用户名: 密码: 验证码:
天花粉蛋白和IL-12p40基因在小鼠同种胰岛移植排斥反应中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是常见慢性疾病之一,会带来一系列并发症,严重威胁患者的健康和生命。胰岛素的问世虽然大大降低了糖尿病患者的死亡率,但其存在低血糖等不良反应,对于糖尿病的并发症也无法有效控制。胰岛移植是有希望替代胰岛素的一种新的治疗措施,接受胰岛移植的患者在一段时期内,在一定程度上可以摆脱对胰岛素的依赖。但是,植入的胰岛不能长期发挥作用,针对移植物的排斥反应是削弱胰岛移植长期效果的重要原因。本项研究即着眼于同种胰岛移植的免疫排斥反应问题,旨在探索排斥反应的相关机制,并用适当干预措施作用于受体获得免疫抑制,以期缓解针对胰岛移植物的排斥作用。
     首先,我们建立了链脲佐菌素诱导的糖尿病小鼠进行肾被膜下胰岛移植的动物模型。在小鼠胰岛的获取上我们吸取了前人的经验并加以改进。然后我们进行了BALB/c小鼠对C57BL/6小鼠的同种胰岛移植,腹腔注射天花粉蛋白来干预受体小鼠的免疫反应,探讨天花粉蛋白对胰岛移植排斥反应的作用和可能的机制,并了解其对胰岛功能的影响。以IL-12p40基因敲除小鼠为移植受体,与野生型的受体相比较,来了解IL-12p40基因及其涉及的免疫环节在小鼠同种胰岛移植排斥中的作用和地位。
     第一部分小鼠胰岛移植模型的建立
     目的:
     建立简便高效的小鼠胰岛获取方法和稳定的糖尿病小鼠胰岛移植动物模型。
     方法:
     (1)用改良的胆囊穿刺胶原酶P灌注法消化小鼠胰腺,了解操作难度和消化效果。分两组(n=6)比较Ficoll梯密度离心法和滤网过滤法纯化胰岛的效果。(2)用链脲佐菌素诱导小鼠糖尿病,行肾被膜下胰岛移植,观察糖尿病模型的稳定度及胰岛移植后小鼠血糖的纠正情况。
     结果:
     (1)改良的胆囊穿刺胶原酶P灌注方法简单、有效,胰腺消化充分,胰岛形态良好;胰岛纯化方法上,滤网过滤法获得的胰岛数量和纯度都比Ficoll梯密度离心法要高(P<0.05),而操作时间则显著减少(P<0.01)。胰岛素释放试验显示滤网过滤纯化的胰岛释放胰岛素的能力高于Ficoll梯密度离心法(P<0.05)。(2)链脲佐菌素注射后48小时内小鼠血糖即升高至16.7mmol/L以上形成糖尿病,而胰岛移植(n=10)后第1天血糖即得到纠正,在发生排斥反应以前血糖都能维持正常水平。
     结论:
     胆囊穿刺胶原酶P灌注加滤过纯化的方法简便、高效,是获取小鼠胰岛的有效措施;链脲佐菌素诱导的糖尿病小鼠行肾被膜下胰岛移植是可靠的胰岛移植模型。
     第二部分天花粉蛋白在小鼠同种胰岛移植中的应用
     目的:
     探讨天花粉蛋白(TCS)对小鼠同种胰岛移植排斥反应的抑制作用;探索这种抑制作用的可能机制;初步了解天花粉蛋白对胰岛功能的影响。
     方法:
     (1)行BALB/c小鼠至C57BL/6小鼠的同种异基因胰岛移植,随机分为天花粉蛋白腹腔注射组(n=6)和对照组(n=6),移植后每天测血糖,了解胰岛移植物存活时间。(2)设TCS组、胰岛移植组、胰岛移植+TCS组和空白对照组(每组n=5),检测各组T细胞增殖水平和分泌IFN-γ水平,及外周淋巴组织内T细胞的组成比例,探索天花粉蛋白的抑制作用机理。(3)体内实验,检测天花粉蛋白使用前、后胰岛移植物分泌C肽的水平;体外实验,胰岛培养时加入天花粉蛋白,做胰岛素释放试验并与对照组比较,了解其对胰岛功能的影响。
     结果:
     (1)天花粉蛋白腹腔注射组胰岛移植物存活时间为12.2±1.7天,对照组为9.7±1.4天,移植物存活时间有所延长(P<0.05)。(2)天花粉蛋白注射后T细胞对供体特异性抗原刺激的增殖反应明显减弱(P<0.05);分泌IFN-γ水平下降;外周淋巴组织内调节型T细胞比例上升。(3)体内实验,天花粉蛋白使用前、后C肽水平无明显改变;体外实验,胰岛培养时加入天花粉蛋白,胰岛分泌胰岛素的水平下降(P<0.05)。
     结论:
     天花粉蛋白可以减缓小鼠同种胰岛移植的排斥反应;其机制可能与天花粉蛋白抑制小鼠的抗原特异性T细胞增殖及上调调节型T细胞有关。天花粉蛋白直接作用于胰岛,对胰岛的功能有抑制作用。
     第三部分IL-12p40在胰岛移植排斥反应中作用的研究
     目的:
     了解IL-12p40基因在小鼠同种胰岛移植排斥反应中的作用,探索IL-12p40基因缺陷所导致的Th1向Th2的免疫偏离能否产生对同种胰岛移植的免疫耐受。
     方法:
     用IL-12p40基因敲除小鼠为受体行同种胰岛移植(n=7),与野生型受体(n=6)比较,观察胰岛移植物存活时间,移植区域CD4~+和CD8~+T细胞的浸润情况,以及细胞因子IL-4和IFN-γ的表达水平。
     结果:
     IL-12p40基因敲除受体胰岛移植物的存活时间为10.0±2.9天,对照组为9.7±2.1天,差异无统计学意义(P>0.05);两组小鼠移植区域CD4~+和CD8~+T细胞的浸润情况,以及细胞因子IL-4和IFN-γ的表达水平都没有明显差异。
     结论:
     IL-12p40基因缺陷所导致的受体Th1向Th2的免疫偏离不能明显减弱小鼠同种胰岛移植的排斥反应,因此也无法诱导免疫耐受。
     我们的实验从药物干预和基因敲除两方面来探讨小鼠同种胰岛移植排斥反应的发生机制及防治措施。初步探索了中药成分天花粉蛋白在对抗免疫排斥中的作用和机制,也明确了IL-12p40基因缺陷无法导致对同种胰岛移植物的免疫耐受。研究结果有助于加深对胰岛移植排斥反应及免疫耐受的认识,对在移植领域进一步研究应用天花粉蛋白或其他中药成分起到了积极作用。
Diabetes mellitus is one of the common chronic diseases with a lot of complications threatening health and life of patients.Although the application of insulin had saved lives of many diabetes patients,hypoglycemia is one of its adverse effects and complications of diabetes mellitus can not be controlled thoroughly.Islet transplantation is a new hopeful therapeutic measure in instead of insulin injection. Patients who accepted islet transplantation could get rid of insulin in some extent.But islet allograft could not be functional constantly,rejection toward allograft is the main reason.This study was interested in mechanisms of allograft rejection in islet transplantation.In order to prolong allograft survival of islet transplantation,we applied immunosuppressive drugs to recipient to prevent the rejection.
     We established the model of streptozotocin induced diabetes mouse on the first step and then allogenic islets were transplanted beneath the capsule of the left kidney.We modified the method of pancreas digestion and islet purification based on previous studies.Then we studied the allo-transplantantion of islet from BALB/c mice to C57BL/6 mice.Trichosanthin was injected intraperitoneally to affect the immune response of recipient mice.Influence to function of islet and immunosuppressive effect was assessed and its mechanisms were investigated.In purpose of comprehend the role of IL-12p40 in allograft rejection of islet transplantation,we compared the immune rejections in recipients of IL-12p40 knock-out mice and wild type C57BL/6 mice.
     PartⅠEstablishment of islet transplantation model in mouse
     Objective:
     To obtain a convenient and high performance method of harvesting mouse islet,and establish a stable model of islet transplantation in diabetes mouse.
     Methods:
     (1) Mouse pancreas was digested by collagenase P which was perfused by means of a gallbladder puncture.We observed the result of digestion and difficulty of operation. We compared the results of Ficoll density gradient centrifugation and filtration in islet purification(n=6 in each group).(2) We also performed islet transplantation in streptozotocin induced diabetes mice to observe the stability of diabetes model and correction of hyperglycemia after transplantation.
     Results:
     (1) The method of collagenase P perfusion by gallbladder puncture in pancreas digestion is easy and high performance.Filtration is better than Ficoll density gradient centrifugation in islet purification for quantity and purity of islets were elevated (P<0.05),operating time was saved significantly(P<0.01).Insulin release test showed that islets achieved by filtration released more insulin than Ficoll density gradient centrifugation(P<0.05).(2) Hyperglycemia(BG>16.7mmol/L) was induced by streptozotocin injection within 48 hours and it was corrected within 24 hours after islet transplantation(n=10) until rejection happened.
     Conclusions:
     The method of collagenase P perfusion by gallbladder puncture is convenient and high performance in obtaining mouse islet.The animal model of islet transplantation in streptozotocin induced diabetes mouse is stable and reliable.
     PartⅡApplieation of trichosanthin in mouse islet allotransplantation
     Objective:
     To understand the inhibition effect of trichosanthin(TCS) to allograft rejection in mouse islet transplantation and investigate its possible mechanisms.To initially find the affect of TCS upon the islet function.
     Methods:
     (1) Control group(n=6) and TCS injection group(n=6) were set in mice with BALB/c to C57BL/6 islet transplantation.Blood glucose was tested in both groups daily to obtain the survival time of allografts.(2) Control group,TCS injection group, islet transplant group and transplant plus TCS group(n=5 in each group) were set.In all groups,T cell proliferation rate,IFN-γsecreting level and T cell ratio in peripheral lymph organs were detected to investigate mechanisms of trichosanthin in inhibiting rejection.(3) In vivo,we detected C peptide level secreted by islet graft before and after trichosanthin injection.In vitro,insulin release test was applied after islet culture with trichosanthin to comprehend whether trichosanthin could affect islet function.
     Results:
     (1) The mean survival time of islet allograft in TCS group was 12.2±1.7 days,and it was 9.7±1.4 days in control group,survival time was prolonged after trichosanthin injection(P<0.05).(2) Donor antigen specific T cell proliferation rate and IFN-γ secreting level were depressed and regulatory T cell ratio in peripheral lymph organs was elevated after trichosanthin injection.(3) In vivo,C peptide levels were similar before and after trichosanthin injection.In vitro,insulin secreting level of islet was depressed after cultivation with trichosanthin(P<0.05).
     Conclusions:
     Trichosanthin could inhibit allograft rejection in mouse islet transplantation. Inhibition of antigen specific T cell proliferation and up-regulation of regulatory T cell are possible mechanisms.Thrichosanthin could inhibit function of mouse islet when contact directly.
     PartⅢStudying the role of IL-12p40 in allograft rejection of islet transplantation
     Objective:
     To comprehend the role of IL-12p40 gene in allograft rejection in mouse islet transplantation and investigate whether IL-12p40 gene deficiency induced Thl to Th2 immune deviation could lead to immune tolerance to islet allotransplantation.
     Methods:
     The survival time of islet allografts,infiltration of CD4~+ and CD8~+ T cell and expression levels of IL-4 and IFN-γin graft region were observed and compared between IL-12p40 knock-out(n=7) and wild type(n=6) recipients.
     Results:
     Mean survival time of islet allograft in recipients of IL-12p40 knock-out mice was 10.0±2.9 days,and it was 9.7±2.1 days in wild type recipients,there's no difference between them(P>0.05).Infiltration of CD4~+ and CD8~+ T cell and expression levels of IL-4 and IFN-γin recipients of IL- 12p40 knock-out mice were similar to those in wild type recipients.
     Conclusions:
     Th1 to Th2 immune deviation existing in IL-12p40 deficient mouse recipient could not inhibit allograft rejection in islet transplantation and could not induce immune tolerance either.
     We studied mechanisms and prevention methods of allograft rejection in mouse islet transplantation by means of drug intervention and gene knock-out.Initially applied trichosanthin which is component of Chinese medicine to inhibit allograft rejection in mouse islet transplantation and revealed its possible mechanisms.We also make it clear that IL-12p40 gene deficiency is not sufficient to induce tolerance to islet allograft.Our study is helpful for researchers to understand immune rejection and tolerance in islet transplantation,and it's positive to apply and investigate trichosanthin or other component of Chinese medicine in transplant area.
引文
[1]Bertuzzi F,Marzorati S,Secchi A.Islet cell transplantation[J].Curr Mol Med,2006,6(4):369-374.
    [2]Murdoch TB,McGhee-Wilson D,Shapiro AM,et al.Methods of human islet culture for transplantation[J].Cell Transplant,2004,13(6):605-617.
    [3]king Z,Hannaert JC,Pipeleers D.Effect of nutrients,hormones and serum on survival of rat islet beta cells in culture[J].Diabetologia,1994,37(1):15-21.
    [4]Nanji SA,Shapiro AM.Advances in pancreatic islet transplantation in humans[J].Diabetes Obes Metab,2006,8(1):15-25.
    [5]Riccardo C.Perspectives in pancreatic and islet cell transplantation for the therapy of IDDM[J].Diabetes Care,1997,20(5):889-896.
    [6]Barshes NR,Wyllie S,Goss JA.Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation:implications for intrahepatic grafts[J].J Leukoc Biol,2005,77(5):587-597.
    [7]Berney T,Molano RD,Cattan P,et al.Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis[J].Transplantation,2001,71(1):125-132.
    [8]Arita S,Smith CV,Nagai T,et al.Islet graft primary nonfunction and its prevention[J].Transplant Proc,2000,32(7):1667.
    [9]Emamaullee JA,Shapiro AM.Interventional strategies to prevent beta-cell apoptosis in islet transplantation[J].Diabetes,2006,55(7):1907-1914.
    [10]祁小平,马宝骊.小鼠胰岛的分离及胰岛移植[J].中华器官移植杂志,2001,22(3):176-178.
    [11]Salvalaggio PR,Deng S,Ariyan CE,et al.Islet filtration:a simple and rapid new purification procedure that avoids ficoll and improves islet mass and function[J].Transplantation,2002,74(6):877-879.
    [12]Like AA.Rossini AA.Streptozotocin-induced pancreatic insulitis:new model of diabetes mellitus[J].Science,1976,193(4251):415-417.
    [13]Konrad RJ,Mikolaenko I,Tolar JF,et al.The potential mechanism of the diabetogenic action of streptozotocin:inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase[J].Biochem J,2001,356(Pt1):31-41.
    [14]Peshavaria M,Larmie BL,Lausier J,et al.Regulation of pancreatic beta-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse[J]. Diabetes, 2006, 55(12): 3289-3298.
    [15]Makino S, Kunimoto K, Muraoka Y, et al. Breeding of a non-obese, diabetic strain of mice[J]. Jikken Dobutsu, 1980, 29(1): 1-13.
    [16]Yoshida K, Kikutani H. Genetic and immunological basis of autoimmune diabetes in the NOD mouse[J]. Reviews in Immunogenetics, 2000, 2(1): 140-146.
    [17]Molano RD, Pileggi A, Berney T, et al. Prolonged islet allograft survival in diabetic NOD mice by targeting CD45RB and CD154[J]. Diabetes, 2003, 52(4): 957-964.
    [18] Smith CV, Imagawa DK, Stock PG, et al. Simultaneous islet-liver transplantation: preliminary results from the UC Islet Transplantation Consortium[J]. TransplantProc, 1998, 30(2): 295-296.
    [19] Meier JJ, Hong-McAtee I, Galasso R, et al. Intrahepatic transplanted islets in humans secrete insulin in a coordinate pulsatile manner directly into the liver[J]. Diabetes, 2006, 55(8): 2324-2332.
    [20] Kin T, Rajotte RV, Korbutt GS. Reassessment of the vascularization of renal subcapsular islet grafts[J]. Pancreas, 2004, 29(3): e59-e63.
    [21]Leow CK, Gray DW, Morris PJ. The long-term metabolic function of intraportal and renal subcapsular islet isografts and the effect on glomerular basement membrane thickness in rats[J]. Diabetologia, 38(9): 1014-1024.
    [22] London NJ, Thirdborough SM, Loftus IM, et al. Renal subcapsular islet transplantation in the rat: a comparison of three techniques[J]. Diabetes Res, 1991, 16(2): 81-83.
    [23]Ar'Rajab A, Ahren B, Alumets J, et al. Islet transplantation to the renal subcapsular space improves late complications in streptozotocin-diabetic rats[J]. Eur Sur Res, 1990, 22(5): 270-278.
    [24] Toledo-Pereyra LH, Bandlien KO, Gordon DA, et al. Renal subcapsular islet cell transplantation[J]. Diabetes, 1984, 33(9): 910-914.
    [25]Mellgren A, Schnell Landstrom AH, Petersson B, et al. The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells thanthe liver or spleen[J]. Diabetologia, 1986, 29(9): 670-672.
    [26] Sakamoto Y, Arita S, Nagai T, et al. A marginal number of islets reverses diabetes in mice after overnight culture with beraprost sodium[J]. Transplant Proc, 1998, 30(2): 390.
    [27]Noguchi H, Matsumoto S, Matsushita M, et al. Immunosuppression for islet Tranplantation[J]. Acta Med Okayama, 2006, 60(2):71-76.
    [28] Hirshberg B. Lessons learned from the international trial of the edmonton protocol for islet transplantation[J]. Curr Diab Rep, 2007, 7(4): 301-303.
    [29] Lei H, Qi J, Song J, Yang D, et al. Biosynthesis and bioactivity of trichosanthin in cultured crown gall tissues of Trichosanthes kirilowii Maximowicz[J]. Plant Cell Rep, 2006, 25(11): 1205-1212.
    [30] Chan WY, Ng TB, Yeung HW. Trichosanthin as an abortifacient for terminating early pregnancy in mice[J]. Int J Fertil, 1993, 38(2): 99-107.
    [31] Wang YY, Ouyang DY, Huang H, et al. Enhanced apoptotic action of trichosanthin in HIV-1 infected cells[J]. Biochem Biophys Res Commun, 2005,331(4): 1075-1080.
    [32] Chan WY, Huang H, Tam SC. Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells[J]. Toxicology, 2003, 186(3): 191-203.
    [33] Wang JH, Nie HL, Huang H, et al. Independency of anti-HIV-1 activity from ribosome-inactivating activity of trichosanthin[J]. Biochem Biophys Res Commun, 2003, 302(1): 89-94.
    [34] Shaw PC, Chan WL, Yeung HW, et al. Minireview: trichosanthin--a protein with multiple pharmacological properties [J]. Life Sci, 1994, 55(4): 253-262.
    [35]Chan WL, Zheng YT, Huang H, et al. Relationship between trichos anthin cytotoxicity and its intracellular concentration[J]. Toxicology, 2002, 177(2-3): 245-251.
    [36]Tang NL, Chan WL, Ke YO, et al. Acute renal failure and proximal tubule lesions after trichosanthin injection in rats[J]. Exp Mol Pathol, 1997, 64(2): 78-89.
    [37]Chan WY, Ng TB, Shaw PC. Mouse embryonic development and tumor cell growth under the influence of recombinant trichosanthin (a ribosome inactivating protein) and its muteins[J]. Teratog Carcinog Mutagen, 1995, 15(5): 259-268.
    [38]Garcia PA, Bredesen DE, Vinters HV, et al. Neurological reactions in HIV-infected patients treated with trichosanthin[J]. Neuropathol Appl Neurobiol, 1993, 19(5): 402-405.
    [39] Ko WH, Tam SC. Renal reabsorption of trichosanthin and the effect on GFR[J]. Ren Fail, 1994, 16(3): 359-366.
    [40] An Q, Lei Y, Jia N, et al. Effect of site-directed PEGylation of trichosanthin on its biological activity, immunogenicity, and pharmacokinetics[J]. Biomol Eng, 2007, 24(6):643-649.
    [41]Wang JH,Tam SC,Huang H,et al.Site-directed PEGylation of trichosanthin retained its anti-HIV activity with reduced potency in vitro[J].Biochem Biophys Res Commun,2004,317(4):965-971.
    [42]He XH,Shaw PC,Tam SC.Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation[J].Life Sci,1999,65(4):355-368.
    [43]An Q,Wei S,Mu S,et al.Mapping the antigenic determinants and reducing the immunogenicity of trichosanthin by site-directed mutagenesis[J].J Biomed Sci,2006,13(5):637-643.
    [44]Cai X,Yao G,Xu G,et al.Identification of the amino acid residues in trichosanthin crucial for IgE response[J].Biochem Biophys Res Commun,2002,297(3):510-516.
    [45]Lan P,Zhan W,Wang J,et al.Effect of donor antigen-trichosnthin conjugate in induction of mouse to rat cardiac xenografting tolerance[J].Chin Med J(Engl),1999,112(4):369-372.
    [46]Li F,Mei Y,Wang Y,et al.Trichosanthin inhibits antigen-specific T cell expansion through nitric oxide-mediated apoptosis pathway[J].Cell Immunol,2005,234(1):23-30.
    [47]王保龙,周芸,江阳,等.天花粉蛋白抑制T细胞增殖的免疫学机制研究[J].中华微生物学和免疫学杂志,2005,25(1):64-68.
    [48]Hong J,Fu SL,Shen ZY,et al.Trichosanthin inhibits T cell activation by interfering with the recruitment of ZAP-70 to CD3 zeta chain[J].Cell Res,1998,8(1):33-39.
    [49]Zhou X,Yang N,Lu L,et al.Up-regulation of IL-10 expression in dendritic cells is involved in Trichosanthin-induced immunosuppression[J].Immunol Lett,2007,110(1):74-81.
    [50]Xu W,Hou W,Yao G,et al.Inhibition of Th1-and enhancement of Th2-initiating cytokines and chemokines in trichosanthin- treated macrophages[J].Biochem Biophys Res Commun,2001,284(1):168-172.
    [51]Zhao S,Wang Y,Wei H.Trichosanthin induced Th2 polarization status[J].Cell Mol Immunol,2006,3(4):297-301.
    [52]Zhang C,Gong Y,Ma H,et al.Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells[J].Biochem J, 2001,355(Pt 3):653-661.
    [53]洪建,陆佩华.天花粉蛋白抑制抗CD3mAb诱导的淋巴细胞内PKCα激活[J].上海免疫学杂志,1997,17(6):327-329.
    [54]Zhou H,Jiao Z,Pan J,et al.Immune suppression via IL-4/IL-10-secreting T cells:A nontoxic property of anti-HIV agent Trichosanthin[J].Clin Immunol,2007,122(3):312-322.
    [55]Yang CH,Ji YY,Yeh M.The kinetics of IL-4 and IFN-gamma gene expression in mice after Trichosansin immunization[J].Cell Res,1998,8(4):295-302.
    [56]Chou KY,Fu SL,Li NL,et al.Cis-trans complementation of DQA1-DQB1 genes are modulated by DQ alleles:an immunogenetics analysis of DQ association with the down-regulatory function of CD8 cells in trichosanthin-induced immunosuppression[J].Eur J Immunogenet,1999,26(1):5-13.
    [57]Chou KY,Chan M,Bias WB.Differential expression of the down-regulatory function of CD8 cells in trichosanthin-induced immunosuppression and its genetic control in humans[J].Eur J Immunogenet,1996,23(1):29-40.
    [58]Sakaguchi S.Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self[J].Nat Immunol,2005,6(4):345-352.
    [59]Bluestone JA,Tang Q.How do CD4+CD25+ regulatory T cells control autoimmunity?[J]Curr Opin Immunol,2005,17(6):638-642.
    [60]Fehervari Z,Sakaguchi S.Development and function of CD25+CD4+ regulatory T cells[J].Curr Opin Immunol,2004,16(2):203-208.
    [61]Williams LK,Oliver J,Peterson EL,et al.Gene-environment interactions between CD14 C-260T and endotoxin exposure on Foxp3(+) and foxp3(-) CD4(+)lymphocyte numbers and total serum IgE levels in early childhood[J].Ann Allergy Asthma Immunol,2008,100(2):128-136.
    [62]Merlo A,Tagliabue E,Menard S,et al.Matured human monocyte-derived dendritic cells(MoDCs) induce expansion of CD4(+)CD25(+)FOXP3(+) T cells lacking regulatory properties[J].Immunol Lett,2008,117(1):106-113.
    [63]Tang Q,Bluestone JA.The Foxp3+ regulatory T cell:a jack of all trades,master of regulation[J].Nat Immunol,2008,9(3):239-244.
    [64]Chan WY,Ng TB,Wu PJ,et al.Developmental toxicity and teratogenicity of trichosanthin,a ribosome-inactivating protein,in mice[J].Teratog Carcinog Mutagen,1993,13(2):47-57.
    [65] Shaw PC, Lee KM, Wong KB. Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties[J]. Toxicon, 2005, 45(6): 683-689.
    [66]Mosmann T R., Coffman RL. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties [J]. Annu Rev Immunol, 1989, 7(2): 145-173.
    [67]Tanigawa K, Ohguni S, Kawaguchi M, et al. Insulin release from the pancreas and fuel metabolism during late gestation in chemically diabetic rats[J]. Endocrinol Jpn, 1990, 37(5): 709-717.
    [68]Onodera K, Hancock WW, Graser E, et al. Type 2 helper T cell-type cytokines and the development of "infectious" tolerance in rat cardiac allograft recipients[J]. J Immunol, 1997, 158(4): 1572-1581.
    [69]Qin L, Chavin KD, Ding Y, et al. Retrovirus mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival[J]. J Immunol, 1996, 156(6): 2316-2323.
    [70]Sayegh MH., Akalin E, Hancock WW, et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2[J]. J Exp Med, 1995, 181(5): 1869-1874.
    [71]Nicolls MR, Coulombe M, Diamond AS, et al. Interferon-gamma is not a universal requirement for islet allograft survival[J]. Transplantation, 2002, 74(4): 472-477.
    [72]Nickerson PW, Zheng XX, Steiger J, et al. Prolonged islet allograft acceptance in the absence of interleukin-4 expression[J]. Transpl Immunol, 1996, 4(1): 81-85.
    
    [73]Macatonia SE, Hosken NA, Litton M, et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells[J]. J Immunol, 1995, 154(10): 5071-5079.
    [74]Ha SJ, Kim DJ, Baek KH, et al. IL-23 induces stronger sustained CTL and Th1 immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization[J]. J Immunol, 2004, 172(1): 525-531.
    [75]Magram J, Connaughton SE, Warrier RR, et al. IL-12-deficient mice are defective in IFN-gamma production and type 1 cytokine responses[J]. Immunity, 1996, 4(5): 471-481.
    [76] Brombacher F, Kastelein RA, Alber G . Novel IL-12 family members shed light on the orchestration of Th1 responses[J]. Trends Immunol, 2003, 24(4): 207-212.
    [88] Chen N, Gao Q, Field EH. Prevention of Th1 responses is critical for tolerance. Transplantation 1996; 61(7): 1076-1083.
    [89]Kuchroo VK, Das MP, Brown JA, et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 development pathways: application to autoimmune disease therapy. Cell 1995; 80(5): 707-718.
    [90]Piccotti JR, Chan SY, VanBuskirk AM, et al. Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation 1997; 63(5): 619-624.
    [91] Zheng XX, Steele AW, Hancock WW, et al. Strom. A noncytolytic IL-10/Fc fusion protein prevents diabetes, blocks autoimmunity, and promotes suppressor phenomena in NOD mice. J Immunol 1997; 158(9): 4507-4513.
    [92]Piccotti JR. IL-12 antagonism induces Th2 responses, yet exacerbates cardiac allograft rejection. J Immunol 1996; 157(5): 1951-1957.
    [93] Mueller R, Krahl T, Sarvetnick N. Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in NOD mice. J Exp Med 1996; 184(3): 1093-1099.
    [94] Williamson E, Garside P, Bradley JA, et al. Neutralizing IL-12 during induction of murine acute graft-versus-host disease polarizes the cytokine profile toward a Th2-type alloimmune response and confers long-term protection from disease. J Immunol 1997; 159(3): 1208-1215.
    [95] Leonard J P, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin-12. J Exp Med 1995; 181(1): 381-386.
    [96]Neurath MF, Fuss I, Kelsall BL, et al. Antibodies to interleukin-12 abrogate established experimental colitis in mice. J Exp Med 1995; 182(5): 1281-1290
    [97]Gavett SH, O'Hearn DJ, Li X, et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med 1995; 182(5): 1527-1536.
    [98] Li XC, Zand MS, Li Y, et al. On histocompatibility barriers, Th1 to Th2 immune deviation, and the nature of the allograft responses. J Immunol 1998; 161(5); 2241-2247.
    [99]Langrish CL, McKenzie BS, Wilson NJ, et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96—105.
    [1] Meloche RM. Transplantation for the treatment of type 1 diabetes[J]. World J Gastroenterol, 2007, 13(47): 6347-6355.
    [2] Hogan A, Pileggi A, Ricordi C. Transplantation: current developments and future directions; the future of clinical islet transplantation as a cure for diabetes[J]. Front Biosci, 2008, 13:1192-1205.
    [3] Kemp CB, Knight MJ, Scharp DW, et al. Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats[J]. Diabetologia, 1973, 9(6): 486-491.
    [4] Kemp CB, Scharp DW, Knight MJ, et al. Importance of implantation site of pancreatic islet isografts in treatment of experimental diabetes[J]. Surg Forum, 1973,24:297-299.
    [5] Najarian JS. Islet cell transplantation in treatment of diabetes[J]. Hosp Pract, 1977, 12(10): 63-69.
    [6] Kretschmer GJ, Sutherland DE, Matas AJ, et al. Islet autotransplantation in pancreatectomized dogs: liver vs spleen as a site of pancreatic tissue implantation[J]. Surg Forum, 1977, 28: 292-294.
    [7] Shapiro AM, Lakey JR, Ryan E, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4): 230-238.
    [8] Shapiro AM, Lakey JR. Future trends in islet cell transplantation. Diabetes Technol Ther, 2000, 2(3): 449-452.
    [9] Brandhorst D, Hering BJ. Influence of donor data and organ procurement on human islet isolation[J]. Transpl Proc, 1994, 157 (12): 1804-1810.
    [10] 龚家镇.胰岛移植现状[J].普外临床,1996,11(12):116-118.
    [11]Gray DW, McShane P, Grant A, et al. A method for isolation of islets of Langerhans from the human pancreas[J]. Diabetes, 1984, 33(11): 1055-1061.
    [12] Gray DW. Human pancreatic islet isolation and storage[J]. Transplant Proc, 1989, 21(1 Pt 3): 2608-2610.
    [13] Hesse UJ, Meyer GP, Weyer J, et al. Insitu-intraductal collagenase injection for preparation of isets of langerhans in the pig[J]. Transpl Proc, 1992, 24(3): 1007-1009.
    [14]Hinshow DB, Jelley WB. Islet autotransplantation after pancereatectomy for chronic pancreatitis with a new method of islet preparation[J].Am J Surg,1981,142:118-120.
    [15]Ricordi C,Paul E,Lacy,et al.Automated method for isolation of human pancreatic islets[J].Diabetes,1998,137:1799-1802.
    [16]Bertuzzi F,Marzorati S,Secchi A.Islet Cell Transplantation[J].Curr Mol Med.2006,6(4):369-374
    [17]Stein E,Mullen Y,Watt PC,et al.Reduction in immunogenicity of human islets by 24 degrees C culture[J].Transpl Proc,1994,26(2):755.
    [18]Murdoch TB,McGhee-Wilson D,Shapiro AM,et al.Methods of human islet culture for transplantation[J].Cell transplant,2004,13(6):605-617
    [19]Ling Z,Hannaert JC,Pipeleers D.Effect of nutrients,hormones and serum on survival of rat islet beta cells in culture[J].Diabetologia,1994,37:15-21
    [20]张洪德,钟胜荣,胡远峰等.新生大鼠胰岛冷冻保存方法[J].中华器官移植杂志,1991,12(2):72-75.
    [21]Vasir BS,Gray DW,Morris PJ.Normalization of hyperglycemia in diabetic rats by intraportal transplantation of cryopreserved islets from four donors[J].Diabetes,1989,38(Suppl 1):185-188.
    [22]Andrades P,Asiedu C,Rodriguez C,et al.Subcutaneous pancreatic islet transplantation using fibrin glue as a carrier[J].Transplant Proc,2007,39(1):191-192.
    [23]Yonekawa Y,Okitsu T,Wake K,et al.A new mouse model for intraportal islet transplantation with limited hepatic lobe as a graft site[J].Transplantation,2006,82(5):712-715.
    [24]Juang JH,Hsu BR,Kuo CH.Islet transplantation at subcutaneous and intramuscular sites[J].Transplant Proc,2005,37(8):3479-3481.
    [25]Orlowski T,Godlewska E,Moscicka M,et al.The influence of intraperitoneal transplantation of free and encapsulated Langerhans islets on the second set phenomenon[J].Artif Organs,2003,27(12):1062-1067.
    [26]Juang JH,Kuo CH,Hsu BR.Effects of multiple site implantation on islet transplantation[J].Transplant Proc,2002,34(7):2698-2699.
    [27]Smith CV,Imagawa DK,Stock PG,et al.Simultaneous islet-liver transplantation:preliminary results from the UC Islet Transplantation Consortium[J].Transplant Proc,1998,30(2):295-296.
    [28]Meier JJ,Hong-McAtee I,Galasso R,et al.Intrahepatic transplanted islets in humans secrete insulin in a coordinate pulsatile manner directly into the liver[J]. Diabetes, 2006, 55(8): 2324-2332.
    [29] Robertson RP ,David M. Islet transplantation 2003: questions about its future[J] . Curr Opin Endocrinol Diabetes, 2003, 10(2): 128-132.
    [30]Mellgren A, Schnell Landstrom AH, Petersson B, et al. The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells thanthe liver or spleen[J]. Diabetologia 1986, 29(9): 670-672.
    [31]Toledo-Pereyra LH, Bandlien KO, Gordon DA, et al. Renal subcapsular islet cell transplantation[J]. Diabetes 1984, 33(9): 910-914.
    [32]Paty B, Ryan E, Shapiro A, et al. Intrahepatic islet transplantation in type 1 diabetic patients does not restore hypoglycemic hormone counter regulation or symptom recognition after insulin independence [J]. Diabetes, 2002, 51(12): 3428-3434.
    [33]Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts[J]. J Leukoc Biol, 2005, 77(5): 587-597.
    [34]Berney T, Molano RD, Cattan P, et al. Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis. Transplantation 2001, 71(1): 125-132.
    [35]Arita S, Smith CV, Nagai T, et al. Islet graft primary nonfunction and its prevention[J]. Transplant Proc, 2000, 32(7): 1667.
    [36]Emamaullee JA, Shapiro AM. Interventional strategies to prevent beta-cell apoptosis in islet transplantation. Diabetes, 2006, 55(7): 1907-1914.
    [37]Rickels MR. Kamoun M. Kearns J. et al. Evidence for allograft rejection in an islet transplant recipient and effect on beta-cell secretory capacity[J]. Journal of Clinical Endocrinology & Metabolism, 2007, 92(7): 2410-2414.
    [38]Noguchi H, Matsumoto S, Matsushita M, et al. Immunosuppression for islet Tranplantation[J]. Acta Med Okayama, 2006, 60(2): 71-76.
    [39]Hirshberg B. Lessons learned from the international trial of the edmonton protocol for islet transplantation [J]. Curr Diab Rep, 2007, 7(4): 301-303.
    [40]Toso C, Shapiro AM, Bowker S, Dinyari P, et al. Quality of Life After Islet Transplant: Impact of the Number of Islet Infusions and Metabolic Outcome[J]. Transplantation, 2007, 84(5): 664-666.
    [41] Shapiro AM,Lakey JR, PatyBW, et al. Strategic opportunities in clinical islet transplantation. Transplantation, 2005, 79: 1304-1307.
    [42] Shapiro AM, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation[J]. N Eng J Med, 2006, 355: 1318-1330.
    [43]Desai N, Goss J, Deng S, et al. Elevated portal vein drug levels of sirolimus and tacrolimus in islet transplant recipients: local immunosuppression or islet toxicity? [J] Transplantation, 2003, 76(11): 1623-1625.
    [44] Wijkstrom M, Kenyon NS, Kirchhof N, et al. Islet allograft survival in nonhuman primates immunosuppressed with basiliximab, RAD, and FTY720[J]. Transplantation, 2004, 77: 827-835.
    [45]Horton P J, HawthorneW J,Walters SN, et al. Induction of allogeneic islet tolerance in a large animal model[J]. Cell Transplant, 2000, 9: 877-887.
    [46]Wekerle T, Kurtz J, Ito H, et al. Allogeneic bone marrow transplantation with costimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment[J]. NatMed, 2000, 6: 464-469.
    [47]Gaur L K, Kennedy E,Nitta Y, et al. Induction of donor-specific tolerance to islet allografts in nonhuman primates[J]. Ann N YAcad Sci, 2002, 958: 194-198.
    
    [48] Benhamou PY. Immunomodulation with CTLA4-Ig in islet transplantation[J]. Transplantation, 2002, 73(1 Suppl): S40-42.
    [49] Adams AB, Shirasugi N, Durham MM, et al. Calcineurin inhibitor free CD28 blockade based protocol protects allogeneic islets in nonhuman primates[J]. Diabetes, 2002, 51:265-270.
    [50]AdamsAB, Shirasugi N, Jones TR, et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizeswith LEA29Y to p rolong islet allograft survival[J]. J Immunol, 2005, 174: 542-550.
    [51]Lan P, Yan L, Xiao L. Induction of islet transplantation tolerance with anti-CD4, anti-CD8 immunotoxins and donor soluble antigen[J]. Chin Med J (Engl), 1999, 112(12): 1109-1111.
    [52]Truong W, Plester JC, Hancock WW, et al. Combined coinhibitory and costimulatory modulation with anti-BTLA and CTLA4Ig facilitates tolerance in murine islet allografts[J]. Am J Transplant, 2007, 7(12): 2663-2674.
    [53]Li ZL, Xue WJ, Tian PX, et al. Prolongation of islet allograft survival by coexpression of CTLA4Ig and CD40LIg in mice[J]. Transplant Proc, 2007, 39(10):3436-3437.
    [54] Pan H, Lu HM, Hu WM, et al. Anti-CD25 mAb, anti-IL2 mAb, and IL2 block tolerance induction through anti-CD 154 mAb and rapamycin in xenogeneic islet transplantation[J]. Transplant Proc, 2007, 39(10): 3452-3454.
    [55] Lanza RP, Sullivan SJ, Chick WL. Perspectives in diabetes. Islet transplantation with immunoisolation[J]. Diabetes, 1992, 41(12): 1503-1510.
    [56]Tatarkiewicz K, Garcia M, Omer A, et al. C peptide response after meal challenge in mice transplanted with microencapsulated rat islets[J]. Diabetologia, 2001, 44: 646-665.
    [57]Devos P, Faas MM, Strand B, et al. Alginate based microcapsules for immunoisolation of pancreatic islets[J]. Biomaterials, 2006, 27: 5603-5617.
    [58]Monaco AP. Transplantation of pancreatic islets with immunoexclusion membranes[J]. Transplant Proc, 1993, 25(3): 2234-2236.
    [59] Hill RS, Cruise GM, Hager SR, et al. Immunoisolation of adult porcine islets for the treatment of diabetes mellitus. The use of photopolymerizable polyethylene glycol in the conformal coating of mass-isolated porcine islets[J]. Ann N Y Acad Sci, 1997, 831:332-343.
    [60] Calafiore R, Basta G, Luca G et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases[J]. Diabetes Care, 2006, 29: 137-138.
    [61]Charles K, Harland RC, Ching D, et al. Storage and microencapsulation of islets for transplantation[J]. Cell Transplant, 2000, 9(1): 33-38.
    [62]Trivedi N, Hollister LJ, Lopez A, et al. Increase in beta cell mass in transplanted porcine neonatal pancreatic cell clusters is due to proliferation of beta 2 cells and differentiation of duct cells[J]. Endocrinology, 2001, 142 (5): 2115-2122.
    [63]Soria B, Roche E, Reig JA, et al. Generation of insulin producing cells from stem cells[J]. Novartis Found Symp, 2005, 265: 158-167.
    [64]Hardikar AA, Lees JG, Sidhu KS, Colvin E, Tuch BE. Stem-cell therapy for diabetes cure: how close are we? [J] Curr Stem Cell Res Ther, 2006, 1(3): 425-436.
    [65]Bonner WS, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue[J]. PNAS, 2000, 97(14): 7999-8004.
    
    [66] Yang LJ, Li SW, Heather H, et al. In vitro transdifferentiation of adult hepatic stem cells into pancreatic endocrine hormone producing cells[J]. PNAS, 2002, 99(12): 8078-8083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700