用户名: 密码: 验证码:
非晶态纳米TiO_2介孔薄膜的制备与光电转换性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(Dye-sensitized Solar Cell,DSC)具有较常规太阳能电池成本更低且绿色环保的优点,是一种很有发展前途的太阳能光电转换新技术。DSC光电转换效率虽然还不够高,但由于其成本低廉,仅为单晶硅太阳能电池的1/10,可以通过大面积使用来弥补其效率低的不足。因此,非常适合于与建筑相结合使用,如建筑外墙、屋顶、门窗、玻璃幕墙等,有望成为最有发展前途的大面积供电系统。
     TiO_2介孔薄膜是目前DSC使用最为普遍的光电极材料,在DSC中作为染料的承载体,并起到光生电子接收体和传输体的作用,是决定DSC光电转换性能的关键组分部分。TiO_2介孔薄膜要成为产业化发展和大面积使用的DSC光电极材料,还存在以下问题:1)TiO_2薄膜的制备方法还有待改善,需要一种工艺更简单、更易于控制的制备方法;2)TiO_2薄膜光电极性能波动性有待改善;3)TiO_2薄膜光电极的光电转换效率仍然有待提高。本论文尝试采用非晶态TiO_2介孔薄膜作为DSC光电极材料来解决以上问题。
     采用四氢呋喃改性CTAB/水/正丁醇/环己烷反胶团微乳液法在常压、50~60℃下合成出尺寸20nm左右、高度分散的球形纳米颗粒,将其胶体前驱液直接涂膜,通过干燥、烧结,成功制备出均匀的非晶态TiO_2介孔薄膜。该制备方法由于无需控制TiO_2的晶体生长过程,因而大大降低了TiO_2纳米颗粒的合成条件;由于从TiO_2的胶体前驱液直接涂膜,在干燥和烧结过程中不会发生开裂、剥落现象,而得到由球形纳米颗粒相互连接形成的均匀TiO_2介孔薄膜,因此大大简化了薄膜的制备工艺。
     在相同条件下比较测试了非晶态TiO_2介孔薄膜和纳米晶锐钛矿TiO_2介孔薄膜的染料吸附量以及所组装DSC的光电转换性能指标,如短路光电流(Isc)、开路光电压(Voc)、填充因子(ff)和总光电转换效率(η)。试验结果表明,当薄膜厚度在3~16μm范围内变化时,非晶态TiO_2介孔薄膜的染料吸附量比纳米晶锐钛矿TiO_2介孔薄膜少1.18~5.76×10-8mol/cm2,该差距随薄膜厚度的增加愈加明显。但是,在染料吸附量小得多的情况下,非晶态TiO_2介孔薄膜光电极却能够产生与纳米晶锐钛矿TiO_2介孔薄膜光电极相当的Isc,并得到更高的Voc和ff,从而使得其获得较高的η。在相同条件下,非晶态TiO_2介孔薄膜光电极的最大η为5.37%,纳米晶锐钛矿TiO_2介孔薄膜光电极获得的最大η为4.69%。
     对比研究了非晶态TiO_2介孔薄膜和纳米晶锐钛矿TiO_2介孔薄膜的电学性质和光学性质。发现非晶态TiO_2介孔薄膜对可见光具有强散射效应,而纳米晶锐钛矿TiO_2介孔薄膜对可见光的散射较弱,这使得吸附了染料的非晶态TiO_2薄膜光电极的光利用率高于吸附了染料的纳米晶锐钛矿TiO_2薄膜光电极。此外,采用FTO导电玻璃作为与TiO_2面接触的两极,测试了TiO_2薄膜在光照下的电阻值R。发现在吸附染料的情况下,非晶态TiO_2介孔薄膜的R值比纳米晶锐钛矿TiO_2介孔薄膜的小一个数量级;在未吸附染料的情况下也得到同样的结果。说明电子在非晶态TiO_2介孔薄膜中输运的效率要高于在纳米晶锐钛矿TiO_2介孔薄膜中的输运。
     基于非晶态TiO_2介孔薄膜特殊的光学和电学性质,以及纳米晶锐钛矿TiO_2介孔薄膜对染料的强吸附性,将两种薄膜复合成双层结构的非晶态/纳米晶TiO_2介孔薄膜,发挥两种薄膜材料各自的优势,使其DSC的总光电转换效率η达到了6.89%,比单独由非晶态TiO_2介孔薄膜和纳米晶锐钛矿TiO_2介孔薄膜组装的DSC的总光电转换效率提高了28%左右。
Dye-sensitized solar cell (DSC) has a good prospect for application of solar conversion devices because of its lower-cost than the conventional semiconductor solar cells and environment friendliness. Although the overall light-to-electricity efficiency of DSC is not high enough compared to the silicon solar cells, DSC can be used as the effective large area solar conversion device for the application in architecture, such as the external wall, the roof, the window and the curtain wall, since it is inexpensive to manufacture.
     TiO_2 mesoporous film, the most widely used photoelectrode material of DSC, is the key componet of DSC because it adsorbs dye and serves as both electron acceptor and transport layer. There are several problems for TiO_2 mesoporous film to realize the industrial development: (1) the fabrication method still needs to be improved with more controllable and simpler process; (2) the fluctuated efficiency of TiO_2 film photoelectrode needs to be improved; (3) the overall light-to-electricity efficiency of TiO_2 film photoelectrode needs to be enhanced. An amorphous TiO_2 mesoporous film is used as photoelectrode of DSC to resolve these problems.
     The spherical TiO_2 particles with an average size of 20nm were synthesized by the Tetrahydrofuran modified reverse microemulsion method under atmospheric pressure and the temperature of 50~60℃. The resulting colloid was coated straight on the FTO conducting glass, fllowing by drying and sintering processes, to form an amorphous TiO_2 film with homogeneous mesoporous inner structure of interconnected spherical particles. The method makes the synthesis conditions for TiO_2 nano-particles much lower than for the TiO_2 nanocrystallines attributing to no demand of crystallization and growth for amorphous TiO_2. The method also makes preparing process much simpler owing to supporting to coat the colloid straight on the substrate to form a homogeneous mesoporous TiO_2 film.
     Under the same conditions, the dye-adsorption amount and performances, such as short circuit photocurrent (Isc), open circuit photovoltage (Voc), fill factor (ff) and the overall light-to-electricity efficiency (η), of the amorphous TiO_2 mesoporous film were measured and compared with those of the anatase nanocrystalline mesoporous film prepared by P25. The experimental results shows that the dye-adsorption amounts of the amorphous TiO_2 film are 1.18~5.76×10-8mol/cm2 less than those of the anatase nanocrystalline film when the film thicknesses vary from 3μm to 16μm. However, with much less dye-adsorption amout, the amorphous TiO_2 film photoelectrode generates equivalent Isc, higher Voc and ff comparing with the anatase nanocrystalline film photoelectrod, hence higherη. The maximum ofηis 5.37% for the amorphous TiO_2 film based DSC and 4.69% for the anatase nanocrystalline film based DSC.
     The electrical and optical properties of the amorphous TiO_2 mesoporous film were measured and compared with those of the anatase nanocrystalline mesoporous film prepared by P25. It was found that the amorphous TiO_2 mesoporous film had high light scattering ability, which enhanced the light utilization of dye molecules in the film, while CM-TiO_2 film had poor light scattering. In addition, the resistances of TiO_2 films were tested by using two sheets of FTO conducting glass serving as electrical contact material with TiO_2 film, which allowed the irradiation of light and accorded with the practical electrical contact situation of TiO_2 film with FTO conducting glass substrate in DSC. Under irradiation, the resistance of dye-loaded or -unloaded amorphous TiO_2 film is about one order of magnitude lower than that of anatase nanocrystalline film. It indicates that the photo-electrons transport through AM-TiO_2 film more efficiently than it does through CM-TiO_2 film.
     Based on the especial electrical and optical properties of the amorphous TiO_2 mesoporous film and the high ability of adsorbing dye of the anatase nanocrystalline mesoporous film, the DSC based on the composite TiO_2 film with the double layered structure of the two kinds of TiO_2 films obtainedηof 6.89%, which was 28% higher than that obtained neither by the DSC based on the pure amorphous TiO_2 film or the DSC based on the anatase nanocrystalline film.
引文
[1]师昌绪,李恒德,周廉.材料科学与工程手册[M],北京:化学工业出版社,2004,11-167-177.
    [2] M. Gr?tzel. Photoelectrochemical cells[J]. Nature, 2001, 414 (11): 338-344.
    [3] A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pelin. ZnO Nanotube Based Dye-sensitized Solar Cells [J]. Nano Letters, 2007, 7(8): 2186-2187.
    [4] W. Tai. Photoelectrochemical properties of ruthenium dye-sensitized nanocrystalline SnO2:TiO2 Solar Cells[J]. Solar Energy Materials & Solar Cells, 2003, 76: 65-73.
    [5] A. Kitiyanan, S. Yoshikawa. The use of ZrO2 mixed TiO2 nanostructures as efficient dye-sensitized solar cells’electrodes[J]. Materials Letters, 2005, 59: 4038-4040.
    [6] M. Gr?tzel. Mesoporous oxide junctions and nanostructured solar cells[J]. Current Opinion in Colloid & Interface Science, 1999(4):314~321.
    [7] Neal M. Abrams. Efficiency enhancement in dye-sensitized solar cells through light manipulation[D]. America: The Pennsylvania State University, 2005: 20-21.
    [8] E.Galoppini. Linkers for anchoring sensitizers to semiconductor nanoparticles [J]. Coordination Chemistry Reviews, 2004, 248(3): 1283-1297.
    [9] T. Renouard, M. Gr?tzel. Functionalized tetradentate ligands for Ru-sensitized solar cells [J]. Tetrahedron, 2001, 57: 8145-8150.
    [10] K. Hara, T. Nishikawa, M. Kurashige, H. Kawauchi, T. Kashima. Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(Ⅱ) terpyridyl complex photosensitizer[J]. Solar Energy Materials & Solar Cells, 2005 85(2): 21-30.
    [11] S. Y. Huang, G. Schlichthorl. A. J. Nozik, M. Gr?tzel, A. J. Frank. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy[J]. J. Phys. Chem. B, 1997, 101:2576.
    [12] J. Wu, Z. Lan, J. Lin, M. Huang, P. Li. Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells[J]. Journal of Power Sources, 2007, 173(4): 585-591.
    [13] P. J. Cameron, L. M. Peter, S. M. Zakeeruddin, M. Gr?tzel. Electrochemical studies of the Co(Ⅲ)/Co(Ⅱ)(dbbip)2 redoxcouple as a mediator for dye-sensitized nanocrystalline solar cells[J]. Coordination Chemistry Reviews, 2004, 248(2): 1447-1453.
    [14]潘旭,戴松元,王孔嘉,史成武,郭力.染料敏化纳米薄膜太阳电池中离子液体基电解质的研究进展[J].物理化学学报, 2005,21(6):697-702.
    [15] M. Gr?tzel. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4:145-153.
    [16] V. M. Rama Krisha, A. R. Friesner. Orgnic solar cells[J]. J. Chem. Phys., 1991, 95: 8309.
    [17] A. L. Efros, Al. L. Efros. Photosensitized electron-transfer reactons, Interception of the geminate radical ion pair[J]. Soviet Phys. Semicond., 1982, 16: 772.
    [18] B. Enright, D. Fitzmaurice. Dye-sensitizing effect of topic thin film on n-TiO2 (001) surface[J]. J. Phys. Chem., 1996, 100: 1027.
    [19] Y. Nosaka. Intramolecular electron transfer in the inverted region[J] J. Phys. Chem., 1991, 95(13): 5054.
    [20] A. Hagfeldtt, M. Gr?tzel. Light-induced Redox Reactions in Nanocrystalline Systems[J]. Chem. Rev., J, 1995, 95: 49-68.
    [21] W. J. Albery, P. N. Bartlett. Photochemical electron-transfer reactons of 1,1-diarylethylenes[J]. J. Electrochem. Soc., 1984, 131: 315.
    [22] James R. Durrant. Modulating interfacial electron transfer dynamics in dye sensitized nanocrystalline metal oxide films[J]. Journal of Photochemistry and Photobiology A: Chemistry, J, 2002, 148: 5-10.
    [23] J. S. Curran, D. Mamouche. Application of the energy gap law to nonradiative, excited-stated decay[J]. J. Phys. Chem., 1983, 87: 5405.
    [24] B. O’Regan, J. Moser, M. Anderson, M. Gr?tzel. Atificial photosynthesis: 1. Photosensitization of TiO2 solar cells with chlorophy derivatives and related natural porphyrins[J]. J. Phys. Chem., 1990, 94: 8720.
    [25] M. Gr?tzel. Solar Energy Conversion by Dye-sensitized Photovoltaic Cells[J]. Inorg. Chem., J, 2005, 44: 6841-6851.
    [26] Arthur J. Frank, N. Kopidakis, J. Lagemaat. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties[J]. Coordination Chemistry Reviews, 2004, 248(3): 1165-1179.
    [27] S. Soedergren, A. Hagfeldt, J. Olsson. Photoinduced intramolecular electron transfer in bimetallic donor-acceptor assemblies[J]. J. Phys. Chem., 1994, 98: 5552.
    [28] P. E. de Jongh, D. Vanmaekelbergh.Lighr-induced charge separation across Ru(II)-modified nanocrystalline TiO2 interfaces with phenothiazine donors[J]. J. Phys. Chem. B, 1997, 101: 2716.
    [29] J. R. Durrant, S. A. Haque, E. Palomares. Towards optimization of electron transfer processes in dye sensitized solar cells[J]. Coordination Chemistry Reviews, 2004, 248(3): 1247-1257.
    [30] F. Cao, G. Oskam, G. J. Meyer, P. C. Searson. Nanocrystalline titanium oxide electrodes for photovoltaic applications[J]. J. Phys. Chem., 1996, 100: 17021.
    [31] S. Anandan. Recent improvements and arising challenges in dye-sensitized solar cells[J]. Solar Energy Materials & Solar Cells, 2007, 91: 843-846.
    [32] D. Menzies, Q. Dai, Y. B. Cheng, G. P. Simon, L. Spiccia. Improvement of the Zirconia shell in nanostructured Titania core-shell working electrodes for dye-sensitized solar cells[J]. Materials Letters, 2005, 59(2): 1893-1896.
    [33] K. Keis, E. Magnusson, H. Lindstr?m, S. Lindquist, A. hagfeldt. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes[J]. Solar Energy Materials & Solar Cells, 2002, 73: 51-58.
    [34] Y. Fukai, Y. Kondo, S. Mori, E. Suzuki. Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion lengh[J]. Electrochemistry Communications, 2007, 9: 1439-1443.
    [35] M. K. I. Senevirathna, P. K. D. D. P. Pitigala, E. V. A. Premalal. Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell[J]. Solar Energy Materials & Solar Cells, 2007, 91(11): 544-547.
    [36] R. S. Mane, H. M. Pathan, C. D. Lokhande, S. Han. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells[J]. Solar Energy, 2006, 80(8): 185-190.
    [37] L. Kavan, J. Rathousky, M. Gr?tzel, V. Shklover, A. Zukal. Mesoporous thin film TiO2 electrodes[J]. Microporous and Mesoporous Materials, 2001, 44-45: 653-659.
    [38] N.-G. Park, J. van de Lagemaat, A.J. Frank. Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells[J]. J. Phys. Chem. B, 2000,104: 8989–8994.
    [39] H.Lindstr?m, E.Mafnusson et al.. A new method for manufacturing nanostructured electrodes on glass substrates[J]. Solar Energy Materials & Solar Cells, 2002, 73: 91~101.
    [40] J. Jiu, F. Wang, M. Sakamoto, J. Takao, M. Adachi. Performance of dye-sensitized solar cell based on nanocrystals TiO2 film prepared with mixed template method[J]. Solar Energy Materials & Solar Cells, 2005, 87(6): 77-86.
    [41] M. Okuya, K. Nakade, S. Kaneko. Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells[J]. Solar Energy Materials & Solar Cells, 2002, 70: 425-435.
    [42] T. N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka. Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 187-191.
    [43] H. An, S. Jang, R. Vittal, J. Lee, K. Kim. Cationic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO2 for application to dye-sensitized solar cells[J]. Electrochimica Acta, 2005, 50: 2713-2718.
    [44] M. Gómez, E. Magnussn, E. Olsson, A. Hagfeldt. Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness[J]. Solar Energy Materials & Solar Cells, 2000, 62: 259-263.
    [45] J. Yoon, S. Jang, R. Vittal, J. Lee, K. Kim. TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180: 184-188.
    [46] M. Zukalová, A. Zukal. L. Kavan, P. Liska, M. Gr?tzel. Organized mesoporous TiO2 films exhibiting greatly enhanced performanced in dye-sensitized solar cells[J]. Nano letters, 2005, 5(9): 1789-1792.
    [47] J. Macák, H. Tsuchiya, A. Ghicov, P. Schmuki. Dye-sensitized anodic TiO2 nanotubes[J]. Electrochemistry Communications, 2005, 7: 1133-1137.
    [48] M. Y. Song, D. Kim, S. M. Jo, D. Y. Kim. Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment[J]. Synthetic Metals, 2005, 155: 635-638.
    [49] K. Pen, Q. Zhang, Q. Wang, Z. Liu, D. Wang, J. Li, Y. Bai. The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and naonorods[J]. Thin Solid Films, 2007, 515: 4085-4091.
    [50] K. H. Ko, Y. C. Lee, Y. J. Jung. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions[J]. Journal of Colloid and Interface Science, 2005, 283: 482-487.
    [51] Y. Kim, B. Yoo, R. Vittal, Y. Lee, N. Park, K. Kim. Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells[J]. Journal of Power Sources, 2007, 112(9): 25.
    [52] S. H. Kang, J. Kim, Y. Kim, Y. Sung. Effects of the incorporation of carbon powder into nanostructured TiO2 film for dye-sensitized solar cell[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186: 234-241.
    [53] S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, Y. Wei. The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell[J]. Solar Energy, 2004, 76: 745-750.
    [54] Gregg B A, Pichot F, Ferrere S, et al. Interfacial recombination processes in dye-sensitized solar cells and methods to passivatethe interfaces[J]. J Phys Chem B, 2001, 105: 1422~1429.
    [55] S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch. Influence of scattering layers on efficiency of dye-sensitized solar cells[J]. Solar Energy Materials & Solar Cells, 2006, 90: 1176-1188.
    [56] Neal M. Abrams. Efficiency enhancement in dye-sensitized solar cells through light manipulation[D]. America: The Pennsylvania State University, 2005: 45-47.
    [57] J. N. Hart, D. Menzies, Y. Cheng, G. P. Simon, L. Spiccia. TiO2 sol-gel blocking layers for dye-sensitized solar cells[J]. C. R. Chimie, 2006, 9: 622-626.
    [58] M. Gr?tzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 3-14.
    [59] A. S. Barnard, L. A. Curtiss. Prediction of TiO2 Nanoparticle Phase and shape Transitions Controlled by Surface Chemistry[J]. Nano Letters, 2005, 5(7): 1261-1266.
    [60]张立德,牟季美.纳米材料和纳米结构[M].北京,科学出版社,2001:99-100.
    [61] O’Regan B, Gr?tzel M. A-low cost and highly efficient solar cells based on dye-sensitization of colloidal TiO2[J]. Nature 1991; 335: 737~740.
    [62] M. Gr?tzel. The Advent of Mesoscopic Injection Solar Cells[C]. Progress In Photovoltaics: Research and Applications. 2006. published online in Wilery InterScience (www.interscience.wiley.com). 2006, 431.
    [63] Q. Wang, S. Ito, M. Gr?tzel, F. Fabregat-Santiago. Characteristics of High Efficiency Dye-Sensitized Solar Cells[J]. J. Phys. Chem. B, 2006, 110(11): 25210-25221.
    [64] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang. Highly Efficient Dye-sensitized Solar Cells With a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the“Oriented Attachment”Mechanism[J]. J. Am. Chem. Soc., 2004, 126(10): 14943-41949.
    [65] M. Gr?tzel. Photovoltaic and photoelectrochemical conversion of solar energy[J]. Phil. Trans. R. Soc. A, 2007, 365: 993-1005.
    [66] T. N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka. Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164: 187-191.
    [67] S. Hao, J. W. Y. Huang, J. Lin, M. Huang. Influence of TiO2 film prepared by various techniques on the performance of dye-sensitized solar cell[C]. 15th International Photovoltaic Science & Conference (PVSEC-15). Shanghai China. 2005: 1297-1298.
    [68] M.M.Gómez, J. Lu, E. Olsson, A. Hagfeldt, C. G. Granquist. High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films[J]. Solar Energy Materials & Solar Cells, 2000, 64: 385-392.
    [69] J. H. Fendler. Atomic and molecular clusters in membrane mimetic chemistry[J]. Chem. Rev., 1987, 87: 877-899.
    [70] V. T. Liveri. Reversed micelles as nanometer-size solvent media[C]. In Nano-Surface Chemistry, Rosoff, M. Ed., Marcel Dekker, New York, 2002: 473-385.
    [71] J. Klier, C. J. Tucker, T. H. Kalantar, D. P. Green. Properties and applications of microemulsion[J]. Adv. Mater., 2000, 12: 1751-1757.
    [72] S. P. Moulik, B. K. Paul. Structure, dynamics and transport properties of microemulsions[J]. Adv. Colloid Interface Sci., 1998, 78: 99-195.
    [73] M. L. Curri, A. Agostiano, F. Mavelli, M. Della Monica. Reverse micellar systems: self organized assembly as effective route for the synthesis of colloidal semiconductor nanocrystals[J]. Material Science and Engineering C, 2002, 22: 423-426.
    [74] M. A. López-Quintela, C. Tojo, M. C. Blanco, L. García Rio, J. R. Leis. Microemulsion dynamics and reactions in microemulsions[J]. Current Opinion in Colloid & Interface Science, 2004, 9 (5): 264-278..
    [75]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2004: 88.
    [76]赖琛.反胶团-热液法合成羟基磷灰石纳米线及其机理研究[D].湖南:湖南大学,2006:20.
    [77] K. Holmber. Surfactant-templated nanomaterials synthesis[J]. Journal of Colloid and Interface Science, 2004, 274 (4): 355-364.
    [78] B. K. Paul, R. K. Mitra. Water solubilization capacity of mixed reverse micelles: Effect of surfactant component, the nature of the oil, and electrolyte concentration[J]. Journal of Colloid and Interface Science, 2005, 288 (2): 261-279
    [79] M. A. Lopez-Quintela. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control[J]. Curr. Opin. Colloid Interface Sci., 2003, 8: 137-144.
    [80] K. Holmberg. Surfactant-templated nanomaterials synthesis[J]. J. Colloid Interface Sci., 2004, 274: 355-364.
    [81] Limin Qi. Synthesis of Inorganic Nanostructures in Reverse Micelles[J]. Encyclopedia of Surface and Colloid Science, 2006: 6183-6190.
    [82] M. J. Schwuger, K. Stickdorn, R. Schom?cker. Microemulsions in technical processes[J]. Chem. Rev., 1995, 95: 849-864.
    [83] J. Klier, C. J. Tucher, T. H. Kalantar, D. P. Green. Properties and applications of microemulsions[J]. Adv. Mater., 2000, 12: 1751-1757.
    [84] J. N. Hart, D. Menzies, Y. Cheng, G. P. Simon, L. Spiccia. A comparison of microwave and conventional heat treatments of nanocrystalline TiO2[J]. Solar Energy Materials & Solar Cells,2007, 91: 6-16.
    [85] K. Osseo-Asare. Microemulsion-mediated synthesis of nanosize oxide materials[M]. Handbook of Microemulsion Science and Technology. Marcel Dekker: New York, 1999: 549-503.
    [86] M. Gr?tzel. Heterogeneous Photochemical Electron Transfer[J]. CRC Press, Baton Rouge, FL, 1988.
    [87]祁景玉.现代分析测试技术[M].上海:同济大学出版社,2006:244-246.
    [88]郑忠.胶体科学导论[M].北京:高等教育出版社,1989:89-90.
    [89] S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch. Influence of scattering layers on efficiency of dye-sensitized solar cells[J]. Solar Energy Materials & Solar Cells, 2006, 90: 1176-1188.
    [90]张艺,沈为民.固体电子学基础[M].杭州,浙江大学出版社,2005:188-189.
    [91]沈学础.半导体光谱和光学性质[M].北京,科学出版社,2002:87.
    [92] M. Gr?tzel, Inorg.Chem., 2005,44: 6841-6851.
    [93] B. O. Regan, G. M. Gr?tzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353 (10): 737-739.
    [94] M. Gr?tzel. Photoelectrochemical cells[J]. Nature, 2001, 414 (11): 338-344.
    [95]师昌绪,李恒德.材料科学与工程手册[M].北京,化学工业出版社,2004:4-80.
    [96] L. Peter. Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells[J]. Journal of Electroanalytical Chemistry, 2007, 599: 223-240.
    [97] M. T. Spitler. Dye photo-oxidation at semiconductor electrodes—a corollary to spectral sensitization in photography[J]. J. Chem. Educ., 1983, 60: 330-332.
    [98] S. Ito, T. Kitamura, Y. Wada, S. Yanagida. Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating[J]. Solar Energy Materials & Solar Cells, 2003, 76: 3-13.
    [99] M. Gr?tzel. Photovoltaic performance and long-term stability of dye-sensitized mesocopic solar cells[J]. C. R. Chimie, 2006, 125: 789-794.
    [100] M. Gr?tzel. Solar Energy Conversion by Dye-sensitized Photovoltaic Cells[J]. Inorg. Chem., 2005, 44: 6841-6851.
    [101] D. Cahen, G. Hodes, M. Gr?tzel, J. F. Guillemoles, I. Riess. Nature of Photovoltaic Action in Dye-sensitized Solar Cells[J]. J. Phys. Chem. B, 2000, 104: 2053-2059.
    [102] M. H.布罗德斯基.非晶态半导体[M].北京:国防工业出版社,1985:3-4.
    [103] J. R. Durrant, S. A. Haque, E. Palomares. Towards optimisation of electron transfer processes in dye sensitized solar cells[J]. Coordination Chemistry Review, 2004, 248: 1247-1257.
    [104] D. Menzies, Q. Dai, G. P. Simon, L. Spiccia. Improvement of the Zirconia shell innanostructured Titania core-shell working electrodes for dye-sensitized solar cells[J]. Materials Letters, 2005, 59: 1893-1896.
    [105] S. S. Kim, J. H. Yum, Y. E. Sung. Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171: 269-273.
    [106] Z. Liu, K. Pan, M. Liu, M. Wang, Q. Lü, J. Li, Y. Bai, T. Li. Al2O3-coated SnO2/TiO2 composite electrode for the dye-sensitized solar cell[J]. Electrochimica Acta, 2005, 50: 2583-2589.
    [107] D. B. Menzies, L. Bourgeois, Y. B. Cheng, G. P. Simon, N. Brack, L. Spiccia. Characterization of nanostructured core-shell working electrodes for application in dye-sensitized solar cells[J]. Surface & Coating Technology, 2005, 198: 118-122.
    [108] Q. Wang, S. Ito, M. Gr?tzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, H. Imai. Characteristics of High Efficiency Dye-Sensitized Solar Cells[J]. J. Phys. Chem. B, 2006, 110: 25210-25211.
    [109] T. P. Chou, Q. Zhang, B. Russo, G. E. Fryxell, G. Cao. Titania Particle Size Effect on the Overall Performance of Dye-sensitized Solar Cells[J]. J. Phys. Chem. C, 2007, (4): 64.
    [110] S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niffemann, R. Kern. Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells[J]. Chemical Communications, 2005, 15: 2011-2013.
    [111] H-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, N-G. Park. Size-dependent Scattering Efficiency in Dye-sensitized Solar Cell[J]. Inorganica Chimica Acta, 2007, doi: 10.1016/j.ica. 2007.05.017.
    [112] S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, A. J. Frank. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals[J]. J. Am. Chem. Soc., 2003, 125(20): 6306-6310.
    [113] R. Hattori, H. Goto. Carrier leakage blocking effect of high temperature sputtered TiO2 film on dye-sensitized mesoporous photoelectrode[J]. Thin Solid Films, 2007, dio: 10.1016/j. tsf. 2007.03.079.
    [114] J. N. Hart, D. Menzies, Y-B. Cheng, G. P. Simon, L. Spiccia. TiO2 sol-gel blocking layers for dye-sensitized solar cells[J]. C. R. Chimie, 2006, 9: 622-626.
    [115] J. Xia, N. Masaki, K. Jiang, S. Yanagida. Fabrication and characterization of thin Nb2O5 blocking layers for ionic liquide-based dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188: 120-127.
    [116] J-H. Yoon, S-R. Jang, R. Vittal, J. Lee, K-J. Kim. TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180: 184-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700