用户名: 密码: 验证码:
差速双螺杆捏合机型线设计理论及螺旋面高效高精度加工研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于双螺杆啮合几何学以及物料输送行为的复杂性,造成双螺杆捏合挤出过程研究的困难。因此研究具有集输送、捏合、建压及自清洁功能于一体,且能对被加工物料产生高剪切力的新型捏合机具有重要意义。差速双螺杆捏合机是一种新型的可对高粘度物料进行输送、混合、捏合及塑化等操作的双螺杆挤出混炼机构。差速双螺杆捏合机核心部件是一对相互啮合的阴、阳转子,如何有效地设计和加工阴、阳转子螺旋副是提高差速双螺杆捏合机性能的关键。论文从捏合机关键技术出发,系统地研究差速双螺杆捏合机阴、阳螺杆转子螺旋副型线设计、优化,模拟及高效高精度加工等原理与技术。
     利用齿轮啮合理论和双螺杆泵设计原理建立差速双螺杆捏合机螺杆转子型线设计数学模型;研究了差速双螺杆捏合机阴、阳螺杆转子啮合几何学。对阴、阳螺杆转子型线参数进行分析及优化,利用优化设计方法建立阴、阳螺杆转子型线参数优化模型,给出输送效率最高、剪切捏合能力最强的阴、阳螺杆转子螺旋副组成齿曲线及其设计参数,并利用型线设计理论对设计实例进行分析和评价。对剪切捏合性能进行研究,推导出剪切性能最优的安装中心距的计算式。给出组合性能最优的阴、阳转子螺旋副组成齿曲线参数方程及设计结果。
     以差速双螺杆捏合机中输送的非牛顿流体为研究对象,利用有限元分析软件,对输送物料的速度场、压力场等流场特性进行模拟和分析。从螺旋曲面的参数方程出发,利用空间解析几何理论将差速双螺杆捏合机阴、阳转子三维螺旋面坐标转化为对应不同压力腔的二维积分区域,利用数值积分求解作用在转子上的轴向、径向受力以及力矩,为螺杆转子强度计算及捏合机轴承选取提供理论依据。
     阴、阳转子高效精度加工是差速双螺杆捏合机关键技术。论文在分析螺杆转子加工技术现状及加工特点基础上,提出利用基于CBN等超硬刀具材料的螺杆转子高效高精度成形磨削加工方法。根据齿轮空间啮合原理及微分几何理论建立成形加工刀具求解计算理论;利用等距齿面法对成形刀具的实际廓形进行设计以及利用双圆弧样条理论对成形刀具廓形进行光顺处理。建立螺杆转子螺旋面成形磨削加工误差分析数学模型,研究分析安装角误差、安装中心距误差、轴向位置上砂轮半径误差等因素对螺杆转子齿形误差的影响。对螺杆转子成形磨削CBN砂轮修整进行研究,分析利用金刚石修整轮进行CBN砂轮修整设计及修整特性。
     结合当前CBN、PCD等硬质合金刀具材料发展起来的干切削、硬切削等加工方式对螺杆转子螺旋面进行切削加工研究。建立利用指状成形刀具加工螺杆转子数学模型。建立基于多自由度法和空间齿面法线法的精确滚刀轴向截形,揭示出利用滚削法加工螺杆转子螺旋面滚刀基本蜗杆与螺杆转子螺旋面的啮合规律。为实现基于CBN、PCD等硬质合金刀具的螺杆转子高效高精度切削加工奠定基础。
     提出差速双螺杆捏合机CAD/CAM系统需求分析及体系结构、设计流程和加工控制流程;分析CAD/CAM系统设计关键技术;基于以上设计及加工理论,利用C#语言和.NET平台开发出一套可用于差速双螺杆捏合机设计、分析与阴、阳螺杆转子高效高精度加工的CAD/CAM系统。根据差速双螺杆捏合机CAD/CAM系统,利用指状成形铣刀以及基于CBN刀具材料的成形砂轮对差速双螺杆捏合机阴、阳螺杆转子进行加工实验。利用三坐标测量仪对螺杆转子精度进行测量,检测结果表明本文方法可以满足螺杆转子高效高精度加工要求。论文中螺杆转子加工方法可以推广应用于其它类型螺杆转子、圆柱蜗杆、斜齿轮等螺旋曲面高效高精度加工。
It is difficult to study the twin-screw extrusion because of the complexity of geometry and the conveying performance of screw rotors. Differential twin-screw kneader is one kind of novel twin-screw mixing extruder which can be used for high viscosity material conveying, mixing and malaxating, kneading, voltage buildup and self-cleaning functions as well as can generate high shear stress for high viscosity material. The key parts of the differential twin-screw kneader are one couple of intermeshing screw rotors. And how to design and machine the screw rotors is the key problem to enhance the performance of whole machine. This dissertation investigates the theories and applications on the profiles design, optimization and simulations as well as high-performance and high-precision machining of screw rotors from analyzing the key technology for the differential twin-screw kneader.
     The theories of profiles designing and mathematical model for the differential twin-screw kneader are established using theory of gear engagement as well as design method of twin-screw pump. The geometry and meshing properties of the differential twin-screw kneader are studied. The optimization model is built using optimum design method. The design parameters of female and male screw rotors are analyzed and the variable proportions of volumetric efficiency Cn are studied with distance A and tooth number ratio Imf changed. The equation of optimal distance A is deduced when the shivering and crumbing performance are considered. The equations of the profile curves of the female and male screw rotors as well as practical examples are put forward.
     The research is performed for the non-Newtonian fluid transported by the differential twin-screw kneader based on Finite element analysis (FEA) software. The performance simulations, velocity field and pressure field of the fluid, are analyzed. The static load of twin-screw kneader is introduced and a mathematical model on the force and torque moments is presented using numerical integration method based on differential geometry theory. The calculations of the force and torque moments of the twin-screw kneader are given. The static load calculated by the method presented is inclined to be conservative compared with the traditional methods and the results can provide theoretical basis for the strength calculation of screw rotors and the bearing selection.
     The high-performance and high-precision machining is the key technology of the screw rotors for differential twin-screw kneader. After analyzing the current manufacturing technology status, form shaping grinding method is presented based on superhard tool materials diamond/Cubic Boron Nitride(CBN). The theories on solving form shaping tool are established using space gears engagement and differential geometry theory. The contact properties between the helicoids and the shaping tool are analyzed. Offset surface method is used to calculated the actual profiles of shaping tool. Smoothing treatment of the base body of CBN grinding wheel is performed using biarc spline method. The mathematical model of error analysis for CBN shape grinding maching of screw rotors is proposed. Influence curves of tooth errors with mouting angle error and mounting distance error as well as grinding wheel wear are presented. CBN grinding wheel trimmings for machining screw rotors are analyzed. The trimming errors using single diamond pen and diamond dressing gear are induced. The design of diamond wheel for CBN grinding wheel and the dressing characteristics are discussed.
     The mathematical models of milling and hobbing are established aimed at the high-performance and high-precision machining of screw rotors based on cemented carbide tool materials CBN and PCD. The mathematical model of figure shaping tool and hob accuracy design theories of axial section for screw rotors using engagement principles of helical gear drive based on multi-degree-of-freedom theories and normal method of space tooth surface are established, respectively. Above theories demonstrate the engagement features between the helicoids of screw rotors and the basic worm face of hob and provide a theoretical basis for other hob design method so as to lay a theoretical foundation by using reversible carbide tool.
     The requirement analyses, system structure, design and control flows of CAD/CAM system for differential twin-screw kneader are put forward. The key technologies on how to design the CAD/CAM system are analyzed. According to above design and machinine theories of screw rotors for differential twin-screw kneader, one CAD/CAM system using C# language and .NET framework which can be used to design, analyze and machine the screw rotors for differential twin-screw kneader is developed. Corresponding experiments using figure cutter and CBN grinding wheel for female and male rotors as well as precision measurement in three-Coordinate Measuring Machine (CMM) are performed based on the CAD/CAM system. The detection results show that the machining methods can meet the high-performance and high-precision requirement for screw rotors, colomn worms, helical gear, etc.
引文
[1]《化学化工大辞典》编委会,化学工业出版社辞书编辑部编.化学化工大辞典[M].北京:化学工业出版社. 2003(1).
    [2]耿孝正.塑料混合及设备[M].北京:中国轻工业出版社, 1993.
    [3] [美]D. G.贝尔德, D. I.科利斯主编.西鹏等译.聚合物加工设计与原理[M].北京:化学工业出版社, 2003(12).
    [4]吴英桦主编.粘性流体混合设备[M].北京:中国轻工业出版社, 1993.
    [5]冯连芳,王嘉骏,王凯等.流体混合技术新进展[J].化学工程. 2002, 30(2): 70-74.
    [6]张湘亚,陈弘.石油化工流体机械[M].山东:石油大学出版社, 1996.
    [7]北京化工学院,华南工学院主编.塑料机械设计[M].北京:轻工业出版社, 1983.
    [8] L. P. B. M Janssen著.双螺杆挤出[M].耿孝正译.北京:轻工业出版社, 1987.
    [9]柳和生,吕柏源.啮合型双螺杆输送及混合性能评价[J].化工装备技术.1995,16(4): 21-27.
    [10]耿孝正.各种双螺杆挤出机的性能及评价[J].中国塑料. 1995, 9(5): 66-72.
    [11]李庆春,郭奕崇.啮合异向双螺杆混合性能的分析与调控[J]. 2001, 30(6): 29-48.
    [12]朱复华.螺杆设计及其理论基础[M].北京:轻工业出版社,1984.
    [13]北京化工学院,天津轻工业学院主编.塑料成型机械[M].北京:轻工业出版社, 1982.
    [14] Toshihlsa Kajiwara, et al. Numerical study of twin-extruders by three dimensional analysis—development of ana1ysis technique and evaluation of mixing performance for full flight screw [J]. Polym Eng Sci, 1996, 36(16): 21-42.
    [15] M. L. Booy. Isothermal flow of viscous liquids in co-rotating twin screw devices [J]. Polym Eng Sci, 1980, 20(18):12-20.
    [16] Aylin Altan, Kathryn L. McCarthy, Medeni Maskan. Twin-screw extrusion of barley-grape performance blends: Extrudate characteristics and determination of optimum processing conditions [J]. Journal of Food Engineering, 2008, 89(1): 24-32.
    [17] B. Van Melkebeke, C. Vervaet, J. P. Remon. Validation of a continuous granulation process using a twin-screw extruder [J]. International Journal of Pharmaceutics, 2008, 356(1-2): 224-230.
    [18] E. Verhoeven, T. R. M. De Beer, G. Van den Mooter, J. P. Remon, C. Vervaet. Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(1):312-319.
    [19] Babu Padmanabhan. Understanding the Extruder Processing Zone: the heart of a twin screwextruder [J]. Plastics, Additives and Compounding, 2008, 10(2)2: 30-35.
    [20] Ajay Kumar, Girish M. Ganjyal, David D. Jones, Milford A. Hanna. Modeling residence time distribution in a twin-screw extruder as a series of ideal steady-state flow reactors [J]. Journal of Food Engineering, 2008, 84(3):441-448.
    [21] Jennifer Markarian. Efficiency improvements in compounding extruders [J]. Plastics, Additives and Compounding, 2007, 9(5): 48-51.
    [22] Serafim Bakalis, Mukund V. Karwe. Velocity distributions and volume flow rates in the nip and translational regions of a co-rotating, self-wiping, twin-screw extruder [J]. Journal of Food Engineering, 2002,51(4): 273-282.
    [23] L. Prat, S. N’Diaye, L. Rigal, C. Gourdon. Solid-liquid transport in a modified co-rotating twin-screw extruder—dynamic simulator and experimental validations [J]. Chemical Engineering and Processing, 2004,43(7): 881-886.
    [24]朱向哲,苗一,谢禹钧.非牛顿流体在双螺杆反应器中流动特性的三维流场分析[J].石油化工设备, 2005, 34(5): 23-27.
    [25] Achim Dittler, Thomas Bamberger, Dietrich Gehrmann, Ernst-Ulrich Schlünder. Measurement and simulation of the vacuum contact drying of pastes in a LIST-type kneader drier [J]. Chemical Engineering and Processing, 1997, 36(4): 301-308.
    [26] E. J. Troelstra, L. L. V. Dierendonck, L. P. B. M. Janssen, S. Maeder, A. Renken. Radical addition polymerisation of acrylates in a Buss-Kneader [J]. Chemical Engineering Science, 1996, 51(10): 2479-2488.
    [27] H. Lombois-Burger, P. Colombet, J. L. Halary, H. Van Damme. Kneading and extrusion of dense polymer-cement pastes [J]. Cement and Concrete Research, 2006, 36(11): 2086-2097.
    [28] Jacobson Machine Works, Inc., USA, Vertical Feed Mixer.
    [29] New generation of Collin-Kneaders for R&D [J]. Plastics Additives & Compounding. July/August 2003.
    [30]吕树滨,于宗春等. SLS型双螺旋送料机的研制[J].机械设计与制造.1997:41-43.
    [31]张平亮.双螺杆挤出机的进展及其应用[J].工程塑料应用, 2005,33(5):56-59.
    [32]张平亮.新型的聚合反应装置及其技术[J].化工设备设计, 1996, 33(4):43.
    [33]刘廷年,魏丽华等.聚合物成型机械[M].北京:中国轻工业出版社. 2005(7).
    [34]周凤举.差速捏合机原理及其在粉体工程中的应用[J].炭素技术, 2001:38.
    [35]周凤举.差速捏合机原理及应用[J].有机氟工业, 2000, 10(4):11-12.
    [36]周凤举.双轴差速逆向旋转螺旋副[P].专利号:00244986.2.
    [37]刘慧,曹达鹏,欧志英.异向双螺杆挤出机啮合原理及计算机辅助设计(CAD)[J] .中国塑料, 1996, 10(1):59-66.
    [38]吴序堂.齿轮啮合原理[M].北京:机械工业出版社. 1982,1.
    [39] F. J. Carreras, O. G. Medrano, A. M. Naveira, Differential Geometry [M]. Springer-Verlag Berlin and Heidelberg GmbH & Co. K,1989,11.
    [40] F. L. Litvin and A. Fuentes. Gear geometry and applied theory [M], United Kingdom: Cambridge University Press. 2nd Edition, 2004.
    [41]张光辉,王朝晋.活动标架的应用及Baxter诱导法曲率公式的改进[J].重庆大学学报, 1983,2:4-15.
    [42]杨涛.差速双螺杆捏合机螺杆几何构形及其计算机辅助设计[D].重庆大学, 2006.
    [43]王中双.螺杆式压缩机漏泄三角形面积的数值计算方法[J].齐齐哈尔大学学报, 1991,(02)
    [44]邢子文.螺杆压缩机—理论、设计及应用[M] .北京,机械工业出版社,2000
    [45] G. B?hme, O. Wünsch. Analysis of shear-thinning fluid flow in intermeshing twin-screw extruders [J]. Archive of Applied Mechanics, 1997,67: 167-178.
    [46] N.Sombatsompop, M.Panapoy. Effect of screw rotating speed on polymer melt temperature profiles in twin screw extruder [J]. J Material Sci, 2000,35(1): 6131- 6137.
    [47] F. A. Kougiya. Improvement in extruder productivity [J]. Chemical and Petroleum Engineering,2003,39(7): 381-383.
    [48]张琳,瞿金平,李建波.振动力场强化单螺杆挤出固体输送的离散单元法模拟[J].中国机械工程,2006,17(22):2406-2410.
    [49] Gaur Ruchi, Gupta Anshu, S.K. Khare. Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application [J]. Bioresource Technology, 2008,99(11):4796-4802 .
    [50] Huang Hanxiong, Jiang Guo, Mao Shanqiang. Microstructure and on-line shear viscosity of PP/nano-CaCO3 composites prepared by twin-screw extruder [J]. J Material Sci, 2006,10(1):1007-1012.
    [51] A. A.Tatarnikov, L. V. Burtelov, D. B. Gorbunov. Effect of leakage flow on processing of resinous mixtures in the pressure zone of an extruder [J]. Chemical and Petroleum Engineering, 2005,41(3):174-179.
    [52] Toshihlsa Kajiwara. Numerical study of twin-extruders by three dimensional analysis-development of ana1ysis technique and evaluation of mixing performance for full flight screw [J]. Polym Eng Sci, 1996, 36(16): 21-42.
    [53] T. W. Lee, The Finite Element Analysis and the optimum geometric design of linear motor [J]. International Journal of Precision Engineering and Manufacturing, 2005, 6(4):73-76.
    [54]卢险峰.最优化方法应用基础[M].上海:同济大学出版社,2003,8.
    [55]《数学在螺杆泵设计与制造中的应用》编写组.数学在螺杆泵设计与制造中的应用[M].北京:科学出版社. 1977,2.
    [56] M.A. Barrera, J.F. Vega, J. Martínez-Salazar. Three-dimensional modeling of flow curves in co-rotating twin-screw extruder elements [J]. Journal of Materials Processing Technology, 2008, 197(1-3): 221-224.
    [57] F. Bertrand, F. Thibault, L. Delamare, P. A. Tanguy. Adaptive finite element simulations of fluid flow in twin-screw extruders [J]. Computers & Chemical Engineering, 2003,27(4): 491-500.
    [58] K. J. Ganzeveld, J. E. Capel, D. J. Van Der Wal, L. P. B. M. Janssen. The modeling of counter-rotating twin screw extruders as reactors for single-component reactions [J]. Chemical Engineering Science, 1994,49(10): 1639-1649.
    [59] Witold Szydlowski, James L. White. A non-Newtonian model of flow in a kneading disc region of a modular intermeshing corotating twin screw extruder [J]. Journal of Non-Newtonian Fluid Mechanics, 1988,28(1): 29-46.
    [60]李金莎,许澍华.异向平行啮合型双螺杆挤出机熔体输送段三维流场分析[J].北京化工大学学报, 2001,28(3): 46-49.
    [61] S. V. Atoyan, M. B.Generalov, N. S. Trutnev. Calculation of force parameters during compaction of powder materials in screw extruders [J]. Chemical and Petroleum Engineering, 1998, 34(11-12): 730-734.
    [62] G. P. Adams, W. Soedel. Computation of compression loads in twin screw compressors [J]. Journal of Mechanical Design, Transaction of ASME, 1995, 117(6): 512-519.
    [63] Z. Zhou, D. Wang, T. Zhu. Analysis of the Applied Forces in Twin-screw Refrigerant Compressors[J]. In: Schuetz, W., Proceedings of International Compressor Engineering Conference. West Lafayette: Purdue University, 1990,1:8-15.
    [64] A. Kumar, G. M. Ganjyal, D. D. Jones, M. A. Hanna. Modeling residence time distribution in a twin-screw extruder as a series of ideal steady-state flow reactors [J]. Journal of Food Engineering, 2008,84(3): 441-448.
    [65] F. J. Carreras, O. G. Medrano, A. M. Naveira. Differential Geometry [M]. Springer-Verlag, 1989 .
    [66] A. O. Adewale. Newtonian flow in an inter-meshing counter-rotating twin screw extruder [J]. Journal of Material processing Technology, 2002,128(1-3):196-204.
    [67] E. Salje, H. G. V. Machensen. Dressing of Conventional and CBN Wheels with Diamond Form Rollers [J]. CIRP Annals - Manufacturing Technology, 1984, 33(1):205-209.
    [68] D. J. Stephenson, T. Jin, J. Conbett. High efficiency deep grinding of low alloy steel with plated CBN wheels [J]. CIRP Annals - Manufacturing Technology. 2003,52(1):241-244.
    [69] M. J. Jackson, C. J. Davis, M. P. Hitchiner, B. Mills. High-speed grinding with CBN grinding wheels-applications and future technology [J], Journal of Materials Processing Technology. 2001, 110(1): 78-88..
    [70] B. Podgornik, S. Hogmark, O. Sandberg. Proper coating selection for improved galling performance of forming tool steel[J].Wear, 2006,261(1): 15-21.
    [71] J. Kopac, P. Krajnik. High-performance grinding—A review [J]. Journal of Materials Processing Technology, 2006,175(1-3): 278-284.
    [72] Chien-Fa Chen, Chung-Biau Tsay. Tooth profile design for the manufacture of helical gear sets with small numbers of teeth [J]. International Journal of Machine Tools and Manufacture, 2005:45(12-13):1531-1541.
    [73] Faydor L. Litvin, Ignacio Gonzalez-Perez, Alfonso Fuentes, et al. Generalized concept of meshing and contact of involute crossed helical gears and its application [J]. Computer Methods in Applied Mechanics and Engineering, 2005,194(34-35):3710-3745.
    [74] Brian P. Mann, Ben T. Edes, Sam J. Easley, et al. Chatter vibration and surface location error prediction for helical end mills [J]. International Journal of Machine Tools and Manufacture, 2008,48(3.4):350-361.
    [75] Y. S. Lee. Mathematical modeling using different end mills and tool placement problem for 4 and 5-axis NC complex surface machining [J], International Journal of Production Research, 2002,36(3):785-814.
    [76] S. Kaldor, Ada Mod Rafael, D. Messinger. On the CAD of Profiles for Cutters and Helical Flutes - Geometrical Aspects [J]. CIRP Annals - Manufacturing Technology, 1984,37(1):53-56.
    [77] B. E. Kambaram, S. Malkin, CAD software for helical flute contour of twist drills [J]. Transactions of NAMKI/SME. 1994,22.
    [78]吴大任.微分几何讲义[M].北京:人民教育出版社.1989,5.
    [79]王树人.圆弧圆柱蜗杆传动[M].天津:天津大学出版社.1991,1.
    [80]唐余勇.机械工程中常用的几何模型[M].北京:国防工业出版社.1989.
    [81]唐余勇.磨削高精度螺旋面的通用数学模型[J].机械工程学报, 1991,27(3):32-37.
    [82]王树国,王朋德,唐余勇等.机械工程中的几何仿真、建模与求解[M].北京:国防工业出版社. 1993,5.
    [83]周志雄,袁建军,林丞.微钻头计算机辅助设计及其仿真系统的研究[J].机械工程学报.2000,36(6):52-54.
    [84]周志雄,袁建军,林丞.微钻头螺旋槽的数学模型及其CAD方法[J].中国机械工程. 2000,11(11):1284-1288.
    [85]冯德申.包络原理及其在机械方面的应用[M].北京:冶金出版社.1994,12.
    [86]郑昌龄.螺旋面加工截形计算的通用化[J].新技术新工艺.1997,5:13-15.
    [87]姚南珣.复杂曲面优化造型[M].大连:大连理工大学出版社.1996,12.
    [88]景宁.双螺杆加工新工艺及其支持系统的研究[D].大连理工大学博士学位论文.2002.
    [89]安定容.离合器螺旋曲面的加工[J].山西焦煤科技.2003,11:19-20.
    [90]赵迎祥,鲁开讲,李天恩.三爪离合器螺旋面在数控加工中的数学处理[J].宝鸡文理学院学报. 2001,21(1):59-62.
    [91]田秀萍.螺旋转子共轭铣刀曲面的理论分析及计算机绘制[J].太原理工大学学报.1998,29(4):393-395.
    [92]郑梅生,席文明.对称型螺杆加工成型立铣刀计算方法的研究[J].南京林业大学学报.1996,20(4):81-83.
    [93]王可,赵文珍,唐宗军等.异形螺杆无瞬心包络铣削技术研究[J].中国机械工程, 2001,12(3):294-296.
    [94] C. S. Holmes. Flexible Profile Grinding of Screw Compressor Rotors [A], Yong zhang Y. U., ed. Proceedings of the 3rd International Compressor Technique Conference [C]. Xi’an: Xi’an Jiao tong university Press. 2001,1:162-172.
    [95] Jack Sauls. Application of Manufacturing Simulation for Screw Compressor Rotors [A] Werner Soedel. Proceedings of the 2000 International Compressor Engineering Conference at Purdue[C]. West Lafayette: Purdue University, 2000, 2: 877-884.
    [96] J. S. Fleming, T. Yan, H. Anderson. Twin Screw Compressor Performance and its Relationship with Rotor Cutter Blade Shape and Manufacturing Cost [A]. Werner Soedel. Proceedings of the 1994 International Compressor Engineering Conference at Purdue [C]. West Lafayette: Purdue University. 1994,2: 647-652.
    [97] Jung Do Suh, Dai Gil Lee. Manufacture of composite screw rotors for air compressors by RTM process. Journal of Materials Processing Technology. Vol.113,No.5,2001:196-201.
    [98]彭学院等.螺杆压缩机滚刀的设计方法[J].西安交通大学学报. 2003,37(1):103-104.
    [99]彭学院,吴华根,邢子文.加工螺杆转子的滚刀刃形设计[J].西安交通大学学报.2003, 37(1):103-104.
    [100]伍贤君.螺杆压缩机转子磨削成形法[J].流体机械[J]. 2000,28(7):33-35.
    [101]彭如恕,刘杰华.螺杆压缩机转子滚刀刀刃分离廓形的精确解析[J].工具技术. 1999, 33(1):21-23.
    [102]艾兴,刘战强.高速切削加工技术[M].北京:国防工业出版社,2003.
    [103]艾兴.高速切削刀具技术的现状和展望[R].中国科协2004年学术年会报告, 2004.
    [104]李圣怡,戴一帆.超精密加工机床新进展[J].机械工程学报, 2004.
    [105] Lin Li. The advances and characteristics of high power diode laser materials processing [J].Optics and Lasers in Engineering. 2000,34:231-253.
    [106] Noaker P M.高速铣削加工的发展[J].国外金属加工. 1999,2:23-28.
    [107] Ohmori H., Katahira K., Uehara Y., Watanabe K., Lin W.. Improvement of mechanical strength of micro tools by controlling surface characteristics [J]. CIPP Annals-Manufacturing Technology. 2003,52(1):467-470.
    [108] Okuyama Shigeki, Watanabe Koraro, Yonago Masaru. Basic study on the combination machining of ELID-grinding and EDM [J]. Journal of the Japan Society for precision Engineering, 1998,64(3):470-474.
    [109] H. Schulz. High-speed machining [J]. Annals of the CIPP. 1992,41(2):637-642.
    [110] J.A. Sanchez, I. Pombo, I. Cabanes, et al. Electrical discharge truing of metal-bonded CBN wheels using single-point electrode [J]. International Journal of Machine Tools and Manufacture, 2008,48(3.4):362-370.
    [111] G. Hu, H. Otaki, K. Watanuki. Motion analysis of a tumbling ball mill based on non-linear optimization [J]. Minerals Engineering, 2000,13(8-9): 933-947.
    [112] T.M.A. Maksoud. Heat transfer model for creep-feed grinding [J]. Journal of Materials Processing Technology, 2005,168(3): 448-463.
    [113] C. Guo, M. Campomanes, D. Mcintosh, et al. Model-based monitoring and control of continuous dress creep-Feed form grinding [J]. CIRP Annals-Manufacturing Technology, 2004, 53(1):263-266.
    [114] C. Guo, M. Campomanes, D. Mcintosh, et al. Optimization of continuous dress creep-feed form grinding process [J]. CIRP Annals-Manufacturing Technology, 2003,52(1): 259-262.
    [115] S. Ghosh, A. B. Chattopadhyay, S. Paul. Modelling of specific energy requirement during high-efficiency deep grinding [J]. International Journal of Machine Tools and Manufacture, 2008,48(11):1242-1253.
    [116] T. Jin, D. J. Stephenson. Three dimensional finite element simulation of transient heat transfer in high efficiency deep grinding [J]. CIRP Annals - Manufacturing Technology, 2004, 53(1):259-262.
    [117] T. Jin, D. J. Stephenson. Investigation of the heat partitioning in high efficiency deep grinding [J]. International Journal of Machine Tools and Manufacture, 2003,43(11):1129-1134.
    [118] D. J. Stephenson, T. Jin, J. Corbett. High efficiency deep grinding of a low alloy steel with plated CBN wheels [J]. CIRP Annals - Manufacturing Technology, 2002,51(1): 241-244.
    [119] H. K. T?nshoff, T. Friemuth, J. C. Becker. Process monitoring in grinding [J]. CIRP Annals - Manufacturing Technology, 2002,51(2):551-571.
    [120] J. Webster, M. Tricard. Innovations in abrasive products for precision grinding [J]. CIRPAnnals - Manufacturing Technology, 2004,53(2):597-617.
    [121] X. P. Xu, Y. Q. Yu, H. J. Xu. Effect of grinding temperature on the surface integrity of a nickel-based super alloy [J]. Journal of Materials Processing Technology, 2002,129:359-363.
    [122] R. P. Upadhyaya, J. H. Fiecoat. Factors affecting grinding performance with electroplated CBN wheels [J]. CIRP Annals - Manufacturing Technology,2007,56(1):339-342.
    [123] M. J. Jackson, C. J. Davis, M. P. Hitchiner, et al. High-speed grinding with CBN grinding wheels-applications and future technology [J]. Journal of Materials Processing Technology, 2001,110(1):78-88.
    [124] M. J. Jackson, B. Mills. Materials selection applied to vitrified alumina & CBN grinding wheels [J]. Journal of Materials Processing Technology,2000,108(1)114-124.
    [125] Andrzej Go??bczak, Tomasz Koziarski. Assessment method of cutting ability of CBN grinding wheels [J]. International Journal of Machine Tools and Manufacture, 2005, 45(11):1256-1260.
    [126]刘书华,文良起,瞿建武.非圆曲线的最小二乘拟合法[J].新技术新工艺, 2001,7:12-14.
    [127]杜家熙,周德信.用圆弧逼近方法处理列表曲线轮廓[J].机械研究与应用, 2003,16(3):53-54.
    [128] D. S. Meek, D. J. Walton. An arc spline approximation to a clothoid [J]. Journal of Computational and Applied Mathematics,2004,170 (1):59-77.
    [129] G. W. Vickers, C. Bradly. Curved surface machining through circular arc interpolation [J]. Computer in Industry. 1992,19:329-337.
    [130] X. N. Yang, G. Z. Wang. Planar point set fairing and fitting by arc splines [J]. Computer-Aided Design,2001,33:35-43.
    [131] H. Y. You, P. Q. Ye, J. S. Wang, et al. Design and application of CBN shape grinding wheel for gears [J]. International Journal of Machine Tools & Manufacture, 2003,43:1269-1277.
    [132] J. Sch?nherr. Smooth biarc curves [J]. Computer-Aided Design, 1993, 25:365-370.
    [133] Y. J. Tseng, Y. D. Chen. Three dimensional biarc approximation of freeform surfaces for machining tool path generation [J]. International Journal of Production Research, 2000,38(4), 739-763.
    [134] M. J. Jackson. Sintering and vitrification heat treatment of cBN grinding wheels [J]. Journal of Materials Processing Technology, 2007,191(1-3): 232-234.
    [135] X. Chen, W. B. Rowe, R. Cai. Precision grinding using CBN wheels [J]. International Journal of Machine Tools and Manufacture, 2002,42(5):585-593.
    [136]任敬心,华定安.磨削原理.西安:西北工业大学出版社,1988,6.
    [137] Z. Shi, S. Malkin. An investigation of grinding with wlectroplated CBN wheels [J]. CIRP Annals - Manufacturing Technology, 2003,52(1):267-270.
    [138] Albert J. Shih. An experimental investigation of rotary diamond truing and dressing of vitreous bond wheels for ceramic grinding [J]. International Journal of Machine Tools and Manufacture, 2000,40(12):1755-1774.
    [139] Syoji K., Zhou L. Studies on Truing and Dressing of Diamond wheels (1st report) [J]. Japan Society of Precision Engineering, 1991,13(1): 157-158.
    [140] H. Nakazono, H. Yasui, M. Kurusu, A. Hosokawa. Studies on Dressing of the Resin-bond CBN Grinding Wheel (1st report): An investigation of cutting edge distribution [J]. Bulletin of the Japan Society of Precision Engineering, 1990,24(1):51-56.
    [141] E. Saljé, H.G. v. Mackensen. Dressing of conventional and CBN grinding wheels with diamond form rollers [J]. CIRP Annals - Manufacturing Technology, 1984,33(1):205-209.
    [142]王西彬,解丽静.超高速切削技术及其新进展[J].中国机械工程.2000,1(1-2): 190-194.
    [143]庄品,周根然,张明宝等.现代制造系统[M].北京:科学出版社,2005.
    [144]苏建修.高速切削加工发展应用及关键技术[J].机械制造与自动化,2001,(4).
    [145]苏发,李文双,孙洪江,胡金平.超高速切削加工及其关键技术[J].煤矿机械,2004,(7).
    [146]袁峰,王太勇,王双利.高速切削技术的发展与研究[J].机床与液压,2005,(12).
    [147]周慧玲,孙武等.高速加工刀具及工艺参数的优化[J].工具技术,2001,35(6): 14-17.
    [148]李特文著,卢贤占,高业田,王树人译.齿轮啮合原理(第二版)[M].上海:上海科学技术出版社,1984,12.
    [149]刘杰华.刀具精确设计理论与实践[M].北京:国防工业出版社. 2005, 3.
    [150]彭如恕,刘杰华.螺杆压缩机转子滚刀刀刃分离廓形的精确解析[J].工具技术,1999,33(1):21-23.
    [151]刘杰华.螺杆压缩机转子加工技术及其滚削刀具设计关键技术问题探讨[J].中国机械工程,2000,11(4):382-384.
    [152]刘杰华,颜柏华.加工压缩机螺杆转子用新刀具-不铲磨镶齿滚刀的设计[J].流体机械,1997,25(4):39-41.
    [153]彭如恕,欧阳敏玲,李天宝.压缩机转子加工用圆磨法滚刀设计[J].流体机械,2003,31(8):33-85.
    [154]彭学院,吴华根,邢子文.加工螺杆转子的滚刀刃形设计[J].西安交通大学学报,2003,37(1):103-104.
    [155]四川省机械工业局.齿轮刀具设计理论基础[M].北京:机械工业出版社,1982.
    [156]成基华,范玉青等. CAD/CAM开发平台及其发展趋势[J],计算机辅助设计与图形学学报. 2000,12(2):154-159.
    [157] R. M. Pidaparti, S. Jayanti, J. Henkle, H. El-Mounayri. Design simulation of twisted cord–rubber structure using ProE/ANSYS [J].Composite Structures,2001,52(3.4):287-294.
    [158] H.S. Lee, S.L. Chang. Development of a CAD/CAE/CAM system for a robot manipulator [J]. Journal of Materials Processing Technology, 2003,140(1-3):100-104.
    [159]李新华.凸轮机构CAD系统的研究与开发[D].华中农业大学, 2005.
    [160]马岩.基于UG NX的压铸模CAD开发方法的研究及其实现[D].新疆大学, 2007.
    [161]丁彩红,况云峰.基于Solidworks的零件建模的若干方法[J].机械设计与制造, 2006,(05).
    [162]韩福柱,陶春生,周晓光等.慢走丝电火花线切割粗加工仿真系统的开发[J].机械工程学报,2006,42(6):101-105.
    [163]狄士春,黄瑞宁,于滨等.慢走丝电火花线切割脉冲电源的研究现状及发展趋势[J].航空精密制造技术,2004,40(6):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700