用户名: 密码: 验证码:
风电—燃气轮机互补发电系统若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于风的随机性、间歇性与不可控性,大规模风电开发所带来的风电场出力波动、不可调度性以及电网稳定性逐渐成为风能领域的关键和难点问题,研究如何从根本上解决由于风电大规模开发所带来的技术瓶颈具有重要意义。本文依据大型风电场出力波动的特点,研究了采用单轴燃气轮机电站与风电场组成互补发电系统的若干关键问题,主要内容包括:
     1.提出了风气互补系统的构想、组成原则和设计方案。在充分调研的基础上,针对风电场出力波动和不可调度性,研究了与风电场组成互补系统所需要的条件、设计原则和结构特点。研究结果表明,小型燃气轮机电站可以作为大型风电场的互补发电设备,并根据实测的新疆达坂城风电场风速数据,得到了在达坂城风电场发展风气互补发电系统的设计方案。
     2.分析了风气互补发电系统的经济性和敏感性。将经济性分析方法和敏感性分析应用到风气互补发电系统的经济性分析中。研究结果表明,风气互补发电系统具有一定的竞争性,并提出了降低系统发电成本的可行性措施以及努力的方向。
     3.建立了风速预报与风电场整体风速功率模型。利用实测风速数据,采用AMRA预测模型,对风速作反复训练与检测来选择一组合适的模型参数。通过分析机组来流风流动的特点和能量分布,在考虑机组间多种效应和一定假设条件的基础上,建立了风电场多机风速功率模型。
     4.建立了风气互补发电系统的机组组合和优化调度模型。以单位时间段内发电成本最小的目标函数,考虑电网系统的调度需求和燃气轮机的部分负荷效率、最小启停时间与次数等约束条件,采用遗传优化算法,求解了燃气轮机电站之间的机组组合和负荷优化调度问题。
     最后,根据大型风电机组的机理模型、电网模型以及燃气轮机模型,建立了集成的风气互补发电系统的仿真模型并研究了其动态特性。研究结果表明,小型燃气轮机电站能够达到风气互补发电系统的动态特性要求。
Owing to the randomness, intermittence and uncontrollability of the incoming wind, the output fluctuation of wind farm, un-dispatching and power grid stability gradually became the key and difficult problems with the large-scale development of wind power. It is very important to study how to solve those technological bottlenecks radically. Considering the characteristics of the output fluctuation of wind farm, this dissertation presents the several key issues of hybrid power system combining wind farm with small gas turbine power plants. The main contributions of the paper are as follows:
     1. The frameworks, principles and design scheme of wind/gas turbine hybrid power system are proposed. Based on the output fluctuation of wind farm and un-dispatching ability, this paper presents the conditions, design principles and plant structures to form the hybrid power system. The result shows that small gas turbine power plants can be used to compensate the output fluctuation of wind farm. According to the local wind energy resource, the design scheme of the wind/gas turbine hybrid power system in Dabancheng (Xinjiang region) wind farm is investigated.
     2. The economic and sensitivity of the wind/gas turbine hybrid power system are analysized. Applying economic and sensitivity analysis methods on wind/gas turbine hybrid power system, the results show the hybrid power system is economic feasible. The measures for reducing the cost of electricity of hybrid power system are discussed in detail.
     3. A prediction model of wind speed and an integrated model of wind farm are presented. Using actual wind speed data and AMRA prediction model, a suitable model structure and relative parameters are choosen to predict the wind speed. According to analysis on the characteristics of incoming wind speed and energy distribution of wind turbine, integrated wind-power model of wind farm is proposed on the base with consideration of several effects and assumptions.
     4. The unit commitment and optimal load sharing model are proposed. The minimum cost of electricity in unit time interval is considered as the objective function. The dispatching load requirement from power grid, partial load efficiency of gas turbine, minimal start/stop number and time interval are used as constraints. Applying genetic algorithm, the unit commitment and optimal load sharing among the gas turbine power plants are solved for actual system.
     Finally, the simulation models and dynamic characteristics of wind-gas turbine hybrid power system are discussed based on the model of wind turbine unit, power grid and gas turbine power plants. The result shows gas turbine power plants can respond adequately to compensate the output fluctuation of wind farm.
引文
[1] EWEC. Wind Power 12: Blueprint for wind power sharing 12% of total worldwide power by 2020 . Beijing: China Environment Press, 2004, 46-51.
    [2] BTM Consult Aps. International wind energy development: world market update 2002 forecast 2003-2007. BTM Consult Aps, 2003, 1-56.
    [3]加勒德哈森伙伴有限公司.风力广东.绿色和平-广州, 2005.
    [4]薛桁,朱瑞兆,杨振斌等.中国风能资源储量估算.太阳能学报, 2001, 21(2):167-170.
    [5]朱瑞兆,薛桁.中国风能区划,太阳能学报, 1983, 4(2) :123-32.
    [6]朱瑞兆,薛桁.我国风能资源,太阳能学报, 1981, 2(2):117-224.
    [7]中国电力科学研究院.全国风电场建设及运行情况的调查评估与发展政策研究. 2002.
    [8]施鹏飞. 2006中国风电装机统计. http://www.cwea.org.cn/download/display_info.asp?id=19, 2007.
    [9] Eize de Vries. Where to next? Developments and trends in wind turbines. Renewable Energy World, 2002, 5(4):62-71
    [10] L. H. Hansen, L. Helle, F. Blaabjerg, et al. Conceptual survey of generators and power electronics for wind turbines. Ris? National Laboratory, Denmark, Ris?-R-1205(EN), 2001.
    [11] P. Stupin. Doubly-fed wind power generator with 5.6MW. Converter Technology & Electric Traction. 2006, (6): 39-42.
    [12]陈雷,邢作霞等.大型风力发电机组技术发展趋势.可再生能源, 2003, (1):26-30
    [13] Brian Parsons, Michael Milligan. Grid impacts of wind power: a summary of recent studies in the United States. Wind Energy, 2004, (7): 87-108.
    [14] P Gardner, H Snodin, A Higgins, S McGoldrick, et al. The Impacts of increased levels of wind penetration on the electricity systems of the Republic of Ireland and Northern Ireland: Final Report. Garrad Hassan and Partners Limited, 2003:1-39.
    [15] George C. Bakos. Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production. Applied Energy, 2002, 72: 599-608.
    [16] O. A. Jaramillo, M. A. Borja, J. M. Huacuz. Using hydropower to complement wind energy: a hybrid system to provide firm power. Renewable Energy, 2004, 29:1887-1909.
    [17] PerNorgard, Gregor Giebel, Hannele Holttinen, et al.. Fluctuations and predictability of wind and hydropower. RisO National Laboratory, Roskilde, Denmark, 2004.
    [18] Norgaard, Per. et.al. Fluctuation and predictability of wind and hydro power. WILMAR Deliverable D2.1. RisO, Denmark. 2004.
    [19] Francois Giraud. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network [PhD Thesis]. University of Massachusetts Lowell, 1999.
    [20] M. D. Mufti, R. Balasubramanian and S. C. Tripathy. Dynamic performance assessment of an isolated wind-diesel power system with superconducting magnetic energy storage unit under turbulent wind and load disturbances. Int. J. Energy Res. 2002, 26:85-201
    [21] Steve Drouilhet. Wind-Diesel hybrid system options for Alaska. National Renewable Energy Laboratory. 1999
    [22]俞卿明.我国沿海岛屿风/柴发电系统的发展与市场前景.中小型电机, 2003, 30(5):39-42
    [23]连云霞,吴运东等.大陈岛风力机-柴油机混合发电系统运行报告.风力发电, 1991, 22(3):33-35
    [24] Ben M. Enis, Paul Lieberman and Irving Rubin. Operation of hybrid wind-turbine compressed-air system for connection to electric grid networks and cogeneration. Wind Engineering, 2003, 27(6):449-459.
    [25] Kaushik Rajashekara. Hybrid Fuel-Cell strategies for clean power generation. IEEE Trans. On Industry Applications, 2005, 41(3):682-689.
    [26] M. T. Iqbal. Modeling and control of a Wind Fuel Cell Hybrid Energy System. Renewable Energy, 2003, 28 (2):223-237.
    [27] R. Kottenstette, J. Cotrell. Hydrogen storage in wind turbine towers. National Renewable Energy Laboratory, 2003.
    [28]包能胜,徐军平,倪维斗.以大型风电场为核心的多能源互补发电系统.中国能源, 2006, 28(8):29-33.
    [29]包能胜,倪维斗.解决新疆风能资源大规模开发瓶颈的探讨.中国能源, 2006, 28(1):24-28,10.
    [30] Eclipse Energy Company. http://www.eclipse-energy.com/
    [31] AWS Scientific, Inc. Wind resource assessment handbook. 1997: 60-73.
    [32]包能胜,胡光旺,倪维斗.风力发电与燃气轮机发电互补系统结构与容量配比的研究.太阳能学报, 2007,28(2):189-195.
    [33]包能胜,刘军峰,倪维斗,叶枝全.新疆达坂城风电场风能资源特性分析.太阳能学报, 2006, 27(11):1073-1077.
    [34]倪维斗,焦树建.我国发展燃气轮机的可行道路.上海汽轮机, 2001, 3(1):1-10
    [35]张文普,丰镇平.燃气轮机技术的发展与应用.燃气轮机技术, 2002, 15(3):17-25
    [36]焦树建.探讨21世纪上半叶我国燃气轮机发展的途径.燃气轮机技术, 2001, 14(1):10-14
    [37]焦树建.燃气-蒸汽联合循环.机械工业出版社, 2000.
    [38] Larry Goldstein, Bruce Hedman. Gas-Fired distributed energy resource technology characterizations. National Renewable Energy Laboratory, NREL/TP-620-34783, 2003:64-103.
    [39]包能胜,蔡佳炜,倪维斗.风电与燃气轮机互补发电系统发电特性分析.沈阳工业大学学报, 2006, 28(6):675-680.
    [40]焦树建.关于电厂发电成本计算方法的探讨.燃气轮机技术, 2000, 13(3):7-9,36.
    [41]包能胜,朱瑞丹,倪维斗.风电与燃气轮机互补发电系统发电成本分析.燃气轮机技术, 2006, 19(4):1:5.
    [42]包能胜,蔡佳炜,倪维斗.风电与燃气轮机互补系统发电成本敏感性分析.燃气轮机技术, 2007, 20(1):9:13.
    [43]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究.中国电机工程学报, 2005, 25(11):20-26.
    [44] Y. D. Song. A new approach for wind speed prediction. Wind Engineering, 2000, 24(1): 35-47.
    [45] John Z. YIM and Chun-Ren CHOU. A study of wind statistics through Auto-Regressive and Moving-Averaging (ARMA) modeling. China Ocean Press, 2001, 2(3):23-27.
    [46] Andrew Boone. Simulation of short-term wind speed forecast errors using a Multi-Variation ARMA (1,1) Time-Series model [PhD Thesis]. Royal Institute of Technology, 2005.
    [47]张雪莹,管霖.基于谱分析的短期负荷预测输入变量选择方法.电力系统及其自动化专业第十九届学术年会论文集, 2003:1576-1581.
    [48] Holttinen, Hannele. Hourly wind power variations and their impact on the Nordic power system operation [Licenciate Thesis]. Helsinki University of Technology, Finland. 2003.
    [49]郭涤,周军.基于Matlab的神经网络预测模型研究.物流科技, 2001, 29(125):3-5.
    [50] Norgaard Per, Hannele Holttinen. A multi-turbine power curve approach. Nordic Wind Power Conference. Chalmers University of Technology. 2004.1-2 March.
    [51] Poul Sorensen, Anca D. Hansen, Pedro Andre Carvalho Rosas. Wind models for simulation of power fluctuations from wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 90(20) 1381-1402.
    [52] BAO Nengsheng, MA Xiuqian, NI Weidou. Investigation on the integral output power model of a large-scale wind farm, Frontiers of Energy Power Engineering in China, 2007, 1(1): 67–78.
    [53] Vladislav Akhmatov. Analysis of dynamic behavior of electric power systems with large amount of wind power [PhD Thesis]. Technical University of Denmark, 2003.
    [54] Subir Sen, D P Kothari. Optimal thermal generating unit commitment: a review. Electrical Power & Energy systems, 1998, 20(7):443-451.
    [55]陈皓勇,王锡凡.机组组合问题的优化方法综述.电力系统自动化, 1999, 23(5):51-56.
    [56]陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法.中国电机工程学报, 1999, 19(12):9-13.
    [57]玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社, 2004.
    [58] Chuan-Ping Cheng, Chih-Wen Liu, Chun-Chang Liu. Unit commitment by Lagrangian relaxation and genetic algorithm. IEEE Transactions on Power Systems, 2000, (2):707-714.
    [59]孙立勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题.中国电机工程学报, 2006, 26(2):82-87.
    [60] Cai xingguo, Chu zhuang. Unit commitment based on genetic algorithms. System Technology, 2003, 27(7):36-39.
    [61] Guo sangang, Guan xiaohong, Zhai qiaozhu. A new necessary and sufficient condition for checking feasibility of a solution to unit commitment problems with ramp rate constrains. Proceeding of CSEE, 2005, 25(24):14-19.
    [62] Sun liyong, Zhang yan, Jiang chuanwen. A solution to the unit commitment problem based on matrix real-coded genetic algorithm. Proceeding of the CSEE, 2006, 26(2):82-87.
    [63] Wang feng, Zhu yiying, Bai xiaomin. Study of GA-based unit commitment. Automation of Electric Power System, 2003, 27(6):36-41.
    [64] Yang junjie, Zhou jianzhong, Yu jing. A hybrid intelligent genetic algorithm for large-scale unit commitment. Power System Technology, 2004, 28(19):47-50.
    [65]杨俊杰,周建中,喻菁.一种求解大规模机组组合问题的混合智能遗传算法.电网技术, 2004, 28(19):47-50.
    [66]汪峰,朱艺颖,白晓明.基于遗传算法的机组组合研究.电力系统自动化, 2003, 27(6):36-41.
    [67]蔡兴国,初壮.用遗传算法求解机组组合的研究.电网技术, 2003, 27(7):36-39.
    [68]郭三刚,管晓宏,翟桥柱.具有爬升约束机组组合的充分必要条件.中国电机工程学报, 2005, 25(24):14-19.
    [69] F.Li, R.Morgan, D.Williams. Hybrid genetic approaches to ramping rate constrained dynamic economic dispatch. Electric Power Systems Research, 1997, 43:97-103.
    [70]武瀚,吕鹏飞,刘观起.基于改进遗传算法的经济负荷分配.黑龙江电力, 2003, 25(1):4-7.
    [71] Shi qi, Li chengjun, Wang jinwen. The application of genetic algorithm to short-time generation scheduling. Proceeding of the EPSA, 2003, 27(7):56-59.
    [72]刑维建,张国立.基于改进遗传算法的有功经济负荷分配.华北电力大学学报, 2005, 32(1):45-49.
    [73]石琦,李承军,王金文.遗传算法在电力系统日有功优化调度中的应用.电力系统及其自动化学报, 2002, 14(2):56-59
    [74] Andrés, Feijóo. A third order model for the doubly-fed induction machine. Electric Power Systems Research, 2000,(56):121-127
    [75] J.T.G.pienk, J.Morren, etc. Electrical and control Aspects of offshore wind FarmⅡVolum.1-Dynamic models of wind farms . Renewable Energy Laboratory, 2004.
    [76] JoséCidrás, Andrés Feijóo. A linear dynamic model for asynchronous wind turbines with mechanical fluctuations. IEEE Transactions on Power Systems, 2002, 17(3):681-687.
    [77] Kelvin Tan, Syed Islam. Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System without Mechanical Sensors. IEEE Transactions on Energy Conversion, 2004, 19(2):392-399.
    [78] Shigeo Morimoto, Tomohiko Nakamura, Yoji Takeda. Power maximization control of variable-speed wind generation system using permanent magnet synchronous generator. Electrical Engineering in Japan, 2005, 150(2):11-19.
    [79] Vladislav Akhmatov. Variable speed wind turbines with doubly-fed induction generators. Part I: modeling in dynamic simulation tools. Wind Engineering, 2002, 26(2): 85-108.
    [80] Vladislav Akhmatov. Variable-Speed wind turbines with multi-pole synchronous permanent generators. Part I: modeling in dynamic simulation tools. Wind Engineering, 2003, 27(6): 531-548.
    [81] Y. D. Song, B. Dhinakaran, X. Y. Bao. Variable speed control of wind turbines using nonlinear and adaptive algorithms. Journal of Wind Engineering and Industry Aerodynamic, 2000, 85(1):293-308.
    [82] Nengsheng Bao, Zhiquan Ye. Active pitch control in larger scale fixed speed horizontal axis wind turbine systems Part II: Non-linear controller design. Wind Engineering, 2002, 26(1):27-38.
    [83] Nengsheng Bao, Zhiquan Ye. Active pitch control in larger scale fixed speed horizontal axis wind turbine system. Part I: linear controller design. Wind Engineering, 2001, 25(6):339-351.
    [84]包能胜,叶枝全.水平轴失速型风力机主动非线性控制.太阳能学报, 2004, 25(4):519-524.
    [85]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真.中国电机工程学报, 2004, 24(6):100-105.
    [86]孙建锋,焦连伟,吴俊玲.风电场发电机动态等值问题的研究.电网技术, 2004, 28(7):58-61.
    [87] Castro R M G, Ferreira de Jesus J M. Wind park reduce-order model using singular perturbations theory. IEEE Transactions on Energy Conversation, 1996, 11(4):735-741
    [88] E. Muljadi, Y. Wan, C. P. Butterfield and B. Parsons. A study of a wind farm power system. National Renewable Energy Laboratory, 2002
    [89] Ekanayake J B, Holdsworth L, Xu X G, Jenkins N. Dynamic modeling of doubly fed induction generator wind turbines. IEEE Transactions on Power Systems, 2003, 18(2):803-809.
    [90] Bao Neng Sheng, Jinag Tong, Chen Qin Xing. Modelling and identification of the wind turbine system. Wind Engineering, 1996, 20(4):203-218.
    [91] Garrad Hassan. Bladed for Windows: Theory manual version 3.338. Garrad Hassan and Partners Limited, 1999.
    [92] J. N. Sorensen, C. W. Kock. A model for unsteady rotor aerodynamics. Journal of Wind Engineering and Industry Aerodynamic, 1995, 58:259-275.
    [93] Saad-saoud Z, Jenkins N. Simple wind farm dynamic model. IEEE Proceedings Generation, Transmission and Distribution, 1995, 142(5):545-548
    [94] Z.Huang, Z.S.Chalabi. Use of time-series analysis to model and forecast wind speed. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 56:311-322.
    [95]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社, 2002.
    [96]周鄂.电机学(修订版).北京:水利电力出版社, 1988.
    [97]鞠平,马大强.电力系统负荷建模.北京:水利电力出版社, 1995.
    [98] Hydro-Quebec TransEnergie Technologies. User's Guid (version 4) -- SimPowerSystems for Use with Simulink. MathWorks, 2004
    [99] Holdsworth,L. charalambous,I.,Ekanayake,J,B,and Jenkins,N. Power system fault ride through capabilities of induction generator based wind turbines. Wind Engineering, 2004, 28(4): 399-412
    [100] Holttinen, Hannele. Hourly wind power variations and their impact on the Nordic power system operation [Licenciate Thesis]. Helsinki University of Technology, Finland. 2003.
    [101] P. Ledesma, J. Usaola, J.L. Rodriguez. Transient stability of a fixed speed wind farm. Renewable Energy, 2003(28):1341–1355
    [102] Pedro Rosas. Dynamic influences of wind power on the power system [PhD Thesis]. Technical University of Denmark, 2003.
    [103] Poul S?rensen, Anca Hansen, Lorand Janosi, et al. Simulation of interaction between wind farm and power system. Ris? National Laboratory, Roskilde, Denmark, 2001.
    [104] S. Neris, N. A. Vovos, G. B. Giannakopoulos. A variable speed wind energy conversion scheme for connection to weak ac systems. IEEE Trans. on Energy Conversion, 1999, 14(1): 122-127.
    [105] Salman K. Salman, Anita L. J. Teo. Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator. IEEE Transactions on Power Systems, 2003, 18(2):793-802
    [106] Sun Tao. Power quality of grid-connected wind turbines with DFIG and their Interaction with Grid [PhD Thesis]. Aalborg University, Denmark, 2004.
    [107] Xingjiang Electric Power Company. The impacts of Dabancheng wind power on Urumuqi electric network.. Wind Power, 1998, 3:23-25
    [108] Y. Wan, J. R. Liao. Analyses of wind energy Impact on WFEC system operations. National Renewable Energy Laboratory, 2005.
    [109]吴俊玲.风电场与电网影响研究[硕士学位论文].北京:清华大学, 2004.
    [110]孙涛,王伟胜,戴慧珠,杨以涵.风力发电引起的电压波动和闪变.电网技术, 2003, 27(12):62-67.
    [111]潘文霞,陈允平,沈祖诒.风电系统及其电压特性研究.河海大学学报, 2001, 29(1):88-92
    [112]郭志原.风力发电与电力系统并网影响研究[硕士学位论文].国立中山大学(台湾), 2002.
    [113]陈树勇.大型并网风力发电场规划方法研究[博士学位论文].北京:中国电力科学研究院, 1998.
    [114]雷亚洲,王伟胜,印永华,戴慧珠.含风电场电力系统的有功优化潮流.电网技术, 2002, 26(6):18-21.
    [115] F.P.de Mello and D.N. Ewart. MW response of fossils fueled steam units, IEEE working group on power plant response to load changes. IEEE Transactions on Power Apparatus and Systems, 1973, PAS-92(2):455-463.
    [116] W. I .Rowen. Simplified mathematical representation of single shaft gas turbines in mechanical drive service.Transactions of the ASME, 1992, 22:26-32
    [117] W. I. Rowen. Simplified mathematical representation of heavy-duty gas turbine. Journal of Engineering for Power, 1983, 105:865-869
    [118] Frank J.Brooks. GE重型燃气轮机的性能及参数. GE动力系统集团. Schenectady,纽约.
    [119] G. Crosa, F .Pittaluga, A. Trucco, F. Beltrami, A. trolli, F. traverso. Heavy-duty gas turbine plant aerothermodynamics simulation using Simulink. Transactions of the ASME, 1998, 120:550-556
    [120]韦思亮,刘尚明,倪维斗.机械驱动用单轴燃气轮机动态模型研究.热能动力工程, 2001, 6(93):303-308.
    [121]韦思亮,刘尚明,倪维斗.有差调节系统燃气轮机在Matlab/Simulink中的实现.动力工程, 2001, 21(6):1155-1159.
    [122]潘蕾,杨瑜文,林中达.重型单轴燃气轮机-发电机组的综合动力学建模方法的研究.动力工程, 2002, 22(5):1959-1964.
    [123]潘蕾.重型单轴燃气轮发电机系统的变工况动力学建模研究及数字仿真[博士学位论文].南京:东南大学. 2003.
    [124]杨瑜文.燃气轮机发电机组功率与排气温度控制.燃气轮机技术, 1998, 11(2):27-32.
    [125]潘蕾,杨瑜文,林中达.燃气轮机双燃料伺服系统动态数学模型的研究.动力工程, 2001, 21(3):1197-1203.
    [126]郭霞.联合循环的建模及模糊控制的研究[硕士学位论文].北京:清华大学热能工程系, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700