用户名: 密码: 验证码:
多孔介质内预混气体燃烧的实验和数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔介质内气体预混燃烧是一种新型的燃烧技术。通过气固体间的热交换可以实现超绝热火焰温度,极大地提高燃烧稳定性,显著地拓宽燃烧贫富燃极限,有效地控制污染物排放。研究多孔介质燃烧机理和火焰特性,有助于设计开发多孔介质燃烧器。本文通过实验测量和数值模拟相结合,对多孔介质燃烧特性进行了研究,并对多孔介质燃烧的应用进行了实验研究。
     设计并搭建了多孔介质燃烧器,对单层惰性堆积床中的丙烷/空气预混气燃烧进行了实验研究,分析了单层堆积床内不同工作条件对火焰结构、燃烧稳定性的影响;同时对非稳态过程的燃烧波传播进行了简单的观测和分析。采用一维模型,考虑气、固之间的对流换热和气相的弥散效应,采用详细的化学反应机理和双通量辐射传递方程,对多孔介质燃烧进行数值模拟,并与实验结果进行了对比。结果表明,多孔介质燃烧能够实现超绝热火焰温度,提高火焰传播速度,减少污染物(CO,CO2)的排放。
     对双层多孔介质燃烧器内的贫燃料燃烧进行了实验和数值研究。分析了双层多孔介质燃烧的火焰结构、火焰稳定性能、污染物排放及燃烧器出口对外辐射性能。结果表明,双层多孔介质燃烧器具有很宽的火焰稳定范围;通过控制火焰位置可以控制出口辐射输出,而实现贫燃料低流速燃烧是提高表面辐射效率的有效途径。
     对双层多孔介质内甲烷/空气富燃料燃烧进行了一维数值模拟。结果表明,多孔介质内的富燃料燃烧同样可以实现超绝热火焰温度,燃烧产物中H2含量很高,验证了富燃制氢的可行性。H2的转化效率强烈依赖于预混气的当量比,选择合适的当量比是提高转化效率的关键。
     利用商业软件FLUENT6.2结合用户自定义标量和用户自定义函数,采用二维稳态模型和简单化学反应机理,对堆积床内丙烷/空气预混燃烧进行了数值模拟,并与实验结果进行对比。结果表明,由于壁面粘性和壁面散热的影响,多孔介质燃烧的火焰结构、密度分布和速度分布等都呈现明显的二维结构。所以在实际的燃烧器设计中应考虑壁面带来的影响。
     设计并搭建了带回热-换热装置的多孔介质燃烧器。实验研究了回热对燃烧温度、贫燃料燃烧极限和污染物排放的影响。结果表明,回热效果可以有效地提高燃烧温度,并拓宽贫燃料极限,在来流预混气速度等于42cm/s时,实现了丙烷/空气当量比为0.31的贫燃料燃烧。同时在燃烧器的整体热效率在当量比0.67时可以达到42%。
     对小尺度的多孔介质燃烧器进行了研究。在小型燃烧室(内径2cm、长2cm的圆柱形腔体)组织多孔介质燃烧,可以在较宽的当量比范围内稳定点燃和稳定燃烧。实验测量了温度和压力等参数;将燃烧室与渐缩喷管结构相结合,获得了稳定的微推力,验证了小型多孔介质燃烧推进器的可行性。
Combustion of premixed gases in porous media is a novel combustion technology. Heat exchanged between solid matrix and gases, resulting in superadiabatic combustion temperature, which greatly improved combustion stability, significantly broaden the flammabilities, and effectively controlled pollution emissions. Studying of combustion mechanism and flame characteristics in porous media can be contributed to the design and development of porous media burners. In this paper, the combustion characteristics in porous media were studied by both experimental measurements and numerical simulation.
     The experimental facility was designed and set up to research propane/air premixed combustion in an inert packed bed. The effects of different operation conditions on flame structures and combustion stabilities were experimented. The un-stabilized combustion wave propagation was simply investigated and analyzed. The numerical simulation of the combustion in porous media used one-dimension steady laminar reacting model with the interphase convective heat change and dispersion effects, the detailed mechanism and two-flux radiative transfer equation. The experimental and simulation results showed that combustion in porous media can achieve superadiabatic combustion temperature, improve flame speed and reduce pollution emissions.
     Combustion in two-layer porous media burner was studied experimentally and numerically. The flame structure, the flame propagation and stability, the emissions and the radiative output efficiency burner were analyzed. The results have shown that two-layer porous media burner has broader lean flammabilities. The radiative output efficiency can be influenced by controlling the flame position, and lean-fuel low-velocity combustion can effectively improve the radiative output efficiency.
     Rich combustion of methane/air in two-layer porous media burner was simulated using one-dimension model. It was concluded that, rich combustion in porous media can also achieve superadiabatic temperature. H_2 product is quite rich after combustion, so rich combustion can be used to hydrogen production. H_2 conversion efficiency is strongly dependent on the equivalence ratio, when suitable equivalence ratio is the key to improve conversion efficiency.
     CFD software FLUENT 6.2 was used to simulation propane/air premixed combustion in packed bed with user-defined scalars and user-defined functions. Two-dimensional stabilized model and simple reaction mechanism were adopted. It is concluded that, because of the wall viscosity and wall heat loss, the flame structure, velocity and density et al in porous medium presents a 2D structure obviously, so it is significant to consider the effects of wall in actual porous medium burner designing.
     Porous media burner with heat regenerator and heat exchanger was designed and set up. The effects of heat regenerator on combustion temperature, lean limit and pollution emission were experimentally studied. The results have shown that, heat recycle can effectively improve combustion temperature, broad lean limit. A lean limit of propane/air combustion with the equivalence ratio of 0.31 was achieved when flow speed was 42cm/s. And the burner thermal efficiency achieved 42% at the equivalence ratio of 0.67.
     Mini-burner with porous media was studied. Porous media combustion was organized in a 2 cm diameter and 2 cm long cylindrical cavity, which has broadly ignition and combustion ranges. Parameters were measured such as temperatures and pressures. A stable micro-thrust was achieved when the burner was combined with a mini-nozzle.
引文
[1]S.Moβbauer,O.Pickenacker,K.Pickenacker,et al.Application of the porous bruner technology in engery- and heat- engineering.In:5~(th)International Conference on Technologies and Combustion for a Clean Environment(Clean Air V),Lisbon,Protugal,12-15 July,1999,Volume 1,Lecture 20.2:519-523.
    [2]M.M.kamal,and A.A.Mohamad.Combustion in porous media.J.Power and Energy,220:487-508,2006.
    [3]F.J.Weinberg.Combustion temperature:the future? Nature,233(5317):239-241,1971.
    [4]XIONG,TIANG-yu.Experimental study of ultra-low emission radiant porous burner.Presented at A FRC 1991 Spring Members Only Meeting.Hartford,Connecticut,18-19.1991.
    [5]D.Trimis,F.Durst,O.Pickenacker,et al.Porous medium combustor versus combustion systems with free flame.Personal communication.
    [6]D.Trimis,F.Durst.Combustion in a porous Media-Advances and applications.Combustion Science and Technology,1996,121(1-6):153-168.
    [7]K.Hanamura,R.Echigo and S.A.Zhdanok.Superadiabatic combustion in a porous medium.Int.J.Heat and Mass Transfer,36(13):1993.
    [8]J.G.Hoffmann,R.Echigo,H.Yoshida,and S.Tada.Experimental study on combustion in porous media with a reciprocating flow system.Combustion and Flame,111:32-46,1997.
    [9]Commercial report.A new method of destroying organic pollutants in exhaust air.ADTEC Co.,Ltd.,1990.
    [10]K.Hanamura,T.Kumano,and Y.Iida.Electric power generation by super-adiabatic combustion in thermoelectric porous element.Energy,30:347-357,2005.
    [11]解茂昭.一种新概念内燃机——基于多孔介质燃烧技术的超绝热发动机.热科学与技术,2(3):189-194,2003.
    [12]K.Hanamura,K.Bohda,and Y.Myairi.Study of super-adiabatic combustion engine,Energy Conversion and Management.38(10-13):1259-1266,1997.
    [13]F.Durst,M.Weclas.A new type of internal combustion on engine based on the porous-medium combustion technique.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile engineering.215(1):63-81,2001.
    [14]M.K.Drayton,A.V.Saveliev,L.A.Kennedy,A.A.Fridman,and Y.Li.Syngas production using superadiabatic combustion of ultra-rich methane-airmixtures.Proc.Comb.Inst.27:1361-1367.1998.
    [15]J.P.Bingue,A.V.Saveliev,A.A.Fridman,et al.Proceedings of the 2000 Technical Meeting,The Central State Section of the Combustion Institute,Indianapolis,USA.379-384.
    [16]J.P.Bingue,A.V.Saveliev,A.A.Fridman,et al.Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. Int. J. Hydrogen Energy, 27: 643-649, 2002.
    [17] A.I. Rozlowskii. Technical principles of explosion-proof upon work with gaseous fuel and vapors. Khimiya, Moscow, pp.135,1980.
    [18] A.A. Korzhavin, V.A. Bunev, R.K. Abdullin, et al. Flame zone in gas combustion in an inert porous medium. Combustion, Explosions and Shock Waves. 18(6): 628, 1982.
    [19] V.S. Babkin, V.A. Bunev., A.A. Korzhavin, et al. Gas combustion in a vessel with a highly porous inert medium. Combustion, Explosions and Shock Waves. 21(5): 519, 1985.
    [20] V.S. Babkin, A.A. Korzhavin and V.A. Bunev. Propagation of premixed gaseous explosion flames in porous media. Combustion and Flame, 87: 182-190, 1991.
    [21] A.V. Pinaev and G.A. Lyamin. Fundamental laws governing subsonic and detonating gas combustion in inert porous media. Combustion, Explosions and Shock Waves. 25(4): 448-454, 1989.
    [22] G.A. Lyamin and A.V. Pinaev. Fast subsonic combustion of gases in an inert porous medium with a smooth rise in the pressure in the wave. Combustion, Explosions and Shock Waves. 23(4): 399,1987.
    [23] V.S. Babkin, V.I. Drobyshevich, Laevskil, et al. Mechanisms of the propagation of combustion waves in porous medium in gas filtration. Doklady Akademii Nauk SSSR, 265(5): 1157-1161, 1982.
    [24] V.S. Babkin, V.I. Drobyshevich, Laevskil, et al. Filtration combustion of gases. Fizka goreniya Vzryva, 19(2): 17-26, 1983.
    [25] S.A. Zhdanok, L.A. Kennedy and G.E. Koester. Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combustion and Flame, 100(1-2): 221-231, 1995.
    [26] G.E. Koester, L.A. Kennedy and V.V. Subramaniam. Low temperature wave enhanced combustion in porous systems. In: Proc. of the 4~(th) ASME/JSME Thermal Engineering Joint Conference, Lahaina, Maui, Hawaii, March 19-24, 1995.
    [27] G.E. Koester. Propagation of wave-like unstabilized combustion fronts in inert porous media: he Ohio State University, PhD Thesis, 1997.
    [28] L.A. Kennedy, A.V. Saveliev and A.A. Fridman. Transient filtration combustion. In: Proc. of Mediterranean Combustion Symposium, 1: 105-139, 1999.
    [29] L.A. Kennedy, J.P. Bingue, A.V. Saveliev, et al. Chemical Structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. In: Proc. of 28th Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1431-1438,2000.
    [30] J.P. Bingue. Filtration combustion of methane and hydrogen sulfide in inert porous media: theory and experiments. Univ. of Illinois at Chicago, PhD Thesis, 2003.
    [31] J.P. Bingue, A.V. Saveliev and L.A. Kennedy. Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion. Int. J. Hydrogen Energy, 29: 1365-1370,2004.
    [32] J.P. Bingue, A.V. Saveliev, A.A. Fridman, et al. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. Int. J. Hydrogen Energy, 27: 643-649, 2002.
    [33] T. Takeno and K. Sato. An excess enthalpy flame theory. Combustion Science and Technology, 20: 73-84, 1979.
    
    [34] T. Takeno, K. Sato and K. Hase. A theoretical study on an excess enthalpy flame. In: Proc. of 18~(th) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 465-472, 1981.
    [35] J. Buckmaster and T. Takeno. Blow-off and flashback of an excess enthalpy flame. Combustion Science and Technology, 25: 153-158,1981.
    
    [36] Y. Kotani and T. Takeno. An experimental study on stability and combustion characteristics of an excess enthalpy flame. In: Proc. of 19~(th) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1503-1509,1982.
    [37] K. Sato, K. Hase and T. Takeno. A further experimental study on an excess enthalpy flame. Trans. Japan Soc. Aero. Space Sci., 26(72): 65-79,1983.
    [38] T. Takeno and K. Hase. Effects of solid length and heat loss on an excess enthalpy flame. Combustion Science and Technology, 31:207-215, 1983.
    [39] T. Takeno and M. Murayama. One-dimensional flame with extended reaction zone. In: Progr. In Astro. Aero. Sci., 105:246-262,1986.
    
    [40] S.B. Sathe, MR. Kulkarni, R.E. Peck, et al. An experimental study of combustion and heat transfer in porous radiant burner. 1989 Western States Section/Combustion Institute, Livermore, California, Oct. 23-24,1989.
    
    [41] S.B. Sathe, R.E. Peck and T.W. Tong. Flame stabilization and multimode heat transfer in inert porous media, a numerical study. Combustion Science and Technology, 70: 93-109, 1990.
    
    [42] S.B. Sathe, M.R. Kulkarni, R.E. Peck, et al. An experimental and theoretical study of porous radiant burner performance. In: Proc. of 23~(rd) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1011-1018,1990.
    [43] S.B. Sathe, R.E. Peck and T.W. Tong. A numerical analysis of heat transfer and combustion in porous radiant burners. Inter. J. Heat Mass Transfer, 33(6): 1331-1338, 1990.
    [44] Chung-jen Tseng. Effects of hydrogen addition on methane combustion in a porous medium burner. Int. J. Hydrogen Energy, 27: 699-707, 2002.
    
    [45] L.B. Younis and R. Viskanta. Experimental determination of volumetric heat transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transfer, 36(6): 1425-1434, 1993.
    [46] R. Viskanta and J.P. Gore. Overview of cellular ceramics based porous radiant burners for supporting combustion. Environ. Combust. Tech., 1:167-203, 2000.
    [47] M.R. Kulkarni, K.P. Chavali and R.E. Peck. Emission Characteristics of radiant surface burners. Presented at the 1992 Fall Meeting of the Western States Section of The Combustion Institute, Berkeley, California, October 12-13, 1992.
    
    [48] M.R. Kulkarni and R.E. Peck. Analysis of a bilayered porous radiant burner. Presented at the 1992 Fall Meeting of the Western States Section of The Combustion Institute, Berkeley, California, October 12-13, 1992.
    [49] M.D. Rumminger, R.W. Dibble, N.H. Heberle, et al. Gas Temperature Measurement above a porous radiant burner: comparison of measurements and model predictions. In: Proc. of 26~(th) Symposium (International) on Combustion. USA: The combustion institute, Pittsburgh, PA, 1755-1762,1996.
    [50] M.D. Rumminger. Numerical and experimental investigation of heat transfer and pollution formation in porous direct-fired radiant burners. Univ. of California, Berkeley, PhD Thesis, 1996.
    [51] R. Mital, J.P. Gore and R.A. Viskanta. Study of the structure of submerged reaction zone in porous ceramic radiant burners. Combustion and Flame, 111, 175-184,1997.
    [52] F.C. Christo, B.B. Dally, P.V. Lanspeary, et al. Development of porous burner technology for ultra-lean combustion systems. Report for South Australian State Energy Research Advisory Committee, 2002.
    [53] W.D. Evans, J.R. Howell and P. Varghese. An experimental investigation of practical lean limit of methane combustion inside a porous ceramic matrix. In: AIAA/SAE/ASME/ASEE Joint Propulsion Conf., Sacramento, California, June, 1991.
    [54] C. Chaffin, M. Koenig, M. Koeroghlian, et al. Experimental investigation of premixed combustion within highly porous media. In: Proc. of ASME/JSME Thermal Engineering Joint Conf.4: 219-224,1991.
    [55] C. Chaffin. Reduction of NOx emissions using the technique of two-stage combustion within porous inert media. Univ. of Texas at Austin, Master's Thesis, 1991.
    [56] P.F. Hsu. Analytical and experimental study of combustion in porous inert media. Univ. of Texas at Austin, PhD Thesis, 1991.
    [57] P.F. Hsu and J.R. Howell. The necessity of using detailed chemical kinetics in models for premixed combustion in porous media. Combustion and Flame, 93: 457-466,1993.
    [58] P.F. Hsu, W.D. Evans and J.R. Howell. Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics. Combustion Science and Technology, 90: 149-172,1993.
    [59] P.F. Hsu, J.R. Howell and R.D. Matthews. A numerical investigation of premixed combustion within porous inert media. ASME J. Heat Transfer, 115(3); 744-750,1993.
    [60] J.R. Howell, M.J. Hall, and J.L. Ellzey. Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science, 22: 121-145, 1996.
    [61] I.G. Lim A numerical study of combustion within a porous inert medium burner. Univ. of Texas at Austin, PhD Thesis, 1992.
    [62] I.G. Lim and R.D. Matthews. A model for turbulent premixed combustion within porous inert media. ASME, Emerging Energy Technology, PD-Vol. 50: 85-94, 1993.
    [63] I.G. Lim and R.D. Matthews. Development of a model for turbulent combustion within porous inert media. In: Proc. of the 6~(th) International Symposium on Transport Phenomena in Thermal Engineering, Vol. 1: 631-636, 1993.
    [64] V. Khanna. Experimental analysis of radiation for methane combustion within a porous medium burner. Univ. of Texas at Austin, Master's Thesis, 1992.
    [65] V. Khanna, R. Goel and J.L. Ellzey. Measurement of Emissions and Radiation for Methane Combustion within a Porous Medium Burner. Combustion Science and Technology, 99: 133-142,1994.
    [66] M.R. Henneke and J.L. Ellzey. Modeling of filtration combustion in a packed bed. Combustion and Flame,117:832-840,1999.
    [67]M.R.Henneke.Simulation of transient combustion within porous inert media.Univ.of Texas at Austin,PhD Thesis,1998.
    [68]A.J.Barra,G.Diepvens,J.L.Ellzey,et al.Numerical study of the effects of material properties on flame stabilization in a porous burner.Combustion and Flame,134:369-379,2003.
    [69]A.J.Barra.Computational study of a two-section porous burner.Univ.of Texas at Austin,Master's Thesis,2003.
    [70]A.J.Barra and J.L.Ellzey.Heat recirculation and heat transfer processes in porous burners.Combustion and Flame,137:230-241,2004.
    [71]W.M.Mathis and J.L.Ellzey.Flame stabilization,operating range,and emissions for a methane/air porous burner.Combustion Science and Technology,175:826-839,2003.
    [72]M.T.Smucker and J.L.Ellzey.Computational and experimental study of a two-section porous burner.Combustion Science and Technology,176:1171-1189,2004.
    [73]B.Vogel and J.L.Ellzey.Subadiabatic and superadiabatic performance of a two-section porous burner.Combustion Science and Technology,177:1323-1338,2005.
    [74]P.H.Bouma and L.P.H.de Goey.Premixed Combustion on Ceramic Foam Burners.Combustion and Flame 119:133-143,1999.
    [75]D.J.Diamantis,E.Mastorakos and D.A.Goussis.Simulations of premixed combustion in porous media.Combust.Theory and Modeling,6:383-411,2002.
    [76]F.A.Lammers,L.P.H.de Goey.A numerical study of flash back of laminar premixed flames in ceramic-foam surface burners.Combustion and Flame.133:47-61,2003.
    [77]M.Sahraoui and M.Kaviany.Direct simulation vs volume-averaged treatment of adiabatic,premixed flame in a porous medium.Int.J.Heat Mass Transfer,37(18):2817-2834,1994.
    [78]C.L.Hackert,J.L.Ellzey and O.A.Ezekoye,et al.Combustion and heat transfer in model two-dimensional porous burner.Combustion and Flame,116:177-191,1999.
    [79]C.L.Hackert.Two-dimensional simulation of flames in porous media.Univ.of Texas at Austin,PhD Thesis,1998.
    [80]XY Fu.Modeling of a submerged flame porous burner/radiant heater.Purdue University,PhD Thesis,1997.
    [81]XY Fu,R.Viskanta and J.P.Gore.Combustion and heat transfer interaction in a pore-scale refractory tube burner.J.Yhermophys.Heat Transfer,12:164-171,1998.
    [82]G.Brenner,K.Pickenacker,O.Pickenacker,et al.Numerical and experimental inverstigation of matrix-stabilized methane/air combustion in porous inert media.Combustion and Flame,123:201-213,2000.
    [83]I.Malico,X.Y.Zhou and J.C.F.Pereira.Two-dimensional numerical study of combustion and pollutants formation in porous burners.Combustion Science and Technology,152:57-79,2000
    [84]I.Malico and J.C.F.Pereira.Numerical study on the influence of radiative properties in porous media combustion.ASME Journal of Heat Transfer,123:951-957,2001.
    [85]吕兆华,孙思诚,裴锦华等.多孔泡沫陶瓷中预混火焰燃烧速率的试验研究.燃烧科学与技术,1(2):129-134,1995.
    [86]吕兆华,孙思诚.多孔介质中预混火焰燃烧速率的预示.燃烧科学与技术,4(3):242-246,1998.
    [87]吕兆华,R.D Matthews.分段多孔介质燃烧器的二次进气燃烧排放研究.燃烧科学与技术,6(2):124-128,2000.
    [88]李艳红,程惠尔,胡国新等.多孔陶瓷板燃气预混燃烧的试验研究.上海交通大学学报,35(8):1220-1223,2001.
    [89]李艳红,程惠尔,胡国新等.多孔陶瓷板预混燃烧NOx的排放特性.上海交通大学学报,36(2):226-229,2002.
    [90]褚金华,程乐鸣,王恩宇等.预混天然气在多孔介质燃烧器中的燃烧与传热.燃料化学学报,33(2):166-170,2005.
    [91]王恩宇,程乐鸣,骆仲泱等.渐变型多孔介质中预混燃烧温度分布试验.热科学与技术,2(1):64-69,2003.
    [92]王恩宇,程乐鸣,骆仲泱等.天然气在渐变型多孔介质中的预混燃烧.燃烧科学与技术,10(1):1-6,2004.
    [93]李昊,程乐鸣,王恩宇等.往复式多孔介质燃烧器流动特性的试验研究.能源工程,2004(4):1-5,2004.
    [94]王恩宇,程乐鸣,骆仲泱等.多孔介质中预混火焰淬熄及自稳定性研究.热科学与技术,2(1):58-62,2005.
    [95]李姮,程乐鸣,骆仲泱等.多孔介质预混燃烧气固温度分布特性试验研究.浙江大学学报(工学版),41(12):2069-2072,2007.
    [96]钱欣平,凌忠钱,周吴等.硫化氢热分解制氢过程的化学动力学研究.燃料化学学报,23(6):722-725,2005.
    [97]凌忠钱,周吴,钱欣平等.多孔介质内H_2S贫氧燃烧制氢数值模拟.环境科学学报,26(1):22-25,2006.
    [98]杜礼明,解茂昭,邓洋波.惰性多孔介质中预混合燃烧的研究进展.热能动力工程,17(3):221-226,2002.
    [99]解茂昭,杜礼明,孙文策.多孔介质中往复流动下超绝热燃烧技术的进展与前景.燃烧科学与技术,8(6):520-524,2002.
    [100]杜礼明,解茂昭.预混气体在多孔介质中往复流动下超绝热燃烧的理论探讨.能源工程,2003(5):6-11,2003.
    [101]邓洋波,解茂昭,刘宏升等.多孔介质内往复流动下超绝热燃烧的实验研究.燃烧科学与技术,10(1):82-87,2004.
    [102]邓洋波,解茂昭.多孔介质内预混合超绝热燃烧的排放特性.大连理工大学学报,44(3):392-397,2004.
    [103]马世虎,解茂昭,邓洋波.多孔介质往复流动燃烧的一维数值模拟.热能动力工程,19(4):384-390,2004.
    [104]杜礼明,解茂昭.多孔介质的热物性对往复流动下超绝热火焰的影响.热能动力工程,20(2):148-153,2005.
    [105]史俊瑞,谢茂昭.多孔介质内往复流动超绝热燃烧的简化解.热能动力工程,21(4):383-386,2006.
    [106]史俊瑞,谢茂昭.考虑弥散效应得多孔介质中超绝热燃烧的数值模拟.工程热物理学报,27(3):515-518,2006.
    [107]史俊瑞,多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究.大连理工大 学博士学位论文,大连,2007.
    [108]张根烜,刘明侯,朱曼明等.堆积床内过滤燃烧的瞬态研究,燃烧科学与技术.12(2):180-185.2006.
    [109]张根烜.基于多孔介质内燃烧的微小型化学推进系统的数值研究.中国科学技术大学博士学位论文,合肥,2006.
    [110]赵平辉,朱曼明,陈义良等,双层多孔介质燃烧器的数值模拟.计算物理,12(23):679-684,2006.
    [111]赵平辉,陈义良,刘明侯等,化学反应机理和弥散效应对多孔介质内燃烧过程的影响,中国科学技术大学学报,2006,10(36):1051-1056.
    [112]赵平辉,陈义良,刘明侯等,多孔介质内层流预混燃烧的数值模拟.燃烧科学与技术,2006,1(12):46-50.
    [113]赵平辉.惰性多孔介质内预混燃烧的研究.中国科学技术大学博士学位论文,合肥.2007.
    [114]V Bubnovich,M Toledo.Analytical modeling of filtration combustion in packed bed.Applied Thermal Engineering.2006.
    [115]N.Wakao and S.Kaguei.Heat and mass transfer in packed beds.Gordon and Breach Science Publishers,New York,1982.
    [116]L.B.Younis and R.Viskanta.Experimental determination of volumetric heat transfer coefficient between stream of air and ceramic foam.Int.J.Heat Mass Transfer,36(6):1425-1434,1993.
    [117]M.Kaviany.Principles of convective heat transfer.New York:Springer-Verlag,2001.
    [118]D C Haworth,R J Blint,Numerical Simulation of Turbulent Propane-Air Combustion with Nonhomogeneous Reactants.Combustion and Flame 121:395-417,2000.
    [119]R.J.Kee,A.A.Miller,and T.H.Jefferson.CHEMKIN:a general-purpose problem independent transportable,Fortran chemical kinetics code package.Sandia National Laboratories Report,SAND80-8003,1980.
    [120]R.J.Kee,G.Dixon-Lewis,J.Warnatz,M.E.Coltrin,and J.A.Miller.A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties.Sandia National Laboratories Report SAND86-8246,1986.
    [121]K.V.Dobrego,I.M.Kozlov,S.A.Zhdanok,et al.Modeling of diffusion filtration combustion radiative burner.International Journal of heat and mass transfer,44(17):3265-3272,2001.
    [122]赵惠富.污染气体NO_x的形成和控制.北京:科学出版社,1993.
    [123]Clark T.-C.Nguyen.Micro electro mechanical systems programs at MTO.On DARPA Technology Symposium,2002.
    [124]C.M.Spadaccini,X Zhang,C.P.Cadou,et al,Development of a catalytic silicon micro-combustor for hydrocarbon-fueled power MEMS.IEEE:228-231,2002.
    [125]C.M.Spadaccini,X Zhang,C.P.Cadou,et al,Preliminary development of a hydrocarbon-fueled catalytic micro-combustor.Sensors and Actuators A,103:219-224,2003.
    [126]K.Maruta,K.Tekeda,J.Ahn,et al,Extinction limits of catalytic combustion in microchannels.On Colloquium topic:14 New Concepts in Combustion Technology,l-8.
    [127]J.Daou and M.Matalon.Influence of conductive heat-losses on the propagation of premixed flames in channels.Combustion and Flame,128:321-339,2002.
    [128]V.N.Kurdyumov and E.Fernandez-tarrazo.Lewis number effect on the propagation of premixed laminar flames in narrow open ducts.Combustion and Flame,128:382-394,2002.
    [129]A.R.Jones,S.A.Lloyd,F.J.Weinberg.Combustion in heat exchangers,O Proc.Roy.Soc.(London)A360:97-115.1978.
    [130]朱彤,饶文涛,刘敏飞,等.低NO_x高温空气燃烧技术.热能动力工程,16(3):328-331,2001.
    [131]L.Sitzki,K.Borer,E.Schuster,et al.Combustion in microscale heat-recirculating burners.In the 3~(rd)Asia-Pacific Conference on Combustion.Seoul,Korea June,2001.
    [132]K.Maruta,K.Takeda,L.Sitzki,et al.Catalytic combustion in microchannel for MEMS power generation.In the 3~(rd)Asia-Pacific Co nference on Combustion.Seoul,Korea June,2001.
    [133]L.Sitzki,K.Borer,S.Wussow,et al.Combustion in microscale heat-recirculating burners.Paper No.2001-1087,39~(th)AIAA Aerospace Sciences Meeting,Reno,NV,January,2001.
    [134]L.L.Raja,R.L.Kee,O.Deutschmann,et al.A critical evaluation of Navier-Stokes,boundary-layer,and plug-flow models of the flow and chemistry in a catalytic-combustion monolith.Catalysis Today,59:47-60,2000.
    [135]Deutschmann,L.I.Maier,U.Riedel,et al.Hydrogen assisted catalytic combustion of methane on platinum.Catalysis Today,59:141-150,2000.
    [136]钟北京,洪泽恺.甲烷微尺度催化燃烧的数值模拟.工程热物理学报,24(1):173-176,2003.
    [137]钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟.热能动力工程,18(6):584-589,2003.
    [138]曹彬,陈光文,袁权.微通道反应器内氢气催化燃烧.化工学报,55(1):42-47,2004.
    [139]焦国凤,刘辉,杨立英,等.蜂窝体催化燃烧反应器中流动特性的数值模拟.北京化工大学学报,31(2):1-6,2004.
    [140]曹海亮,徐进良.微尺度环形燃烧室燃烧特性的实验研究.中国工程热物理学会第11届年会,北京,2005.11,777-782.
    [141]曹海亮,微尺度燃烧特性及微能源系统的研制.中国科学技术大学博士学位论文,合肥,2006.
    [142]童秉纲,孔祥言,邓国华.气体动力学.北京:高等教育出版社,1990.
    [143]K.Maruta,J.K.Parc,K.C.Oh,et al.Characteristics of microscale combustion in a narrow heated channel.Combustion,Explosion,and Shock Waves,40(5):516-523,2004.
    [144]T.J.Coutts.An overview of thermophotovoltaic generation of electricity.Solar Energy Materials and Solar Cells,66:443-452.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700