] Guillot, M., Richard-Plouet, M., Vilminot, S. 2002. Structural characterisations of a lamellar organic-inorganic nickel silicate obtained by hydrothermal synthesis from nickel acetate and (aminopropyl)triethoxysilane[J], Journal of Materials Chemistry, 12: 851-857.
    [44] Richard-Plouet, M., Vilminot, S. 1998. Magnetic properties of two-dimensional triangular arrays of Ni ions in nickel phyllosilicates[J], Journal of Materials Chemistry, 8:131-137.
    [45] Rouba, S., Rabu, P., Ressouche, E., Regnault, L. P., Drillon, M. 1996. Ferromagnetism in 1d and 2d triangular nickel(II)-based compounds[J], Journal of Magnetism and Magnetic Materials, 163: 365-372.
    [46] Kurmoo, M., Kepert, C. J. 1998. Hard magnets based on transition metal complexes with the dicyanamide anion [J], New Journal of Chemistry, 22:1515-1524.
    [1]Piao,Y.Z.,Jang,Y.J.,Shokouhimehr,M.,Lee,I.S.,Hyeon,T.2007.Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes[J],Small,3:255-260.
    [2]Raveendran,P.,Fu,J.,Wallen,S.L.2003.Completely "green" synthesis and stabilization of metal nanoparticles[J],Journal of the American Chemical Society,125:13940-13941.
    [3]Raveendran,P.,Fu,J.,Wallen,S.L.2006.A simple and "green" method for the synthesis of Au,Ag,and Au-Ag alloy nanoparticles[J],Green Chemistry,8:34-38.
    [4]Shankar,S.S.,Rai,A.,Ankamwar,B.,Singh,A.,Ahmad,A.,Sastry,M.2004.Biological synthesis of triangular gold nanoprisms[J],Nature Materials,3:482-488.
    [5]Xie,J.P.,Lee,J.Y.,Wang,D.I.C.,Ting,Y.P.2007.Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions[J],Small,3:672-682.
    [6]Saito,Y.,Wang,J.J.,Smith,D.A.,Batchelder,D.N.2002.A simple chemical method for the preparation of silver surfaces for efficient SERS[J],Langmuir,18:2959-2961.
    [7]Shao,Y.,Jin,Y.D.,Dong,S.J.2004.Synthesis of gold nanoplates by aspartate reduction of gold chloride[J],Chemical Communications:1104-1105.
    [8]Yang,J.H.,Lu,L.H.,Wang,H.S.,Shi,W.D.,Zhang,H.J.2006.Glycyl glycine templating synthesis of single-crystal silver nanoplates[J],Crystal Growth & Design,6:2155-2158.
    [9]Ahmad,A.,Senapati,S.,Khan,M.I.,Kumar,R.,Sastry,M.2003.Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete,Yhermomonospora sp.[J],Langmuir,19:3550-3553.
    [10]Mukherjee,P.,Ahmad,A.,Mandal,D.,Senapati,S.,Sainkar,S.R.,Khan,M.I.,Parishcha,R.,Ajaykumar,P.V.,Alam,M.,Kumar,R.,Sastry,M.2001.Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis[J], Nano Letters, 1:515-519.
    [11] Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajayakumar, P. V., Alam, M., Sastry, M., Kumar, R. 2001. Bioreduction of AuC14- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed[J], Angewandte Chemie-International Edition, 40: 3585-3586.
    [12] Aymonier, C., Schlotterbeck, U., Antonietti, L., Zacharias, P., Thomann, R., Tiller, J. C., Mecking, S. 2002. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties[J], Chemical Communications: 3018-3019.
    [13] Galletto, P., Brevet, P. F., Girault, H. H., Antoine, R., Broyer, M. 1999. Enhancement of the second harmonic response by adsorbates on gold colloids: The effect of aggregation[J], Journal of Physical Chemistry B, 103: 8706-8710.
    [14] Galletto, P., Brevet, P. F., Girault, H. H., Antoine, R., Broyer, M. 1999. Size dependence of the surface plasmon enhanced second harmonic response of gold colloids: towards a new calibration method[J], Chemical Communications: 581-582.
    [15] Jana, N. R., Sau, T. K., Pal, T. 1999. Growing small silver particle as redox catalyst[J], Journal of Physical Chemistry B, 103:115-121.
    [16] Nam, J. M., Park, S. J., Mirkin, C. A. 2002. Bio-barcodes based on oligonucleotide-modified nanoparticles[J], Journal of the American Chemical Society, 124: 3820-3821.
    [17] Sun, Y. G., Xia, Y. N. 2002. Shape-controlled synthesis of gold and silver nanoparticles[J], Science, 298:2176-2179.
    [18] Tripathi, G. N. R. 2003. p-benzosemiquinone radical anion on silver nanoparticles in water[J], Journal of the American Chemical Society, 125:1178-1179.
    [19] Velikov, K. P., Zegers, G. E., van Blaaderen, A. 2003. Synthesis and characterization of large colloidal silver particles[J], Langmuir, 19: 1384-1389.
    [20] Xiong, Y. J., Xie, Y., Wu, C. Z., Yang, J., Li, Z. Q., Xu, F. 2003. Formation of silver nanowires through a sandwiched reduction process[J], Advanced Materials, 15:405-408.
    [21] Pande, S., Ghosh, S. K., Praharaj, S., Panigrahi, S., Basu, S., Jana, S., Pal, A., Tsukuda, T., Pal, T. 2007. Synthesis of normal and inverted gold-silver core-shell architectures in beta-cyclodextrin and their applications in SERS[J], Journal of Physical Chemistry C, 111: 10806-10813.
    [22] Wiley, B. J., Im, S. H., Li, Z. Y., McLellan, J., Siekkinen, A., Xia, Y. A. 2006. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J], Journal of Physical Chemistry B, 110:15666-15675.
    [23] Zhang, J. T., Li, X. L., Sun, X. M., Li, Y. D. 2005. Surface enhanced Raman scattering effects of silver colloids with different shapes[J], Journal of Physical Chemistry B, 109:12544-12548.
    [24] Cui, Y., Ren, B., Yao, J. L., Gu, R. A., Tian, Z. Q. 2006. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy[J], Journal of Physical Chemistry B, 110:4002-4006.
    [25] Li, Z. Y., Yuan, J., Chen, Y., Palmer, R. E., Wilcoxon, J. P. 2005. Direct imaging of core-shell structure in silver-gold bimetallic nanoparticles[J], Applied Physics Letters, 87: 3103-3105.
    [26] Huang, Y., Duan, X. F., Wei, Q. Q., Lieber, C. M. 2001. Directed assembly of one-dimensional nanostructures into functional networks[J], Science, 291: 630-633.
    [27] Kim, F., Kwan, S., Akana, J., Yang, P. D. 2001. Langmuir-Blodgett nanorod assembly[J], Journal of the American Chemical Society, 123:4360-4361.
    [28] Melosh, N. A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P. M., Heath, J. R. 2003. Ultrahigh-density nanowire lattices and circuits[J], Science, 300:112-115.
    [29] Messer, B., Song, J. H., Yang, P. D. 2000. MicroChannel networks for nanowire patterning[J], Journal of the American Chemical Society, 122:10232-10233.
    [30] Lu, Y., Liu, G. L., Lee, L. P. 2005. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate[J], Nano Letters, 5: 5-9.
    [31] Orendorff, C. J., Gole, A., Sau, T. K., Murphy, C. J. 2005. Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence[J], Analytical Chemistry, 77: 3261-3266.
    [32] Saponjic, Z. V., Csencsits, R., Rajh, T., Dimitrijevic, N. M. 2003. Self-assembly of TOPO-derivatized silver nanoparticles into multilayered film[J], Chemistry of Materials, 15: 4521-4526.
    [33] Qu, Y. Q., Porter, R., Shan, F., Carter, J. D., Guo, T. 2006. Synthesis of tubular gold and silver nanoshells using silica nanowire core templates[J], Langmuir, 22: 6367-6374.
    [34] Jana, N. R., Peng, X. G. 2003. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals[J], Journal of the American Chemical Society, 125: 14280-14281.
    [35] Tompsett, G. A., Conner, W. C., Yngvesson, K. S. 2006. Microwave synthesis of nanoporous materials[J], Chemphyschem, 7:296-319.
    [36] Mallikarjuna, N. N., Varma, R. S. 2007. Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties[J], Crystal Growth & Design, 7:686-690.
    [37] Burda, C., Chen, X. B., Narayanan, R., EI-Sayed, M. A. 2005. Chemistry and properties of nanocrystals of different shapes[J], Chemical Reviews, 105:1025-1102.
    [38] Chu, H. C., Kuo, C. H., Huang, M. H. 2006. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges[J], Inorganic Chemistry, 45: 808-813.
    [39] Li, C. C., Cai, W. P., Cao, B. Q., Sun, F. Q., Li, Y., Kan, C. X., Zhang, L. D. 2006. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process[J], Advanced Functional Materials, 16: 83-90.
    [40] Li, C. C., Cai, W. P., Li, Y., Hu, J. L., Liu, P. S. 2006. Ultrasonically induced Au nanoprisms and their size manipulation based on aging[J], Journal of Physical Chemistry B, 110: 1546-1552.
    [41] Liu, B., Xie, J., Lee, J. Y., Ting, Y. P., Chen, J. P. 2005. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates[J], Journal of Physical Chemistry B, 109:15256-15263.
    [42] Hunyadi, S. E., Murphy, C. J. 2006. Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering[J], Journal of Materials Chemistry, 16: 3929-3935.
    [43] Orendorff, C. J., Gearheart, L., Jana, N. R., Murphy, C. J. 2006. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates[J], Physical Chemistry Chemical Physics, 8:165-170.
    [44] Rivas, L., Sanchez-Cortes, S., Garcia-Ramos, J. V., Morcillo, G. 2001. Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor[J], Langmuir, 17:574-577.
    
    [45] Xu, X. H., Yang, W. H., Liu, J., Lin, L. W. 2001. Synthesis of NaA zeolite membrane by microwave heating[J], Separation and Purification Technology, 25:241-249.
    [46] Cai, J., Liu, J., Gao, Z., Navrotsky, A., Suib, S. L. 2001. Synthesis and anion exchange of tunnel structure akaganeite[J], Chemistry of Materials, 13: 4595-4602.
    [47] Gimus, I., Jancke, K., Vetter, R., Richtermendau, J., Caro, J. 1995. Large Crystals by Micro wave-Heating[J], Zeolites, 15:33-39.
    [48] Brar, T., France, P., Smirniotis, P. G. 2001. Control of crystal size and distribution of zeolite A[J], Industrial & Engineering Chemistry Research, 40:1133-1139.
    [49] Daniel, J. C., Audebert, R. 1995. Soft matter Physics[M], New York: Springer, 2-30.
    [50] Tu, W. X., Liu, H. F. 2000. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation[J], Journal of Materials Chemistry, 10: 2207-2211.
    [51] Wang, H., Zhang, H. R., Zhu, J. J. 2001. A microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes[J], Journal of Crystal Growth, 233: 829-836.
    [52] Katsuki, H., Furuta, S., Komarneni, S. 2001. Microwave versus conventional-hydrothermal synthesis of NaY zeolite[J], Journal of Porous Materials, 8: 5-12.
    [1]Kroto,H.W.,Heath,J.R.,Brien,S.C.,Curl,R.F.,Smalley,R.E.1985.C60:Buckminster-fullerene[J],Nature,318:162-163.
    [2]Iijima,S.1991.Helical Microtubules of Graphitic Carbon[J],Nature,354:56-58.
    [3]Titirici,M.M.,Thomas,A.,Antonietti,M.2007.Back in the black:hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?[J],New Journal of Chemistry,31:787-789.
    [4]Titirici,M.M.,Thomas,A.,Antonietti,M.2007.Replication and coating of silica templates by hydrothermal carbonization[J],Advanced Functional Materials,17:1010-1018.
    [5]Titirici,M.M.,Thomas,A.,Yu,S.H.,Muller,J.O.,Antonietti,M.2007.A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization[J], Chemistry of Materials, 19:4205-4212.
    [6] Yu, S. H., Cui, X. J., Li, L. L., Li, K., Yu, B., Antonietti, M., Colfen, H. 2004. From starch to metal/carbon hybrid nanostructures: Hydrothermal metal-catalyzed carbonization[J], Advanced Materials, 16: 1636-1638.
    [7] Connor, D., Minguez, I. 2006. Looking at biofuels and bioenergy[J], Science, 312: 1743-1743.
    [8] Dalgaard, T., Jorgensen, U., Olesen, J. E., Jensen, E. S., Kristensen, E. S. 2006. Looking at biofuels and bioenergy[J], Science, 312:1743-1743.
    
    [9] Deluca, T. H. 2006. Looking at biofuels and bioenergy[J], Science, 312: 1743-1744.
    [10] Downing, M. 2006. Harvesting our meadows for biofuel? Response[J], Science, 312: 1745-1746.
    [11] Koonin, S. E. 2006. Looking at biofuels and bioenergy - Response[J], Science, 312: 1744-1744.
    
    [12] Palmer, M. W. 2006. Harvesting our meadows for biofuel?[J], Science, 312:1745-1745.
    [13] Sanderson, K. 2006. A field in ferment[J], Nature, 444: 673-676.
    [14] Brower, K. R. 2006. Measuring the efficiency of biomass energy[J], Science, 312: 1744-1744.
    
    [15] Cleveland, C. J., Hall, C. A. S., Herendeen, R. A. 2006. Energy returns on ethanol production[J], Science, 312:1746-1746.
    [16] Davison, B. H., Ragauskas, A. J., Templer, R., Tschaplinski, T. J., Mielenz, J. R. 2006. Measuring the efficiency of biomass energy - Response[J], Science, 312: 1744-1745.
    [17] Farrell, A. E. 2006. Ethanol can contribute to energy and environmental goals (vol 311, pg 506,2006)[J], Science, 312:1748-1748.
    [18] Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'Hare, M., Kammen, D. M. 2006. Energy returns on ethanol production - Response[J], Science, 312:1747-1748.
    [19] Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'Hare, M., Kammen, D. M. 2006. Ethanol can contribute to energy and environmental goals[J], Science, 311: 506-508.
    [20] Kaufmann, R. K. 2006. Energy returns on ethanol production[J], Science, 312: 1747-1747.
    [21] Dodds, D. R., Gross, R. A. 2007. Chemicals from biomass[J], Science, 318: 1250-1251.
    [22] Lehmann, J. 2007. A handful of carbon[J], Nature, 447:143-144.
    [23] Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., Tschaplinski, T. 2006. The path forward for biofuels and biomaterials[J], Science, 311: 484-489.
    [24] Hagens, N., Costanza, R., Mulder, K. 2006. Energy returns on ethanol production[J], Science, 312: 1746-1746.
    [25] Lynd, L., Greene, N., Dale, B., Laser, M., Lashof, D., Wang, M., Wyman, C. 2006. Energy returns on ethanol production[J], Science, 312:1746-1747.
    
    [26] Patzek, T. W. 2006. Energy returns on ethanol production[J], Science, 312:1747-1747.
    [27] Schmidt, L. D., Dauenhauer, P. J. 2007. Chemical engineering - Hybrid routes to biofuels[J], Nature, 447:914-915.
    [28] Tilman, D., Hill, J., Lehman, C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass[J], Science, 314:1598-1600.
    [29] Gherghel, L., Kubel, C., Lieser, G., Rader, H. J., Mullen, K. 2002. Pyrolysis in the mesophase: A chemist's approach toward preparing carbon nano- and microparticles[J], Journal of the American Chemical Society, 124:13130-13138.
    [30] Joseyacaman, M., Mikiyoshida, M., Rendon, L., Santiesteban, J. G. 1993. Catalytic Growth of Carbon Microtubules with Fullerene Structure (Applied Physics Letter, Vol 62, Pg 202, 1993)[J], Applied Physics Letters, 62: 657-659.
    [31] Joseyacaman, M., Terrones, H., Rendon, L., Dominguez, J. M. 1995. Carbon Structures Grown from Decomposition of a Phenylacetylene and Thiophene Mixture on Ni Nanoparticles[J], Carbon, 33: 669-678.
    [32] Li, Y. D., Qian, Y. T., Liao, H. W., Ding, Y, Yang, L., Xu, C. Y., Li, F. Q., Zhou, G. 1998. A reduction-pyrolysis-catalysis synthesis of diamond[J], Science, 281: 246-247.
    [33] Thess, A., Lee, R., Nikolaev, P., Dai, H. J., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G E., Tomanek, D., Fischer, J. E., Smalley, R. E. 1996. Crystalline ropes of metallic carbon nanotubes[J], Science, 273:483-487.
    [34] Gogotsi, Y., Libera, J. A., Guvenc-Yazicioglu, A., Megaridis, C. M. 2001. In situ multiphase fluid experiments in hydrothermal carbon nanotubes[J], Applied Physics Letters, 79:1021-1023.
    [35] Gogotsi, Y., Libera, J. A., Yoshimura, M. 2000. Hydrothermal synthesis of multiwall carbon nanotubes[J], Journal of Materials Research, 15:2591-2594.
    [36] Gogotsi, Y., Naguib, N., Libera, J. A. 2002. In situ chemical experiments in carbon nanotubes[J], Chemical Physics Letters, 365: 354-360.
    [37] Gogotsi, Y. G., Yoshimura, M. 1994. Formation of Carbon-Films on Carbides under Hydrothermal Conditions[J], Nature, 367: 628-630.
    [38] Libera, J., Gogotsi, Y. 2001. Hydrothermal synthesis of graphite tubes using Ni catalyst[J], Carbon, 39:1307-1318.
    [39] Demazeau, G 1999. Solvothermal processes: a route to the stabilization of new materials[J], Journal of Materials Chemistry, 9:15-18.
    [40] zhan, Y. J., Yu, S. H. 2008. Direct Synthesis of Carbon-Rich Composite Sub-microtubes by Combination of a Solvothermal Route and a Succeeding Self-Assembly Process[J], the journal of physical chemistry C, 112: 4024-4028.
    [41] Cui, X. J., Antonietti, M., Yu, S. H. 2006. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates[J], Small, 2: 756-759.
    [42] Sun, X. M., Li, Y. D. 2004. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J], Angewandte Chemie-International Edition, 43: 597-601.
    [43] Wang, Q., Li, H., Chen, L. Q., Huang, X. J. 2001. Monodispersed hard carbon spherules with uniform nanopores[J], Carbon, 39:2211-2214.
    [44] Hu, Y. S., Rezan, D. C., Titirici, M. M., Muller, J. O., Schlogl, R., Antonietti, M., Maier, J. 2008. Superior Storage Performance of a Nanocomposite as Anode Material for Lithium-Ion Batteries[J], Angewandte Chemie International Edition, 47:1645-1649.
    [45] Luo, L. B., Yu, S. H., Qian, H. S., Gong, J. Y. 2006. Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach[J], Chemical Communications: 793-795.
    [46] Qian, H. S., Antonietti, M., Yu, S. H. 2007. Hybrid "golden fleece": Synthesis and catalytic performance of uniform carbon nanoribers and silica nanotubes embedded with a high population of noble-metal nanoparticles[J], Advanced Functional Materials, 17: 637-643.
    [47] Qian, H. S., Yu, S. H., Luo, L. B., Gong, J. Y., Fei, L. F., Liu, X. M. 2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose[J], Chemistry of Materials, 18:2102-2108.
    [48] Kim, T. W., Solovyov, L. A. 2006. Synthesis and characterization of large-pore ordered mesoporous carbons using gyroidal silica template[J], Journal of Materials Chemistry, 16: 1445-1455.
    [49] Liang, Y. C., Hanzlik, M., Anwander, R. 2006. Periodic mesoporous organosilicas: mesophase control via binary surfactant mixtures[J], Journal of Materials Chemistry, 16: 1238-1253.
    [50] Titirici, M. M., Thomas, A., Antonietti, M. 2007. Animated hydrophilic ordered mesoporous carbons[J], Journal of Materials Chemistry, 17:3412-3418.
    [51] Wang, J., Groen, J. C., Yue, W., Zhou, W., Coppens, M. O.2008. Facile synthesis of ZSM-5 composites with hierarchical porosity[J], Journal of Materials Chemistry, 18:468-474.
    [52] Deng, B., Xu, A. W., Chen, G. Y., Song, R. Q., Chen, L. P. 2006. Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization process[J], Journal of Physical Chemistry B, 110:11711-11716.
    [53] Sun, X. M., Li, Y. D. 2005. Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly[J], Langmuir, 21: 6019-6024.
    [54] Yu, J. C., Hu, X. L., Li, Q., Zhang, L. Z. 2005. Microwave-assisted synthesis and in-situ self-assembly of coaxial Ag/C nanocables [J], Chemical Communications: 2704-2706.
    [55] Gong, J. Y., Luo, L. B., Yu, S. H., Qian, H. S., Fei, L. F. 2006. Synthesis of copper/cross-linked poly(vinyl alcohol)(PVA) nanocables via a simple hydrothermal route[J], Journal of Materials Chemistry, 16:101-105.
    [56] Wan, Y., Min, Y. L., yu, S. H. 2008. Synthesis of Silica/Carbon-Encapsulated Core-Shell Spheres: Templates for Other Unique Core-Shell Structures and Applications in in Situ Loading of Noble-Metal Nanoparticles[J], Langmuir, 24: 5024-5028.
    [57] Feng, S. S., Zhu, M. L., Lu, L. P., Guo, M. L. 2007. Single-crystal metal-organic microtubes self-assembled from designed D-3 symmetrical nanoclusters with a capped triple-helix pentanuclear M5O6 core[J], Chemical Communications: 4785-4787.
    [58] Li, W. Z., Liang, C. H., Qiu, J. S., Zhou, W. J., Han, H. M., Wei, Z. B., Sun, G. Q., Xin, Q. 2002. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell[J], Carbon, 40: 791-794.
    [59] Bulushev, D. A., Yuranov, I., Suvorova, E. I., Buffat, P. A., Kiwi-Minsker, L. 2004. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J], Journal of Catalysis,224:8-17.
    [60]Hyeon,T.,Han,S.,Sung,Y.E.,Park,K.W.,Kim,Y.W.2003.High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils[J],Angewandte Chemic-International Edition,42:4352-4356.
    [61]Prabhuram,J.,Wang,X.,Hui,C.L.,Hsing,I.M.2003.Synthesis and characterization of surfactant-stabilized PVC nanocatalysts for fuel cell applications[J],Journal of Physical Chemistry B,107:11057-11064.
    [62]Joo,S.H.,Choi,S.J.,Oh,I.,Kwak,J.,Liu,Z.,Yerasaki,O.,Ryoo,R.2001.Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J],Nature,412:169-172.
    [63]Makowski,P.,Cakan,R.D.,Antonietti,M.,Goettmann,F.,Titirici,M.M.2008.Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon[J],Chemical Communications:999-1001.
    [64]Holzapfel,M.,Buqa,H.,Scheifele,W.,Novak,P.,Petrat,F.M.2005.A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J],Chemical Communications:1566-1568.
    [65]Ng,S.H.,Wang,J.Z.,Wexler,D.,Konstantinov,K.,Guo,Z.P.,Liu,H.K.2006.Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J],Angewandte Chemie-International Edition,45:6896-6899.
    [66]Wu,X.D.,Wang,Z.X.,Chen,L.Q.,Huang,X.J.2003.Ag-enhanced SEI formation on Si particles for lithium batteries[J],Electrochemistry Communications,5:935-939.
    [67]Yang,J.,Wang,B.F.,Wang,K.,Liu,Y.,Xie,J.Y.,Wen,Z.S.2003.Si/C composites for high capacity lithium storage materials[J],Electrochemical and Solid State Letters,6:A154-A156.
    [68]金征宇,顾正彪,董群义,杨瑞金.2007.碳水化合物化学--原理与应用[M],北京:化学工业出版社,30-79.
    [69]Yao,C.,Shin,Y.,Wang,L.Q.,Windisch,C.F.,Samuels,W.D.,Arey,B.W.,Wang,C.,Risen,W.M.,Exarhos,G.J.2007.Hydrothermal dehydration of aqueous fructose solutions in a closed system[J],Journal of Physical Chemistry C,111:15141-15145.
    [70]Choura,M.,Belgacem,N.M.,Gandini,A.1996.Acid-catalyzed polycondensation of furfuryl alcohol:Mechanisms of chromophore formation and cross-linking[J], Macromolecules, 29: 3839-3850.
    [71] Bertarione, S., Bonino, F., Cesano, F., Damin, A., Scarano, D., Zecchina, A. 2008. Furfuryl alcohol polymerization in H-Y confined spaces: Reaction mechanism and structure of carbocationic intermediates[J], Journal of Physical Chemistry B, 112: 2580-2589.
    [72] Roman-Leshkov, Y., Chheda, J. N., Dumesic, J. A. 2006. Phase modifiers promote efficient production of hydroxymethylflirfural from fructose[J], Science, 312:1933-1937.
    [73] Zhao, H. B., Holladay, J. E., Brown, H., Zhang, Z. C. 2007. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J], Science, 316:1597-1600.
    [74] Aida, T. M., Sato, Y, Watanabe, M., Tajima, K., Nonaka, T., Hattori, H., Arai, K. 2007. Dehydration Of D-glucose in high temperature water at pressures up to 80 MPa[J], Journal of Supercritical Fluids, 40: 381-388.
    [75] Barrett, C. J., Chheda, J. N., Huber, G. W., Dumesic, J. A. 2006. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water[J], Applied Catalysis B-Environmental, 66:111-118.
    [76] Luijkx, G. C. A., Vanrantwijk, F., Vanbekkum, H. 1993. Hydrothermal Formation of 1,2,4-Benzenetriol from 5-Hydroxymethyl-2-Furaldehyde and D-Fructose[J], Carbohydrate Research, 242:131-139.
    [77] Sakaki, T., Shibata, M., Miki, T., Hirosue, H., Hayashi, N. 1996. Decomposition of cellulose in near-critical water and fermentability of the products[J], Energy & Fuels, 10: 684-688.
    [78] Shin, E. J., Nimlos, M. R., Evans, R. J. 2001. Kinetic analysis of the gas-phase pyrolysis of carbohydrates[J], Fuel, 80:1697-1709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700