用户名: 密码: 验证码:
大跨径拱桥多维位移的光电组合监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁结构在服役期间受到各种因素的影响,其可靠性不断下降可能导致结构安全问题甚至桥毁人亡的重大灾害事故,使桥梁结构状态的安全监测一直受到学术界和工程界的高度重视。世界各国皆投入巨资进行研究,取得了一定成果并在各种特大型桥梁陆续试用。但桥梁结构状态监测技术仍然是一个未成熟、正在发展的新技术。而世界上桥梁种类繁多、结构各异,桥梁结构状态监测技术还存在众多亟待解决的科学与技术问题。其中,能较全面反映桥梁结构性能退化与失效的关键参数——变形/位移,是桥梁结构状态监测领域众多亟待解决的科学与技术问题的重要研究热点之一。
     大跨径拱桥结构外形美观、跨径大,在桥梁世界中占有一席之地。但它结构特殊、受力关系复杂、施工工艺难度大,导致其成为国内外桥梁重大垮塌事件的主要桥型之一。其次,大跨径拱桥其特殊的拱、梁组合结构,使得变形呈现多维度特点,迄今为止还没有一种较为理想的监测方法能够满足这一类桥梁变形/位移监测要求。因此,针对大跨径拱桥多维变形/位移监测技术展开研究,解决其关键技术问题,对于大型桥梁结构状态监测的整体技术发展具有重要的科学价值与应用前景。
     鉴于此,结合重庆市科技攻关项目重大专项“菜园坝大桥运行状态监测与健康诊断系统研究”,根据大跨径拱桥的结构受力与变形特点,提出了基于光电全站仪和光电式连通管的多维位移组合监测方法。研究了光电自动全站仪在主拱三维变形监测中存在的基准漂移问题与光电式连通管监测主梁的一维静态及准静态变形存在的液位振荡问题。从数学模型与监测系统两个方面进行了相互印证,最后将取得的研究成果实际应用于重庆菜园坝大桥。
     具体研究内容如下:
     ①以大跨径系杆拱桥为代表,对大跨径拱桥桥拱和主梁等关键部位的结构受力与变形特点进行了分析;结合重庆菜园坝长江大桥的特点,提出了采用光电自动全站仪对桥拱进行三维静态位移变形监测、采用光电式连通管系统对梁体进行一维静态与准静态位移监测的多维位移变形监测的光电组合方法;还提出了利用轻轨列车的自重长期进行桥梁固定荷载条件下的位移监测思路。
     ②为了避免光电全站仪在主拱圈三维位移监测中因通视限制导致的测量基准漂移,建立了全站仪基准漂移的三维模型,分析了全站仪基准漂移及其对观测点精度的影响;提出了采用两台或多台全站仪相互观测,继而实现全站仪基准漂移补偿观测的新方法。结合补偿观测方法的特点,研究了补偿大气条件对变形点观测精度影响的方法。还设计了适当的自动防护装置,使其能够在测量时自动打开,未测量时关闭,有效的防止雨水、粉尘等对棱镜镜头的污染。
     ③为了突破原始连通管挠度监测方法的完全静态监测瓶颈,针对利用光电式连通管方法监测主梁挠度/线形的问题,分析了液位基准对监测精度的影响,重点研究了轻轨或火车等重载通过大跨径拱桥形成的准静态位移测量过程,建立了多连通管内液体振荡的力学模型,分析了液位振荡的内在规律,提出了改进的小波阈值去噪方法对含有液位振荡的位移信号进行滤波,以消除液位振荡对准静态位移测量的影响,并通过仿真计算证明了该方法的可行性。
     ④为了满足大跨径拱桥多点、同步位移/线形监测要求,分析了连通管式光电液位传感器的信号变异问题,改善了硬件响应速度、采集频率;研制出了适用于桥梁静态与准静态位移测量的传感器,将连通管式静态挠度传感器拓展到了准静态测量范围。
     ⑤分别构建了全站仪三维监测、光电式连通管一维位移监测两大物理模拟实验验证系统。通过系列实验,证明了全站仪基准传递及补偿观测方案可行,光电式连通管位移测量系统能够满足轻轨通过桥梁过程中的准静态位移测量要求。
     ⑥将研究成果实际应用于重庆菜园坝长江大桥的荷载实验,获得了满意的数据,为重庆菜园坝长江大桥顺利通车提供了关键数据,且全站仪和连通管系统位移监测结果能够相互验证,达到预期目标。
Influenced by long-term fatigue and other occasional damage during their service period, the structural reliability of bridge will be declined, and which will result in potential security problems. Therefore, more and more attention was paid on the structural health monitoring of bridge. As a result, some bridge structural health monitoring with modern sensing systems were developed and implemented on some long-span bridges and some interesting results were obtained; however, the state of art in structural health monitoring system is far behind the diversiform needs of bridges. So there are still some key problems for health monitoring of bridges need to further research. Among them, an important prarameter-displacement/deformation (which can indicate status of bridges) is one of the research hotspot.
     Arch bridges are famous for its reasonable structure, good looking, easy to achieve long span, but it is very hard to set up their mechanical model, because of their complicate structure, and then structural health monitoring for arch bridges becomes a big problem. Among all bridge collapse disasters in Mainland China, one third were happened on arch bridges, because the absence of inner structural/safety information during their service time. In an arch bridge, the arch and the girders are the key components to endure internal force, and their strain condition could be showed as their global deformation. If the deformation is in normal range, the inner force of the arch and girders should also be in the normal range; correspondingly, a out-range deformation usually represents an abnormal force on these components, and which will lead to bridge damage. From this point of view, displacement or deformation can be used as a key parameter to evaluate health status of arch bridges. The arch bridge has very complicated 3D deformation, because it is a large combination structure with one main arch and hundreds of support girders and beams. Real-time, high accuracy and large measurement range 3D deformation monitoring is a new challenge to current deformation measurement technology, but it is a very important science and engineering problem deserves careful study.
     The main contents of this dissertation are stated in detail as following:
     ①Mechanics prosperities of arch and girder of Caiyuanba Yangtze River Bridge were analyzed. A method for multi-dimensions displacement monitoring of long-span arch bridges based on combination measurement technology is proposed. The main idea is: a total station system was adopted used to monitoring the three-dimension deformation of the arch; and a connected pipes system was used to detect vertical displacement direction for girder. Some key problems for these two measurement technique were studied.
     ②For displacement deformation monitoring in three-dimensions of arch, the most important error reason is the shift of total station. A three dimensions movement model of instrument base was set up, according to measurement principle of total station. Coordinates of deformation points are calculated. Methods to calculate the instrument base shift were proposed based on the analysis instrument base movement properties. Furthermore, the influence of atmosphere refraction was analyzed, methods to address this problem were also proposed. At last, an automatic protection device was designed for prisms, and it can open automatically during measurement and close in other times.
     ③For vertical displacement monitoring of girder, measuring precision and liquid fluctuation in connected pipes are the key problems need to be studied. Mathematics model of liquid flow based on multi-channels connected pipes was set up with hydromechanics knowledge. Properties of liquid fluctuation in time domain were analyized. According to properties of liquid fluctuation, a wavelet threshold algorithm was proposed to eliminate the fluctuation noise.
     ④Signal distortion of opto-electronic liquid sensor was analyized, and corresponding measurement software was analyzed in detail, the liquid sensor which can be used to measuring displacement signal in static state and in low frequency dynamic state together are developed.
     ⑤Lots of experiments were designed and carried out to demonstrate the validity of our combination measurement technique for arch bridges. A series of experimental results with two Leica TC 405 total stations show that, a three dimensions movement model of instrument base is correct and the improved measurement method to compensate movement of total station is feasible. For connected pipes system, experiments results showed that the static accuracy and quasi-dynamic accuracy of opto-electronic liquid sensor 0.1mm and 0.25mm respectively. A series experiments results for connected pipes system showed, connected pipes system is suitable to measure static displacement and very low frequency dynamic displacement at the same time. With improved wavelet threshold algorithm, the measurement error is less than 4mm for a ten minutes continuous time.
     ⑥At last, total station and connected pipes system are applied on Chongqing Caiyuanba Arch Bridge spans across the Yangtze River. The on site load experiment results also demonstrated the feasibility of multi-dimensional deformation measurement by the combination of total station technique and connected pipes system. The method to compensate total station instrument base shift was also verified by the load experiments. The experimental data also showed that the displacement measurement with connected pipes system has very good accuracy. A mutual proved analysis between the vertical displacement measured by total station and connected pipes, and it raise the reliability of the data.
引文
[1]曾宪武,王永珩.桥梁建设的回顾和展望[J].中国公路,2002,(5):85~90.
    [2]张俊,王秀丽等.斜拉桥现状资料汇集[J].黑龙江水利科技. 2002, (3):100~103.
    [3] DarryII Pines, A Emin Aktan. Status of Structural Health Monitoring of Long-span Bridges in United States[C]. Pro. Struct. Engng Mater. 2002,(4):372~380.
    [4] N.Galindez, J.Marulanda, P.Thhomson et al. Implementation of Modal Identification Methodology on the Pereira-Gosquebradas Cable-stayed Bridge[C]. 16th ASCE Engineering Mechanics Conference, 2003, 7:1-11.
    [5] Walibank E J. Performance of Concrete in Bridges -a study of 200 trunk road bridge[C], HMSO, London, 1990, 8:10-15.
    [6] Mallett G P. Repair of Concrete Bridges[C]. TRL, Thomas Telford London, 1994, 6:1450-1455.
    [7]新华社:重庆綦江彩虹桥整体垮塌. http://news.xinhuanet.com/photo/2006-01/03/content_4002893.htm. 2006.1.3
    [8]中国青年报.宜宾南门大桥垮塌. http://news.sohu.com/90/94/subject147139490.shtml. 2001.1.16
    [9] ERAY KULCU,XIAOLI QIN.Raymond.Information Technology and Data Management Issues for Health Monitoring of The Commodore Barry Bridge[C].Proceedings of SPIE,2000,3995: 98-1l1.
    [10] RAYMOND A BARISH, JR KIRMAN. Instrumented Monitoring of Th e Commodore Barry Bridge[C]. Proceedings of SPIE. 2000. 3995:112-122.
    [11]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1999, 27(2):184-188.
    [12]史家钧,兰海,郭志明.桥梁健康监测中的若干问题[C].中日结构减振及健康监测研讨会暨第三届中国结构抗振控制年会会议论文集.上海:同济大学出版社, 2002.
    [13] WONG K Y, LAU C K, FLINT A R. Planning and Implementation of the Structural Health Monitoring System for Cable—Supported Bridges In Hong Kong[C]. Proceedings of SPIE, 2000, 3995-3999.
    [14] NIGBOR R L, DIEHL G. Two Year’S Experience Using OASIS Real-Time Remote Condition Monitoring System on Two Large Bridges[C]. the Proceedings of“Structure Health Monitoring:Current Status and Perspective”, 2000,5:1239-1243.
    [15] Zong Zhou - hong, Wang T L , Huang D Z et al. State of the art report of bridge healthmonitoring[J], Journal of Fuzhou University(Natural Science), 2004(30):127~153.
    [16] Allan Larsen. Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt[C]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 10 (48):261-285.
    [17] Satoshi Kashima, Yukikazu Yanaka, Shuichi Suzuki. Monitoring the Akashi Kaikyo Bridge[C]:First Experiences. Structure Engineering International ,2001, (2) :120~123.
    [18] J.M. Ko, Y.Q. Ni. Technology developments in structural health monitoring of large-scale bridges[J]. Engineering Structures, 2005, 27:1715–1725.
    [19] J.F. Stanton, M.O. Eberhard, P.J. Barr. A weighted-stretched-wire system for monitoring deflections[J]. Engineering Structures, 2003, 25:347–357.
    [20] Vurpillot S, Kruefer, Benouaich D, Clement D, Inaudi D. Vertical deflection of a prestressed concrete bridge using deformation sensors and inclinometer measurements[J]. ACI Str J ,1998,95(5):518–526.
    [21] Wong KY. Instrumentation and health monitoring of cable-supported bridges[J]. Structural Control and Health Monitoring, 2004, 11(2):91–124.
    [22] Zhu Y, Fu Y, Chen W, Huang S, Bennett KD. Health monitoring sys-tem for Dafosi cable-stayed bridge[J]. Smart structures and materials, 2003: 289–97.
    [23] Cai J, Zhu C. The research of a real time monitoring system of cable stayed bridge[C]. In: Proceedings of China–Japan workshop on vibration control and health monitoring of structures. 2002,7:123-127.
    [24] Lei JQ, Qian DS. Research on real-time monitoring system for long-span bridges[J]. Highway 2002, 2:1-3 .
    [25] Shi J, Zhang Q, Xiang H. Health monitoring system of Xupu cable-stayed bridge[X]. In: Proceedings of the workshop on research and monitoring of long span bridges. Hong Kong: The University of Hong Kong, 2000:150-157.
    [26]过静珺,戴连君,卢云川.虎门大桥GPS(RTK)实时位移监测方法研究.测绘通报[J]. 2002, 12:4-6.
    [27]姚连璧.桥梁与隧道GPS网的设计与应用[J].解放军测绘学院学报,1999, 9,3(16):179-182.
    [28]徐利军.全站仪测试九江长江大桥空间变位[J].铁道建筑, 1996(10).31-33.
    [29]李惠;欧进萍;斜拉桥结构健康监测系统的设计与实现(II):系统实现[J].土木工程学报,2006,2,4(39):45-53.
    [30]朱永,符欲梅等.大佛寺长江大桥健康监测系统[J].土木工程学报. 2005.10, 38(10): 66-71.
    [31]董辉.马桑溪长江大桥变形动态监测系统研究[J].重庆大学硕士学位论文,2004,5.
    [32]何永琦,陈伟民,符欲梅.倾斜传感器在桥梁变形监测中的应用[J].重庆大学学报,2004,7(27):28-31.
    [33] ChungBang Yun. Recent R&D activities on structural health monitoring for civil infra-structures in Korea[C]. Third International Workshp on Advanced Smart Materials and Smart Structure Technology ,2006.5:335-321.
    [34] P.Galvin, J. Dominguez. Dynamic analysis of a cable-stayed deck steel arch bridge[J]. Journal of constructional steel research, 2007(63):1024-1035.
    [35] Richard Malm, Andreas Andersson. Field testing and simulation of dynamic properties of a tied arch railway bridge[J], Engineering Structures, 2006(28):143-148.
    [36]吴小平.复杂桥梁结构综合监测系统开发研究[D].浙江大学博士学位论文,2005,5.
    [37]王侬,过静珺.现代普通测量学[M].北京:清华大学出版社,2005,5 .
    [38]徕卡测量系统(上海)有限公司.徕卡GeoMos监测解决方案[J]. <内部资料> . 2005, 8:1-22.
    [39]包欢,徐忠阳,张良琚.自动变形监测系统在地铁结构变形监测中的应用[J].测绘学院学报, 2003,6,2(20):103-105.
    [40]肖根旺,郭红星,徐忠阳.全站仪自动变形监测系统在招宝山大桥变形监测中的应用[J].测绘信息与工程, 2002,8, 27(4):19-20.
    [41]贺志勇,盛飞.大跨度桥梁的变形监测及其精度分析[J].华南理工大学学报,2001,8(29):86-89.
    [42]谭永朝,郑翰献,俞菊虎等.钱江四桥桥梁实时健康监测系统开发研究[J].公路交通科技,2004,11(21):43-46.
    [43]李运生,张彦玲.明石海峡大桥的监测[J].世界桥梁,2002,3:52-54.
    [44] Wong K Y, Man K L, Chan W Y. Monitoring HongKong’s Bridges: Real-Time Kinematic Spans the Gap[J]. GPS World, 2001, 12 (7): 1 - 8.
    [45]徐良,过静珺,戴连君.基于GPS (RTK技术)的虎门大桥位移实时监测数据分析[J].工程勘察, 2001,1:47-49.
    [46]李维宁.空间信息系统原理[M].地理信息系统理论与应用丛书..北京:科学出版社, 2001,5.
    [47]胡卫军.重庆大佛寺长江大桥连通管式光电挠度测量系统的实用化研究[D].重庆大学硕士论文.2003, 5:38-41.
    [48]刘明健.一种大尺度二维直线度精密测量的新方法[J].激光杂志. 2003, 24(6):74~76.
    [49] Gorazd L G, Kovacic E. Computer based dynamic measurements of displacements on bridges [C]. ISA/ IEEE Sensor for Industry. Rosemont Illinois USA: ISA/ IEEE, 2001:142 -144.
    [50] Zhu Y, Chen W M, Huang S L. High Dynamic Multi-Channel Laser Deflect meter for Bridge [C]. International Symposium on Long Span Bridges Research and Monitoring. Hong Kong, 2000, 4:86 - 91.
    [51]章鹏.基于DSP的大跨度缆索承重桥梁挠度测量系统的研究与实现[D].重庆:重庆大学硕士论文, 2002.
    [52]刘念东.桥梁健康监测中激光挠度/位移测量系统的研究与应用[D].重庆:重庆大学硕士论文. 2001, 5:19-21.
    [53] Jorg Albert, Maas Hans2Gerd. Pilot studies on photogrammetric bridge deformation measurement[C]. Weimar Bauhaus University, Marienstrae9, Berlin, Germany, 2002, 11:1-7.
    [54] Whiteman T, LichtiD D, Chandler I. Measurement ofDeflection inConcrete Beams by Close2range Digital Photogrammetry [C]. Symposium on Geospatial Theory, Processing and Applications.Ottawa: 2002, 10:22– 26.
    [55] Sangho B. The Component Development of Digital Close Range Photogrammetry for the Construction Structure DisplacementAnalysis[C]. New Technology for a New Century International Conference. Seoul, Korea: F IG Working Week . 2001, 3:6– 11.
    [56]胡建军,赵文光,文银平,等.用图像处理技术进行结构动态位移监测的研究[J].华中科技大学学报(城市科学版) , 2002, 19 (4) : 34– 38.
    [57]江军,黄发大,赵伟明等.上海徐浦大桥测量监控技术[J].测绘通报, 1999, 5:19-22.
    [58]陈伟民,胡卫军,陈小强等.一种透射式半集成光电液位测量方法[J].仪器仪表学报,2005.4(26):425-428.
    [59]胡柏学,曾威,于德介等.洞庭湖大桥结构状态在线监测系统[J].公路交通科技,2006,7(23):73-77.
    [60]大连基康土木工程仪器公司. DGK-4680等高静力水准仪(沉降仪). http://co.163.com/e_pd_10746_8.htm. 2001.3.15
    [61]杨学山,候兴民.桥梁挠度测量的一种新方法[J].土木工程学报, 2002,35 (2):92– 96.
    [62] Inaudi D, Glisic B. Interferometric inclinometer for structural monitoring[J].Surveying Engineering, 2002, 12(9):51 - 55.
    [63] William F K, TimothyjB. Advances in Highway Slope Stability Instrumentation[C]. Proceedings of the 50th Highway Geology Symposium . Roaholce: VA, 2000. 328 - 337.
    [64]侯兴民,杨学山,马树林等.陶赖昭松花江特大桥挠度测量分析[J].地震工程与工程振动,2003,4,2(23):77-80.
    [65]谭靖,符欲梅,陈伟民.倾斜传感器在高墩桥墩顶位移监测中的应用[J].公路,2005,9(9):23-27.
    [66]徐亚立.桥梁挠度测量方法的探讨[J],铁路建筑,1999, (6):32-33.
    [67]郭临义.拱桥千秋[M].北京:人民交通出版社. 1996,12.
    [68]王国鼎.桥梁计算示例集:拱桥[M].北京:人民交通出版社.1990, 10.
    [69]顾懋清,石绍甫.拱桥<上册>[M].北京:人民交通出版社.2000, 10.
    [70]贺栓海.拱桥挠度理论[M].北京:人民交通出版社. 1996, 12.
    [71]虞建成,邵容光.系杆拱桥横梁内力分析[J].华东公路, 1997,8(107):46-50.
    [72]张俊杰,龚建峰.卢浦大桥空间结构分析[C].上海市公路学会第五届年会学术论文集. 2000, 10:88-92.
    [73]孙俊清,陈辉堂,史家钧.卢浦大桥健康监测系统通信网络设计[J].同济大学学报(自然科学版), 2004,9,(32):1225-1228.
    [74]赵书玉.测量学[M].北京:人民交通出版社,1998,8.
    [75]刘星,吴斌.工程测量学[M].重庆:重庆大学出版社, 2004,1.
    [76]姬玉华,赵冬君.测量学[M].哈尔滨:哈尔滨工业大学出版社,1998,8.
    [77]孙祥元,梅是义.控制测量学<上册>[M].武汉:武汉大学出版社,2002,2.
    [78]孙祥元,梅是义.控制测量学<下册> M].[武汉:武汉大学出版社,2002,2.
    [79]雷小华,陈伟民,岳仁宾等.自动全站仪动态基准测边网变形观测的研究[J].重庆建筑大学学报, 2007,5(29):102-106.
    [80]姜晨光,贺勇,盖玉龙等.用坐标转换法解算单一导线[J].长沙交通学院学报, 2000, 2(17):13-15.
    [81]唐平英.全站仪坐标导线的坐标转换法平差及应用[J].长沙交通学院学报2001,3(17):33-35.
    [82]武汉测绘科技大学测量平差教研室.测量平差基础[M].北京:测绘出版社, 1996,5.
    [83]吴俊昶,刘大杰.控制网测量平差[M].北京:测绘出版社,1990,4.
    [84]洪振杰,郭鹏.标准大气模型建立映射函数的可靠性讨论[J].天文学报, 2004,1(45):68-79.
    [85]徐晖.论测量与大气折射[J].测绘通报, 1995,5:24-33.
    [86]蒋利龙,谭经明,施昆.一种新的大气折光改正模式[J].测绘通报, 2001,8:19-21.
    [87]华锡生,赵钢.自动全站仪监测系统的大气折光改正研究[J].工程勘察, 2001,5:45-49.
    [88]徠卡測量系統(上海)有限公司.徠卡測量系統軟體與方案通訊[J]– No.2<内部资料> . 2004, 12:1-2.
    [89]陈伟民,雷小华,袁鸿铭等.野外光学/光电设备自动防护装置[P],中国专利:ZL200520010475.5, 2007.4.18.
    [90]杨学存.超声波静力水准仪的研制[J].西安:西安科技大学,2005:1-11.
    [91]清华大学水力学教研组.水力学[M].北京:人民教育出版社,1980:469-477.
    [92]王树人.调压室水力计算理论与方法[M].北京:清华大学出版社,1983:17-21.
    [93]齐鄂荣,曾玉红.工程流体力学[M].武汉:武汉大学出版社,2005:53-73.
    [94]刘先志.连通管内理想液柱振动微分方程两种推导的比较[J].应用数学和力学,1980,1(3):301-310.
    [95]林建忠,阮晓东,陈邦国等.流体力学M].北京:清华大学出版社, 2005,9.
    [96]丁祖荣.流体力学<上册>[M].北京:高等教育出版社. 2003.12. 121~133.
    [97]冯有前.数值分析[M.北京:清华大学出版社, 2005,3.
    [98] Arieh lserels著,刘晓艳等译.微分方程数值分析基础教程[M].北京:清华大学出版社, 2005,5.
    [99]肖伟. MATLAB程序设计及应用[M].北京:清华大学出版社, 2005,7.
    [100]张铮,杨文平等. MATLAB程序设计与实例应用[M].北京:铁道出版社, 2003,10.
    [101]姜长泓,王龙山,尤文等.基于平移不变小波的声发射信号去噪研究[J].仪器仪表学报. 2006, 6 (27): 607-610.
    [102]郭彤颖,曲道奎,徐方等.基于小波变换的机器人腕力传感器滤波算法[J].仪器仪表学报. 2006, 6 (27): 556-559.
    [103]蔡靖,王建华,张献民等.小波变换在确定桩裂缝、断桩及浅部缺陷中的应用[J].岩土力学, 2007,3(28):565-568.
    [104]张德祥,高清维,陈军宁.基于小波变换纹理一致性测度的遥感图像融合算法[J].仪器仪表学报, 2007,1(28):158-162.
    [105]韩俊,何明浩,翟卫俊等.基于PRI变换和小波变换的雷达信号分选[J].微计算机信息,2007,3(23):163-165.
    [106]唐晓初.小波分析及其应用[M].重庆:重庆大学出版社, 2006,3.
    [107]杨建国.小波分析及其应用[M].北京:机械工业出版社, 2005,6.
    [108]潘泉,张磊,孟晋丽等.小波滤波方法及应用[M].北京:清华大学出版社. 2005.9: 64-112.
    [109] Gao Hong-Ye. Wavelet shrinkage denosing using the non-negtive garrote[J]. Journal of computational and Graphical statistics. 1998, 7(4):P469~488.
    [110] Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans. Inform. Theory. 1995, 41(3):613-627.
    [111] Patrick J. Sparto, Mohamad P, et al. Wavelet and Short-Time Fourier Transform Analysis of Electromyography for Detection of Back Muscle Fatigue[J]. IEEE Trans. REHA Engrg, 2000, 8 (3): 433-436..
    [112] Daubechies I. Ten lectures on wavelet[M]. Philadelphia, Capital city press,1992: 9-101.Mallat S. A theory for multiresolution signal decomposistion: the wavelet representaion[J]. IEEE Trans. Pattern Anal, 1984, 41(7):909-996.
    [113] Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab. Signals and Systems[M]. Second Edition. Beijing: Pubblishing House of Electronics Industry, 2002.8: 314-317.
    [114]雷小华,陈伟民,刘国平等.连通管式位移测量系统的小波信号处理研究[J].仪器仪表学报. 2007.10(28): 1770-1774.
    [115]刘和平等.TMS320LF240x DSP C语言开发应用[M].北京:北京航空航天大学出版社. 2003:1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700