用户名: 密码: 验证码:
TiO_2纳米管制备及其电化学相关性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2纳米管是典型的一维纳米材料,拥有丰富的物理化学性质以及低的制备成本,因此蕴藏着更广阔的应用前景。特别是近年的研究表明,由于具有大的比表面积及纳米尺寸效应,与其它纳米结构形式相比,TiO_2纳米管在光催化、传感、太阳能电池等领域展现了巨大的开发潜力,已成为目前国际上纳米材料的研究热点之一。本论文工作以此为契机,探索制备出高度定向的TiO_2纳米管阵列,深入探讨了退火条件对其形貌及晶型结构的影响,系统研究了TiO_2纳米管阵列的电化学性质,并尝试开发其在介体型酶电极、锂离子电池电极等领域的应用。主要研究工作及内容概括如下:
     1)系统地研究了阳极氧化制备TiO_2纳米管的方法,探讨了不同电解液体系中TiO_2纳米管的制备条件,并通过阳极氧化自组装模型分析了TiO_2纳米管的生长机理。在HF电解液体系中,制备出的纳米管管径为40~110nm,管长度为100~500nm。在KF电解液体系中,当电解液的pH值在3~5时,制备出的纳米管管径在40nm~110nm之间,管长在500nm~2μm。在有机电解液体系中,阳极氧化电压工作范围在20V~60V,制备出超长的TiO_2纳米管,最大管长度为60μm。XRD测试表明,制备出的TiO_2纳米管为非晶态。
     2)另外,在有机电解液体系中,我们成功制备出以FTO为衬底的TiO_2纳米管薄膜,管孔径为90nm,管长度为5μm。在450℃空气中退火处理后,纳米管由非晶态转变为锐钛矿相。TiO_2纳米管薄膜由退火前的不透明转变为退火后的透明,紫外-可见光谱分析表明在400nm处有一明显吸收峰。这一研究工作为开发基于TiO_2纳米管的太阳能电池奠定了基础。
     3)对制备的TiO_2纳米管分别进行空气及氮气气氛中的退火处理,详细研究了退火温度、退火气氛对TiO_2纳米管的形貌及晶型结构的影响。发现在空气中当退火温度大于800℃时,纳米管结构开始塌陷,且锐钛矿向金红石转变的温度在750℃。而在氮气中退火处理后明显观察到纳米管的收缩效应,700℃时,纳米管结构开始塌陷,锐钛矿向金红石转变的温度为650℃。基于上述实验现象,我们进一步分析了TiO_2纳米管在退火过程中的相变模型及相变机理,指出在氮气中退火,影响其结构的变化及相变过程的主要因素存在于两个方面,一是氧空位的产生;二是Ti3+离子的参杂效应。这在前人的工作中还未见报道。
     4)结合循环伏安法及交流阻抗谱法,深入研究了TiO_2纳米管的电化学性质,并从非化学计量化合物角度及缺陷反应方程式推导出氧空位的形成是氮气气氛中退火处理后TiO_2纳米管电极电导率提高的主要原因。研究发现,非晶态TiO_2纳米管电极的伏安响应为不可逆电子传递反应;空气中退火处理后的TiO_2纳米管电极的循环伏安响应为有表面吸附的不可逆反应;而氮气中退火处理后的TiO_2纳米管电极的循环响应表现出了较好的伏安曲线,氧化峰与还原峰电位分离ΔEp为0.18V,满足准可逆反应的标准,电极上的电子转移速度常数k 0 = 1 .87×10?3cm/s。交流阻抗谱模拟表明,氮气中退火的纳米管,其电极表面电荷转移电阻Rct的值比非晶态及空气中退火处理的纳米管电极小70%~80%。这项研究工作是本论文的主要创新之处。
     5)通过共吸附法将辣根过氧化酵素(HRP)及电子介体硫堇(Th)修饰在TiO_2纳米管电极上,制备出TiO_2纳米管介体型酶电极。通过循环伏安法及安培法探讨了TiO_2纳米管酶电极对不同浓度的H2O2的催化效应,推导出响应电流与H2O2浓度的线性拟和关系,对于氮气退火处理后的酶电极,响应范围为0.5×10-5~ 3.6×10-3 mol/L,灵敏度为89μA/mM,是非晶态酶电极的4-7倍,检测下限为0.5×10-6 mol/L,这是本论文的一项创新之处。
     6)研究了氮气气氛中不同温度下退火处理的TiO_2纳米管的电化学嵌锂性能,通过循环伏安法探讨了锂离子在纳米管电极表面的嵌入/脱嵌过程,通过计时电位法研究它的充放电容量及稳定性。结果表明,在每个放电周期中,300℃退火样品的放电容量是最大的;而从充/放电的循环性能表明,400℃退火样品放电容量的稳定性是最好的。将TiO_2纳米管电极的电化学嵌锂性能与MnO2薄膜电极进行比较,发现前者的放电容量的稳定性要远远高于后者,这为开发高度定向型纳米管锂离子电池电极奠定了实验基础,进一步的工作还有待继续开展,这是本论文的又一创新之处。
Titania nanotubes (TNT), which is a typical one dimension nanomaterial, possess unique combinations of physicochemical properties and relatively low synthesis costs than other nanomaterials. Several recent studies have indicated that titania nanotubes have improved properties compared to any other form of titania for application in photocatalysis, sensing, photoelectrolysis, and photovoltaics due to their high surface-to-volume ratios and sizedependent properties. In this paper,we fabricated highly-ordered tinatia nanotube arrays by anodization,investigated the changes of its morphology and crystallized structure at different annealing conditions,studied the electrochemical properties of TiO_2 nanotubes and its application in medium enzyme electrode and lithium battery electrode. We abstract the main content of this dissertation as following:
     1)Fabricate the TiO_2 nanotubes arrays by anodization in different electrolyte and investigate the electrochemical conditions. In HF-based electrolyte, uniform titania nanotube arrays of various pore sizes (40~100nm), lengths (100~500 nm) are grown by controlling the anodization potential between 10V~22V and the concentration of F—between 0.05 ~ 0.3mol/L. Based in KF and ethylene glycol + NH4F electrolytes respectively, the nanotube pore size is from 40nm to 110nm, the length is from 1μm to 60μm. The as-prepared TiO_2 nanotubes are amorphous, EDX and XPS spectra presented that the TiO_2 nanotubes consisted by O and Ti, also existing F & C traces.
     2)Fabricate the TiO_2 nanotubes film on FTO substrate. The TiO_2 nanotubes film was fabricated by anodization Ti film and annealed in air. The XRD analysis showed that anatase phase of TiO_2 nanotubes were formed and the film was transparent after annealing, Uv-vis spectra of the transparent TiO_2 nanotubes film presented an adsorption peak on 400nm wavelength.
     3)Investigate the electrochemical properties of TiO_2 nanotubes arrays by cyclic voltammetric and AC impedance spectra. For amorphous TiO_2 nanotubes, the electrode reaction shows an irreversible response. For TiO_2 nanotubes annealed in air, the peak current is linear to scan rate, showing a irreversible response with absorption. While for the TiO_2 nanotubes annealed in nitrogen, the CV results showed a quasi-reversible response with a potential separationΔEp 0.18V, the electron transformation constant is k 0 = 1 .87×10?3cm/s. The electrochemical impedance spectra showed that the electron transformation resistance Rct of TiO_2 nanotubes annealed in nitrogen was less 70% ~80% than the Rct of TiO_2 nanotubes annealed in air, this presented that the electrical conductivity of TiO_2 nanotubes annealed in nitrogen was much improved than TiO_2 nanotubes annealed in air.
     4)Coadsorbed of horseradish peroxidase (HRP) with thionine (Th) on TiO_2 nanotubes and fabricated the medium enzyme biosensor. The addition of H2O2 leads to the biocatalytic oxidation of the reduced thionine in the presence of HRP. The investigation of TiO_2 nanotubes biosensor for H2O2 presented that the sensitivity of TiO_2 nanotubes electrode annealed in nitrogen was 4-7 times higher than the sensitivity of as-grown TNT electrodes. This allows us to develop a novel H2O2 sensor with a detection range from 0.5×10-5M to 3.6×10-3M and the sensitivity 89μA/mM.
     5)Investigate the lithium ions intercalation for TiO_2 nanotubes annealed in nitrogen at different temperatures. The electrochemical measurement showed that 300°C annealed arrays exhibited the best performance with a high discharge capacity of 240 mAh/g in the first cycle at a high current density of 640 mA/g. Good cycling stability was also observed in 400°C annealed arrays: beginning with a discharge capacity of 163mAh/g, after 50 cycles, the capacity still remained at145 mAh/g. This great enhancement of discharge capacity and stability at high current density could be attributed to the large active surface area of the nanotube arrays, a short facile diffusion path for Li-ions and improved electrode charge transfer conductivity brought about by N2 annealing. MnO2 film was deposited by electrochemical method, the measurement of lithium ions intercalation was performed by CV and CP, the results were compared with the properties of TiO_2 nanotubes.
引文
[1]杨术明,李富友,黄春辉.染料敏化纳米晶太阳能电池[J].化学通报, 2002, 5, 292.
    [2] B.O’Regan, M .Gr?tzel. A low, high-cost, high efficiency solar-cell based on dye-sensitizedcolloidal TiO2 films[J]. Nature. 1991. 353. 737.
    [3]孙德智,于秀娟.环境工程中的高级氧化技术[M].北京:化学工业出版社. 2002. 202.
    [4]裴润.二氧化钛的生产[M].北京:科技卫生出版社. 1958. 137.
    [5] J. Desilvestro, M. Graetzel, L. Kavan, et al. Highly efficient sensitization of titanium dioxide[J]. J.Am.Chem.Soc.1985.107.2988.
    [6] M .K Nazeeruddin, A. Kay, I. Rodicio, et al. Conversion of light to electricity by cis -X2Bis(2, 2'-bipyridyl -4,4-dicarboxylate ruthenium(II) Charge[J]. J.Am. Chem. Soc. 1993,115,6382.
    [7]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社. 2004.14.
    [8]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社.2002.87.
    [9] S. Iijima, Helical microtubules of graphic carbon[J]. Nature. 1991. 354. 56.
    [10] P. M. Ajayan, T. W. Ebbesen. Nanometre-size tubes of carbon[J]. Rep. Prog. Phys. 1997. 60. 1025.
    [11] S. Subramoney. Novel nanocarbons-structure, properties and potential applications[J]. Adv. Mater. 1998. 10. 1157.
    [12] T. W. Ebbesen, P. M. Ajayan. Large-scale synthesis of carbon nanotubes[J]. Nature. 1992. 358. 220.
    [13] Thess. R. Lee. P. Nikolaev et al .Crystalline ropes of metallic carbon nanotubes[J]. Science. 1996. 273. 483.
    [14] D. V. Bavykin, J. M. Friedrich, F. C. Walsh. Protonated Titanates and TiO2 Nanostructured Materials: Synthesis,Properties, and Applications[J]. Adv. Mater. 2006. 18. 2807.
    [15] M. Wirtz, C. R. Martin, Template-Fabricated Gold Nanowires and Nanotubes[J]. Adv. Mater. 2003.5. 455.
    [16] M. Adachi, Y. Murata, M. Harada, et al. Formation of titania nanotubes with high photocatalytic activity[J]. Chemistry Letters, 2000, 29. 942.
    [17] T. Suzuki, Y. Tataishi, S. Shinkai, et al. Morphology control of one-dimensional supramolecular assemblies by a template polymer[J], Science Technology of Advanced Materials. 2006. 7. 605.
    [18] P. Hoyer. Formation of a titanium dioxide nanotube array[J]. Langmuir. 1996.12.1411.
    [19] X.H. Li, W.M.Liu, H.L.Li. Template synthesis of well-aligned titanium dioxide nanotubes[J].Appl. Phys. A. 2005. 80. 317.
    [20] M. Zhang, Y. Bando, K. Wada. Sol-gel template preparation of TiO2 nanotubes and nanorods[J]. Journal of Materials Science Letters .2001, 20. 167.
    [21] K. B. Shelimov, D. N. Davydov, M. Moskovits. Template-grown high-density nanocapacitor arrays[J]. Appl. Phys. Lett. 2000. 77. 1722.
    [22] S. Kobayashi, K. Hanabusa, N. Hamasaki, et al. Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies[J]. Chem. Mater. 2000. 12. 1523.
    [23] J. H. Jung, H. Kobayashi, K. J. C. Bommel, et al. Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template[J]. Chem. Mater. 2002. 14. 1445.
    [24] G. Gundiah, S. Mukhopadhyay, U. G. Tumkurkar, et al. Hydrogel route to nanotubes of metal oxides and sulfates[J]. J. Mater. Chem. 2003. 13. 2118.
    [25] T. Peng, A. Hasegawa, J. Qiu, K. Hirao, et al. Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method[J]. Chem. Mater., 2003. 15. 2011.
    [26] Michailowski, D. Al-Mawlawi, G. S. Cheng, et al.. Highly regular anatase nanotubule arrays abricated in porous anodic templates[J]. Chem.Phys. Lett. 2001. 349. 1.
    [27] S. M. Liu, L. M. Gan, L. H. Liu, et al. Synthesis of single-crystalline TiO2 Nanotubes[J]. Chem.Mater. 2002. 14. 1391.
    [28] S.-Z. Chu, K. Wada, S. Inoue, et al. Synthesis and characterization of titania nanostructures on glass by Al anodization and sol-gel process[J]. Chem. Mater. 2002. 14. 266.
    [29] D. Gong, C.A.Grimes, O.K.Varghese, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J] .Journal of Materials Research. 2001. 16. 3331.
    [30] J. Zhao, X. Wang, R. Chen, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Communication. 2005. 134. 705.
    [31] L. V. Taveira, J. M. Macak, H. Tsuchiya, et al . N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia[J]. Electrochem. Soc. 2005. 152. B405.
    [32] C. Ruan, M. Paulose, O. K. Varghese, et al .Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte[J]. J. Phys. Chem. B. 2005. 109. 15754.
    [33] Ghicov, H. Tsuchiya, J. M. Macak, et al .Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochem. Commun. 2005. 7. 505.
    [34] H. Tsuchiya, J. M. Macak, L. Taveira, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J]. Electrochem. Commun. 2005. 7. 576.
    [35] J. M. Macak, K. Sirotna, P. Schmuki, Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes[J]. Electrochim. Acta. 2005. 50. 3679.
    [36] K.Varghese, D. Gong, M. Paulose, et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure[J]. Adv. Mater. 2003. 15. 7.
    [37] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube[J]. Langmuir. 1998. 14. 3160.
    [38] T. Kasuga, M. Hiramatsu, A. Hoson, et al. Titania nanotubes prepared by chemical processing[J]. Adv. Mater. 1999. 11. 1307.
    [39] Y. Lan, X. Gao, H. Zhu, et al. Titanate nanotubes and nanorods prepared from rutile powder[J]. Adv. Funct. Mater., 2005. 15. 1310.
    [40] Q. Chen, G. H. Du, S. Zhang, et al. The structure of tritinate nanotubes[J]. Acta Cryst. B. 2002. 58. 587.
    [41] Y. Kubota, H. Kurata, S. Isoda, Nanodiffraction and characterization of titania nanotube prepared by hydrothermal method[J]. Mol. Cryst. Liq. Cryst. 2006. 445. 107.
    [42] J. J. Yang, Z. S. Jin, X. D. Wang, et al., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2[J]. Dalton Trans. 2003. 20. 3898.
    [43] P. Cintas, J. L. Luche. Green chemistry: the sonochemical approach[J]. Green Chem. 1999. 1. 115.
    [44] Y. C. Zhu, C. X. Ding. Oriented growth of nano-TiO2 whiskers[J]. Nanostructured Materials. 1999. 3. 427.
    [45] A. Fujishima, K. Kohayakawa. Hydrogen production under sunlight with an electrochemical photocell[J]. J. Electrochem. Soc. 1975. 11. 1487.
    [46] M. Paulose, K. Shankar, O. K Varghese, et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Phys.D. 2006. 39. 2498.
    [47] S. Liu, A. Chen. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotube for biosensing[J]. Langmuir. 2005. 21. 9409.
    [48] S. Kubota, K. Johkura. et al. Titanium oxide nanotuibes for bone regeneration. Journal of material science: materials in medicine[J]. 2004. 15. 1031.
    [49] J. Borisch, S. Pilkenton,et al. TiO2 photocatalytic degradation of dichloromethane: An FTIR and solid-state NMR study[J]. Phys.Chem.B. 2004. 108. 5640.
    [50] K. Varghese, D. Gong. et al. Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B. 2003. 93. 338.
    [51] X. Z. Li, H. Liu. Photocatalytic oxidation using new catalysts-TiO2 microspheres for water and wastewater treatment[J]. Environ. Sci. Technol. 2003. 37. 3989.
    [52] T. Tachikawa,Y. Takai, S. Tojo, et al. Probing the surface adsorption and photo-catalytic degradation of catechols on TiO2 by solid-state NMR spectroscopy[J]. Langmuir. 2006. 22. 893.
    [53] T. Tachikawa, Y. Takai, S. Tojo. Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO2 powders[J]. J. Phys. Chem. B. 2006. 110. 13158.
    [54] G. K. Mor, O. K. Varghese. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties,and solar energy applications[J]. Solar Energy Materials & Solar Cells, 2006. 90 .2011.
    [55] S.U.M. Khan, M. Al-Shahry, W. B. Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science. 2002. 297. 2243.
    [56] G. K. Mor, K. Shankar, O.K. Varghese et al. Photoelectrochemical properties of titania nanotubes[J]. J. Mater. Res. 2004. 19. 2989.
    [57] C. Ruan, M. Paulose, O.K. Varghese. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J]. Sol. Energy Mater. Sol. Cells. 2006. 90. 1283.
    [58] N. Kopidakis, N. R. Neale, et al., .Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation[J]. J. Phys. Chem. B. 2006. 110. 12485.
    [59] S. Nakade, M. Matsuda, S. Kambe, et al., Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells[J]. J. Phys. Chem. B. 2002. 106. 10004.
    [60] N.G. Park, J. van de Lagemat, A. J. Frank, et al., Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells[J]. J. Phys. Chem. B. 2000. 104. 8989.
    [61] B. S. Richards. Comparison of TiO2 and other dielectric coatings for buriedcontact solar cells: a Review[J]. Prog. Photovolt: Res. Appl., 2004. 12. 253.
    [62] J. K. Mwaura, X. Zhao, H. Jiang et al. Spectral broadening in nanocrystalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers[J], Chem. Mater. 2006. 18. 6109.
    [63] R. S. Mane, W. J. Lee, H. M. Pathan, et al. Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells[J]. J. Phys. Chem. B. 2005. 109. 24254.
    [64] G. K. Mor, K. Shankar, M. Paulose, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Lett. 2006. 2. 215.
    [65] Z. Kai, B. Todd, R. N. Vinzant, et al. Removing Structural Disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recom- bination indye-sensitized solar cells[J]. Nano Lett. 2007. 12. 3739.
    [66] M. Adachi, Y. Murata, I. Okada. Formation of titania nanotubes and applications for dye-sensiti- zed solar cells[J]. J. Electrochem. Soc. 2003. 150. G488.
    [67] K. Shankar, G. K Mor, H. E Prakasam. Highly-ordered TiO2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology. 2007. 18. 065707.
    [68] S. Virji, R. B. Kaner, B. H. Weiller. Hrdrogen sensors based on conductivity changes in polyaniline nanofibers[J]. J. Phys. Chem. B. 2006. 110. 22266.
    [69] S. Aygun, D. Cann, Response kinetics of doped CuO/ZnO heterocontacs[J]. J. Phys. Chem. B. 2005. 109. 7878.
    [70] X. Du, Y. Wang, Y. Mu, et al. A new highly selective H2 sensor based on TiO2/PtO-Pt dual-layer films[J]. Chem. Mater. 2002. 14. 3953.
    [71] E. C. Walter, F. Favier, R. M. Penner, Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches[J]. Anal. Chem. 2002. 74. 1546.
    [72] K. Domansky, D. L. Baldwin, J. W. Grate, et al. Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air[J]. Anal. Chem. 1998. 70. 473.
    [73] S. Mubeen, T. Zhang, B. Yoo, et al. Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor[J]. J. Phys. Chem. C. 2007. 111. 6321.
    [74] M. K. Kumar, S. Ramaprabhu, Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor[J]. J. Phys.Chem. B. 2006. 110. 11291.
    [75] W. G?pel,G. Rocker,R. Feierabend. Intrinsic defects of TiO2(110): Interaction with chemisorbed O2, H2, CO, and CO2[J]. Phys. Rev. B. 1983. 6. 3427.
    [76] J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contam.Toxicol. 1976. 16. 697.
    [77] S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 Powder[J]. J.Am.Chem. Soc. 1977. 99. 303.
    [78] S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. J. Phys. Chem. 1977. 81. 1484.
    [79] L. Pruden, D. F. Ollis, Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water[J]. J.Catal. 1983. 82. 404.
    [80] N. Serpone, M. Barbeni, Photocatalytical reduction of gold (III) on semiconductor dispersions of TiO2 in the presence of CN-ion: Disposal of CN-by treatment with hydrogen peroxide[J]. J. Photochem. 1987. 36. 373.
    [81] K. Okamoto, Kinetics of heterogeneous photocatalytic decomposition of phenol over abatase TiO2 powder[J]. Bull Chem. Soc. Jpn., 1985. 58. 2023.
    [82] Y. Xie. Photoelectrochemical application of nanotubular titania photoanode[J]. Electrochimica Acta. 2006. 51. 3399.
    [83] M. Wang, D. Guo, H. Li. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation[J]. Journal of Solid State Chemistry. 2005. 178. 1996.
    [84] Z. Zhang, Y. Yuan, G. Shi, et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation[J]. Environ. Sci. Technol. 2007. 41. 6259.
    [85] Y. Chen. Preparation of a Novel TiO2-based p-n junction nanotube photocatalyst[J]. Environmental Science & Technology. 2005. 5. 1201.
    [86] S. P. Albu, A. Ghicov, J. M. Macak. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications[J]. Nano Lett. 2007. 5. 1286.
    [87]郭鹤桐.电化学教程[M].天津:天津大学出版社, 2000.
    [88]吴辉煌主编.电化学[M].北京:化学工业出版社化学与应用化学出版中心,2004.
    [89] Vermilyea D A. in Adv Electrochem Electrochem Eng Vol 3(eds P Delahay,C W Tobias)[M], New York: Interscience,1963. chap.3.
    [90] Dignam M J. in Comprehensive Treatise of Electrochemistry Vol 4 (efs bockris J O’M, Conway B C,yeager E,White R E)[M], Now York: Plenum,1981: 247.
    [91]赖跃坤,孙岚,左娟,等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报. 2004,20. l063.
    [92] G. Patermarakis, H.S. Karayannis,The mechanism of growth of porous an anodic Al2O3 films on aluminum at film thicknesses[J]. Electrochim. Acta. 1995. 40. 2647.
    [93] V. P. Parkhutik, V.I. Shershulsky, Theoretical modeling of porous oxide growth on aluminium[J]. J. Phys. D: Appl. Phys. 1992. 25. 1258.
    [94] D. D. Macdonald, On the formation of voids in anodic oxide films on aluminum[J]. J. Electrochem. Soc. 1993. 140. L27.
    [95] G. Patermarakis, P. Lenas, G. Papayiannis, Kinetics of growth of porous anodic Al2O3 films on Al metal[J]. Electrochim. Acta, 1991. 36. 709.
    [96] P. Li, F. Muller, A. Birner, et al. ,Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina[J]. J. Appl. Phys. 1998. 84. 6023.
    [97] Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina[J]. Appl. Phys. Lett. 1998. 72. 1173.
    [98] G. E. Thompson, Porous anodic alumina: Fbrication, Characterization and Applications[J].Thin Solid Films. 1997. 297. 192.
    [99] R.Beranek, H.Hildcbrand, P. Schmuki, Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes[J], Electrochem. Solid-State Lett. 2003. 6. B12.
    [100] S.Yoriya, M.Paulose, O.K.Varghese, Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes[J]. J.Phys.Chem.C. 2007. 111. 13770.
    [101] V. Zwilling, M. Aucouturier, E. Darque, Anodic oxidation of titanium and TA6V alloy in chromic media, an electrochemical approach[J], Electrochim. Acta., 1999. 45. 921.
    [102] S.Bauer, S. Kleber, P. Schmuki, TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes[J], Electrochemistry Communications 2006. 8. 1321.
    [103] Q.Y. Cai, M.Paulose, O.K.Varghese. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. J. Mater. Res., 2005. 20. 230.
    [104] F.A.Harraz, K.Kamada, K.Kobayashi, Random macropore formation in p-type silicon in HF-containing organic solutions[J], J. Electrochem.Soc. 2005. 152. C213.
    [105] M. Paulose, K.Shankar, S.Yoriya. Anodic growth of highly ordered TiO2 nanotube arrays to 134um in length[J]. J.Phys.Chem.B. 2006. 110. 16179.
    [106] Q.Fan, B. Mcquillin, D.D.C.Bradley, A solid state solar cell using sol-gel processed material and polymer[J], Chem.Phys.Lett. 2001. 347. 325.
    [107] N.G.Park, J.V.D.Lagemaat, A.J.Frank. Comparision of dye-sensitized rutile and anatase based TiO2 solar cells[J]. J.Phys.Chem.B. 2000. 104. 8989.
    [108] D.T.On, D.D.Giscard, C.Danumah. Perspectives in catalytic applications of mesostructured materials[J], Appl.Catal.A. 2001. 222. 299.
    [109] X.S.Ye, Z.G.Xiao, D.S.Lin, Experimental investigation on the dielectric behavior of nanostructured rutile-phase titania[J]. Mater.Sci.and Eng. 2000. B74. 133.
    [110] L.Gao, Q.Li, Z.Song, Preparation of nano-scale titania thick film and its oxygen sensitivity[J], Sens.Actuators, 2000. B71. 179.
    [111] Rothschile, F.Edelman, Y.Komen, Sensing behavior of TiO2 thin films exposed to air low temperatures[J]. Sens. Actuators. 2000. B67. 282.
    [112] K.N.P.Kumar, K.Keizer, A.J.Burggraaf, Textural evolution and phase transformation in titania membranes: part 2 supported membranes[J]. J.Mater.Chem. 1993. 3. 1151.
    [113] H.Zhang, J.F.Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2.[J]. J. Phys.Chem.B. 2000. 104. 3481.
    [114] Varghese, Crystakkization and hilg-temperature structural stability of titanium oxide nanotube arrays[J]. J.Mater.Res. 2003. 18. 156.
    [115] P.I. Gouma, M.J.Mills, Anatase-to-rutile transformation in titania powders[J]. J.Am.Ceram.Soc. 2001. 84. 619.
    [116] H.Zhang , J.F.Banfield, Thermodynamic analysis of phase stability of nanocrystalloine titania[J], J.Mater.Chem. 1998. 8. 2073.
    [117] G.K.Mor, O.K.Varghese, M.Paulose, Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films[J]. Adv. Funct. Mater. 2005. 15. 1292.
    [118] G.L.Tian, L.Dong, C.Y.Wei. Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature[J]. Optical Materials. 2006. 28. 1058.
    [119]杨邦朝,王文生,薄膜物理与技术[M],成都:电子科技大学出版社. 1997.
    [120] (日)腾岛昭,相泽益男,井上彻著,陈震,姚建年译,电化学测定方法[M].北京:北京大学出版社. 1995.
    [121]鞠晃先著,电分析化学与生物传感技术[M].北京:科学出版社, 2006.
    [122]李荻著,电化学原理[M].北京:北京航空航天大学出版社. 2003.
    [123] C.G.Hu, W.L.Wang, S.X.Wang, et al. Investigation on electrochemical properties of carbon nanotubes[J]. Diamond and Related Material. 2003. 12. 1295.
    [124] K. Miyazaki, G. Matsumoto, M. Yamada, et al. Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin with ascorbic acid on the GRC electrode[J]. Electrochimica Acta, 1999. 44. 3809.
    [125]史美伦著,交流阻抗谱原理及应用[M].北京:国防工业出版社. 2001.
    [126] Chen, D. J. Russa, B. Miller, Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles[J]. Langmuir. 2004. 20. 9695.
    [127] S. Carrara, V. Bavastrello, D. Ricci, et al. Improved nanocomposite materials for biosensor pplications investigated by electrochemical impedance spectroscopy[J]. Sensors and Actuators B. 2005. 109. 221.
    [128] Chen, S. Nigro, Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes[J]. J. Phys. Chem. B. 2003. 107. 13341.
    [129] Chen, B. Miller, Potential oscillations during the electrocatalytic oxidation of sulfide on a microstructured Ti/Ta2O5-IrO2 electrode[J]. J. Phys. Chem. B. 2004. 108. 2245.
    [130]石德珂著,材料科学基础[M].北京:机械工业出版社. 2005.
    [131]赵品著,材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社. 2002.
    [132]罗国安,王宗花,王义明著,生物兼容性电极构置及应用[M].北京:科学出版社. 2006.
    [133]张先恩著,生物传感器[M].北京:化学工业出版社. 2006.
    [134]司士辉著,生物传感器[M].北京:化学工业出版社. 2003.
    [135] S. J. Updike, J.P.Hicks, The enzyme electrode[J]. Nature. 1967. 214. 986.
    [136] K. Itaya, I. Uchida, D.Neff, Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues[J]. Acc. Chem. Res. 1986. 19. 162.
    [137] G. Villemure, A. J. Bard, Clay modified electrodes: Part 10. Studies of clay-adsorbed Ru(bpy)2+3 enantiomers by UV-visibla spectroscopy and cyclic voltammetry[J]. J. Electroanal. Chem. 1990. 283. 403.
    [138] W. H. Kao, T. Kuwana, Electrocatalysis by electrodeposited spherical platinum microparticles dispersed in a polymetric film electrode[J]. J. Am. Chem. Soc. 1984. 106. 473.
    [139] K. M.Kost, D.E.Bartak, B.Kazee et al. Electrodeposition of palladium, iridium, ruthenium, and platinum in poly(4-vinylpyridine) films for electrocatalysis[J]. Anal. Chem. 1990. 62. 151.
    [140] P. J. Kulesza, L. R. Faulkner, Electrocatalysis at a novel electrode coating of nonstoiometric tungsten(VI,V) oxide aggregates[J]. J. Am. Chem. Soc. 1988. 110. 4905.
    [141]董绍俊,谢远武,著,化学修饰电极[M].北京:科学出版社. 1995.
    [142] L.Ye, R.Pelton, M.A.Brook, Biotinylation of TiO2 nanoparticles and their conjugation with strepavidin[J]. Langmuir. 2007. 23. 5630.
    [143] E. Topoglidis, A.E.G.Cass, G.Gilardi, Protein adsorption on nanocrystalline TiO2 films: An immobilization strategy for bioanalytical devices[J]. Anal.Chem. 1998. 70. 5111.
    [144] L.R.D.da Silva, Y.Gushikem, Horseradish peroxidase enzyme immobilized on titanium oxide coated cellulose microfibers:study of the enzymatic activity by flow injection system[J], Colloids and surfaces B: Biointerfaces. 1996. 6. 309.
    [145] H. Zhou, L.Liu, K.Yin, Electrochemical investigation on the catalytic ability of tyrosinase with the effect of nano titanium dioxide for peroxidase[J]. Electrochemistry communications. 2006. 8. 1168.
    [146] Y.B.Xie, L.M.Zhou, H.T.Huang, Bioelectrocatalytic application of titania nanotube array for molecule detection[J], Biosensors Bioelectronics. 2007. 22. 2812.
    [147] S. Q. Liu, A. Chen. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensoring[J]. Langmuir. 2005. 21. 8409.
    [148] S. Santos,N. Durán, L. T. Kubota,Biosensor for H2O2 response based on horseradish peroxidase: Effect of different mediators adsorbed on silica gel modified with niobium oxide[J]. Electroanalysis. 2005. 17. 1103.
    [149] Ruan, R. Yang, X. Chen, J. Deng,A reagentless amperometric hydrogen peroxide biosensor based on covalently binding horseradish peroxidase and thionine using a thiol-modified gold electrode[J]. Journal of Electroanalytical Chemistry. 1998. 455. 121.
    [150]李国欣等,新型化学电源导论[M].上海:复旦大学出版社. 1992. 12.
    [151]张文保,倪生麟,化学电源导论[M].上海:上海交通大学出版社.1992.8.
    [152]郑子山,张中太,唐子龙,沈万慈,锂离子二次电池最新进展及评述[J].化学世界.2004.5.270.
    [153]黄学杰,锂离子电池正极材料磷酸铁锂研究进展[J].电池工业. 2004.8. 176.
    [154] N. Jayaprokash, N.Kalaiselvi, Y.K.Sun, Combustion synthesized LiMnSnO4 cathode for lithium batteries[J]. Electrochemistry Communications. 2008. 10. 455.
    [155] Navone, R. B. Hadjean, J.P.P.Ramos et al. A kinetic study of electrochemical lithium insertion into otiented V2O5 thin films prepsred by rf sputtering[J]. Electrochimica Acta, 2008. 53. 3329.
    [156] F. Li, Q.Q.Zou, Y,Y.Xia, CoO-loaded graphitable carbon holloe spheres as anode materials for lithium-ion battery[J]. Jounal of Power Sources. 2008. 177. 546.
    [157] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries[J], Nature. 2001. 414. 359.
    [158]汤宏伟陈宗璋,钟发平,锂离子电池的正极材料[J].化学通报. 2002. 65. 1.
    [159] G. Nuspl, K. Yoshizawab, T. Yamabe, Lithium intercalation in TiO2 modifications[J]. J. Mater. Chem. 1997. 7. 2529.
    [160] V. Subramanian, A. Karki, K. I. Gnanasekar, F. P. Eddy, B. Rambabu, Nanocrystalline TiO2 (anatase) for Li-ion batteries[J], Journal of Power Sources. 2006. 159. 186.
    [161] C.H. Jiang, M.D. Wei, Z.M. Qi, et al. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode[J], Journal of Power Sources. 2007. 166. 239.
    [162] Q. Wang, Z. H. Wen, J. H. Li, Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional TiO2.Nanostructures[J]. Inorg. Chem. 2006. 45. 6944.
    [163] Z. Y. Wang, S. Z. Liu, G. Chen, D. J. Xia, Preparation and Li-intercalation properties of mesoporous anatase-TiO2 spheres[J]. Electrochemical and Solid-State Letters. 2007. 10. A77.
    [164] J.R.Li, Z.L.Tang, Z.T.Zhang, Preparation and novel lithium intercalation properties of titanium oxide nanotubes[J], Electrochemical and Solid-State Letters. 2005. 8. A316.
    [165] M. V. Koudriachova, N. M. Harrison, S. W. Leeuw, Effect of diffusion on lithium intercalation in titanium dioxid[J], Phys. Rev. Lett. 2001. 86. 1275.
    [166] M. Wagemaker, A.A. van Well, G.J. Kearley, F.M. Mulder, The life and times of lithium in anatase TiO2[J]. Solid State Ionics. 2004. 175. 191.
    [167] M. A. Reddy, M. S. Kishore, V. Pralong, et al. Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2[J]. Electrochemistry Communications 2006. 8. 1299.
    [168] K. H. Reiman, K. M. Brace, T. J. Gordon-Smith, et al. Lithium insertion into TiO2 fromaqueous solution Facilitated by nanostructure[J], Electrochemistry Communications 2006. 8. 517.
    [169] R. Krol, A. Goossens, E. A. Meulenkampb, In situ X-ray diffraction of lithium intercalation in nanostructured and thin film anatase TiO2[J]. Journal of The Electrochemical Society. 1999. 146. 3150.
    [170] Exnar, L.Kavan, S.Y.Huang et al, Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide[J]. Journal of Power Sources. 1997. 68. 720.
    [171] Y.K.Zhou, L. Cao, F. B. Zhang, et al. Lithium insertion into TiO2 nanotube prepared by the hydrothermal process[J]. Journal of the Electrochemical Society. 2003. 150. A1246.
    [172] J.R.Li, Z.L.Tang, Z.T. Zhang, H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability[J], Electrochemistry Communications 2005. 7. 62.
    [173] P.G.Bruce, Energy material[J]s. Solid State Sciences. 2005. 7. 1456.
    [174] A.R.Armstrong, G.armstrong, J.canales, P.G.Bruce, TiO2-B nanowires as negative electrodes for rechargeable lithium batteries[J]. Journal of Power Sources. 2005. 146. 501.
    [175] Fattakhova, L. Kavan, P. Krtil. Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects[J]. J. Sol. Stat. Elelctrochem.. 2001. 5.196.
    [176] X. P. Gao, H. Y. Zhu, G. L. Pan, S. H. Ye, et al. Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material[J]. J. Phys. Chem. B. 2004, 108. 2868.
    [177] H. Furukawa, M. Hibino, I. Honma. Electrochemical properties of nanostructured amorphous, sol-gel-synthesized TiO2/acetylene black composite electrodes[J]. J. Electrochem. Soc., 2004, 151, A527.
    [178] G. Sudant, E. Baudrin, D. Larcher, et al. Electrochemical lithium reactivity with nanotextured anatase-type TiO2[J]. J. Mater. Chem. 2005. 15. 1263.
    [179] L. J. Hardwick, M. Holzapfel, P. Novak, et al. Electrochemical lithium insertion into anatase-type TiO2: an in situ raman microscopy investigation[J]. Electrochimica Acta. 2007. 52. 5357.
    [180] M. Wagemaker, W. Borghols, E. Eck, et al. The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2[J]. Chem. Eur. J. 2007. 13. 2023.
    [181] M. Wagemaker, R. Krol, A. Kentgens, et al. Two phase morphology limits lithium diffusion in TiO2 (anatase): A7Li MAS NMR study[J]. J. Am. Chem. Soc. 2001. 123. 11454.
    [182] M. Wagemaker, W. Borghols, F. Mulder, Large impact of particle size on insertion reactions: a case for anatase LixTiO2[J]. J. Am. Chem. Soc. 2007. 129. 4323.
    [183] S. Johnson, Development and utility of manganese oxides as cathodes in lithium batteries[J],Journal of Power Sources. 2007. 165 .559.
    [184] Jiao, P. G. Bruce, Mesoporous Crystalline b-MnO2—a reversible positive electrode for rechargeable lithium batteries[J], Adv.Mater. 2007. 19. 657.
    [185] L.J. Fu , H. Liu , H.P. Zhang et al. Synthesis and electrochemical performance of novel core/shell structured nanocomposites[J], Electrochemistry Communications. 2006. 8. 1.
    [186] M. Nakayama, A. Tanaka, Y. Sato et al. Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties[J]. Langmuir. 2005. 21, 5907.
    [187] T. Shinomiya, V. Gupta, N. Miura. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide[J]. Electrochimica Acta , 2006. 51. 4412.
    [188] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length[J]. J. Phys. Chem. B. 2006. 110. 16197.
    [189] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga,Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science. 2001. 293. 269.
    [190] Ghicov, J. M. Macak, H. Tsuchiya, et al. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes[J]. Nano Lett. 2006. 6. 1080.
    [191] R.P. Vitiello , J.M. Macak , A. Ghicov , et al. N-doping of anodic TiO2 nanotubes using heat treatment in ammonia[J]. Electrochemistry Communications. 2006. 8. 544.
    [192] J. M. Macak, B. G. Gong, M. Hueppe, et al. Filling of TiO2 nanotubes by self-doping and electrodeposition[J]. Adv. Mater. 2007. 19. 3027.
    [193] S.H. Oh, R. R. Finōnes, C. Daraio, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials. 2005. 26. 4938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700