用户名: 密码: 验证码:
异种骨移植材料的制备与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章异种骨移植材料的制备与生物学特性研究
     目的:异种骨移植可以解决临床上自体骨与同种骨来源不足的问题,目前常用的处理方法虽可有效降低其免疫原性,但破坏了骨诱导活性与生物力学性能。α-半乳糖抗原(α-Gal)是主要的异种抗原,本研究拟采用α-半乳糖苷酶消化猪骨组织,旨在探索一种既能去除其抗原性,又保留其力学性能与成骨活性的异种骨材料处理方法。
     方法:(1)猪骨组织的酶消化:取市售新鲜猪骨,清洗去除血液与骨髓组织,酒精脱脂,分别采用酶活性为15U/ml、30U/ml、60U/ml的α-半乳糖苷酶37℃下消化8、16h,彻底清洗;(2)骨组织中α-Gal抗原相对含量的检测:采用ELISA法检测各组酶消化猪骨组织中α-Gal相对含量:猪骨组织粉碎,称取25mg,加抗α-Gal抗原的M86抗体200μl,37℃下孵育1h,充分洗3次后加辣根过氧化物酶标记的羊抗鼠IgM抗体200μl,37℃下孵育1h,洗5次,加底物液孵育,终止反应,测490nm处OD值;(3)猪骨与戊二醛的交联:根据ELISA法检测结果筛选出一组较为合理的酶消化条件,将该组猪骨经戊二醛交联处理,检测交联后猪骨α-Gal抗原相对含量,并与未经酶消化的新鲜猪骨、酶消化猪骨比较,根据结果确定制备方法;(4)猪骨组织的形态学观察:对制备的猪骨进行大体观察、扫描电镜观察,用Smile View软件测量其腔隙的直径;(5)猪骨的力学性能检测:猪松质骨制备成10mm×10mm×20mm规格骨块,按优化筛选的方法酶消化,用电子万能材料试验机检测其抗压强度与弹性模量,以观察酶消化对异种骨材料力学性能的影响。
     采用SPSS11.5统计软件进行统计分析,酶消化猪骨组织α-Gal抗原相对含量采用析因设计的方差分析,不同骨组织中α-Gal相对含量、猪骨抗压性能实验采用多样本均数单向方差分析(One-way ANOVA),组间多重比较方差齐性时采用SNK法,方差不齐时采用Dunnet's T3法,检验水准为α=0.05。
     结果:(1)猪骨组织的酶消化:不同活性的α-半乳糖苷酶消化不同时间的猪骨组织中α-gal抗原含量不同,酶消化一定时间后OD值趋于稳定,优化筛选酶消化条件为酶活性30 U/ml的α-半乳糖苷酶消化8h;(2)猪骨与戊二醛的交联:30U/ml消化8h组与交联组的α-Gal抗原相对含量差异不显著,而与新鲜猪骨有显著性差异(P<0.05)。(3)猪骨的形态学观察:扫描电镜观察表明制备的猪骨为呈三维网状多孔结构,其腔隙大小在150μm-600μm之间,骨小梁上分布有孔径在10μm-100μm的小孔;(4)力学性能检测:各试验组材料的抗压强度、弹性模量均没有统计学上的差异,酶消化对力学性能的无显著影响。
     结论:优化筛选较为合理的猪源性异种骨的酶消化方法为酶活性30U/ml的α-半乳糖苷酶37℃下消化8h,制备方法有效去除了α-Gal抗原,对猪骨材料的形态学结构与力学性能无明显影响。
     第二章异种骨移植材料的生物学评价
     目的:采用体外细胞毒性实验与动物体内实验方法,评价所制备的猪骨材料的生物相容性。
     方法:(1)兔骨髓间充质干细胞(BMSCs)培养:取乳兔四肢骨骨髓,原代培养8-10天后传代培养,用台盼蓝染色方法判定细胞活力,取F1、2、3代细胞,流式细胞仪检测表面抗原CD44阳性率。(2)体外细胞毒性试验:采用MTT法检测猪源性异种骨对BMSCs生长增殖的影响。经酶消化的5mm×5mm×5mm猪源性异种骨小块,参照中华人民共和国国家标准《医疗器械生物学评价》,按1g猪骨:10ml浸提液的比例,无菌密闭容器内10%胎牛血清(FBS)L-DMEM培养液37℃浸取72h,取上清液加作为实验组培养基,以含10%FBS的L-DMEM培养液为对照。以F3代BMSCs为实验细胞,制成细胞浓度约1×10~5/ml的细胞悬液,5%CO_2培养箱37℃培养24h,按组别分别以异种骨浸提液与对照培养液培养,每隔24h取5孔,MTT法检测吸光值。(3)猪骨与兔BMSCs的复合培养:将F3代兔BMSCs消化成浓度为1×10~5/ml左右的细胞悬液,接种子5mm×5mm×5mm的经酶消化的猪骨小块上,加10%FBS的L-DMEM培养基至液面没过骨块,置于5%CO_2培养箱37℃培养,分别于培养的1w,2w,3w,倒置相差显微镜下观察材料周围细胞生长情况,取材后2.5%戊二醛固定3h,脱水,干燥,喷金,扫描电镜下观察细胞的形态与生长情况。(4)动物体内植入局部刺激反应试验:参照国家标准GB/T 16886.6-1997进行异种骨植入材料局部反应评价。Wistar鼠18只,体重150g左右,麻醉,于脊柱两侧皮下及股部肌袋内分别植入规格为5mm×5mm×5mm的猪骨小块与人骨小块。术后大体观察动物饮食、活动、切口反应等情况。分别于术后1、4、12周处死6只大鼠,取出植入块及其周围包裹的组织,行大体观察、组织学观察。
     采用SPSS11.5统计软件进行统计分析,体外细胞毒性实验BMSCs的OD值采用析因设计的方差分析,同一时间点两组数据比较采用独立样本t检验,检验水准为α=0.05。
     结果:(1)BMSCs的培养:传代培养的BMSCs形态均一,生长旺盛,F1-F3代细胞成活率均在95%左右,F1代、F2代、F3代细胞CD44阳性率分别为93.9%、95.1%、95.8%。(2)体外细胞毒性试验:相同时间实验组与对照组间OD值无显著性差异(F=0.070,P=0.7910),猪骨材料对BMSCs的生长与增殖无明显影响,表明其无细胞毒性。(3)猪骨与BMSCs复合培养:随着培养时间延长,材料周围细胞逐渐聚集,细胞状态正常;扫描电镜下观察,细胞在猪骨材料表面紧密贴附生长,细胞呈多边形、梭形,有较多的伪足向猪骨材料表面伸出,细胞形态正常,功能活跃,表明该材料细胞相容性良好。(4)动物体内植入后的局部刺激反应试验:皮下与肌内植入后1w,纤维组织包裹并长入植入的猪骨腔隙内,伴有较明显的炎性细胞浸润,4w时,炎症反应减轻,12w时,植入的猪骨腔隙内由疏松的结缔组织充填,炎症反应消失,与周围正常组织中的无明显区别,表明猪骨材料具有良好的组织相容性。
     结论:酶消化法所制备的猪源性异种骨移植材料具有良好的生物相容性。
     第三章异种骨移植材料的骨诱导活性研究
     目的:采用免疫抑制大鼠为实验动物,以异位成骨的方式,通过组织学观察、碱性磷酸酶活性测定,评价所制备异种骨的骨诱导活性。
     方法:实验组材料为α-半乳糖苷酶消化去抗原的猪皮质骨,0.6N的HCl脱矿,以脱矿后经高温高压处理灭活其成骨活性物质的猪骨为阴性对照。Wistar大鼠24只,体重约150-180g,腹腔注射地塞米松,剂量为每次0.25mg/100g体重,每3天一次,造成免疫抑制。大鼠麻醉后,两侧股部肌袋分别植入实验组材料和对照样品,缝合肌肉皮肤。术后3、4、5、6w各处死6只大鼠,取出植入材料,固定,包埋,行组织学观察;将植入物称重,研磨粉碎,加2ml生理盐水提取,3000rpm离心20min,取上清液,测碱性磷酸酶(ALP)活性。
     用SPSS11.5统计软件对ALP活性检测结果进行统计分析,采用析因设计资料的方差分析,同一时间点两组数据比较采用独立样本t检验,检验水准为α=0.05。
     结果:组织学观察显示,实验组植入材料3w时被纤维组织包裹,其吸收腔内可见有间充质细胞开始长入;可见有间充质细胞转变形成软骨细胞,并开始分泌形成软骨基质;4w时植入材料内有较多软骨组织形成;5w时形成成熟的软软骨组织;6w时,成骨更为活跃,植入材料内有更多的成熟软骨组织形成,在其边缘吸收腔隙内有类骨质形成;术后3-6w,对照组样品显示吸收,但未见成骨相关的细胞,也无软骨或骨组织形成。ALP活性测定结果显示,不同时间点的ALP活性差异显著(F=321.084,P=0.000),实验组与对照组间差异显著(F=484.330,P=0.000),同一取材时间点实验组ALP活性均比对照组高(P<0.05)。
     结论:采用α-半乳糖苷酶消化去抗原的猪源性异种骨保留了良好的骨诱导活性,可以作为一种潜在的骨移植替代材料,来弥补临床上自体骨与同种骨材料来源的不足。
     第四章异种骨修复兔桡骨节段性骨缺损的实验研究
     目的:利用兔桡骨节段性骨缺损模型,观察与评价所制备猪源性异种骨移植材料对兔节段性骨缺损的修复,为临床应用提供实验依据。
     方法:家兔24只,体重2-2.5 kg,以双侧桡骨为实验对象。家兔静脉注射3%戊巴比妥钠麻醉,用牙科钻截断桡骨干中段,造成双侧桡骨约12mm长的节段性骨缺损,按组植入相应骨移植材料。分别于第4、8、12周分批处死动物8只,取尺桡骨全段。实验分组:根据植入材料不同分组,每组每个时间点4例,A组为空白对照组,节段性骨缺损处不植入任何材料,直接缝合,作为阴性对照;B组为异种骨组,植入酶处理方法制备的去抗原猪骨;C组为兔同种骨组,植入兔松质骨;D组为自体骨组,将取下的兔桡骨骨段用无菌生理盐水清洗后,植于其对侧骨缺损处。大体观察:观察植入材料与宿主骨融合、局部成骨和周围软组织分布、炎症反应等情况;X线检查:拍桡骨正位X线片观察,并进行评分。组织学观察:标本用10%福尔马林缓冲液固定,50%甲酸脱钙,逐级脱水,透明,石蜡包埋,切片,HE染色,组织学观察。
     数据结果采用SPSS11.5统计软件包进行统计分析,X线评分采用析因设计资料的方差分析,方差齐性时组间多重比较采用LSD法,不满足方差齐性要求时,组间多重比较采用Dunnet's T3法,统计学显著水平为α=0.05。
     结果:大体观察:术后各组动物前肢均有不同程度肿胀,1w恢复正常活动。所有动物切口均Ⅰ期愈合,状态良好,未见明显并发症。X线观察:术后4w,空白对照组骨缺损清晰可见,缺损处两侧宿主骨断端阴影锐利,有微量骨痂形成;异种骨组骨缺损区呈现雾状影,宿主骨断端有少量低密度骨痂形成;兔同种骨组截骨端有少量骨痂形成,缺损区呈雾状阴影;自体骨组植入骨密度无明显变化,截骨线清晰稍显模糊,有少量骨痂形成。术后8w,空白对照组骨缺损仍清晰可见,缺损处截骨端有少量骨痂形成,尺骨侧可见有少量骨痂形成;异种骨组植入骨与宿主骨桥接处稍显模糊,缺损区雾状影填充;兔同种骨组截骨端与缺损区尺骨表面形成骨痂,缺损区密度比骨干低;自体骨组宿主骨骨干周围形成较多的骨痂,与植入骨连接,桥接处呈现高密度影,界线模糊。术后12w,空白对照组骨缺损仍清晰可见,缺损区变小,骨不愈合。异种骨组植入骨与宿主骨界线模糊,密度较骨干低;兔同种骨组植入骨与宿主骨形成连接,连接处界线模糊,骨缺损区密度较均匀;自体骨组植入骨与宿主骨形成连续性连接,骨髓腔再通。X线评分:术后不同取材时间,异种骨组与兔同种骨组之间骨缺损修复无显著差异(4w、8w、12w的P值分别为0.574,1.000,0.805),而与空白对照组与自体骨组之间分别存在着显著差异(P<0.05);各组X线评分都随着时间的延长而升高,不同时间的X线评分有显著性差异(F=75.077,P=0.000)。组织学观察:空白对照组骨缺损区由纤维组织填充,成骨不活跃;异种骨组截骨端新生的骨组织穿插长入植骨材料的腔隙,植入骨显示吸收,逐渐有新骨形成,12w时可见有软骨细胞与软骨组织连接植入骨与宿主骨;兔同种骨组植入材料显示吸收,截骨端逐渐有新生骨穿插长入植入骨,12w时植入骨上可见有新生类骨质开始形成;自体骨组成骨活跃,植入骨逐渐被新生骨组织取代,至12w时骨髓腔再通。
     结论:α-半乳糖苷酶消化的猪源性异种骨用于修复兔桡骨节段性骨缺损时,取得了与兔同种骨一致的修复效果,本方法所制备的异种骨可作为一种骨移植替代材料。
Chapter 1:Preparation of Porcine Bone and Experimental Study on its Biological Properties
     Objective:To develop a feasible method to prepare deantigenated porcine bone through enzyme treatment,which has no effect on the osteoinductivity and mechanic properties of the xenogeneic bone graft produced thereby.
     Methods:(1)Enzyme treatment of porcine bone:Xenogeneic bone was prepared from flesh porcine bone by a series treatment includingα-Galactosidase of different activity digesting for 8 or 16 hours at 37℃,washing,freezedrying and irradiation at a does of 25kGy.(2)Determination of theα-Gal(α-gal epitopes):The concentration ofα-Gal within porcine bone tissue were tested by ELISA in order to choose a suitable processing way for deantigenation.(3)Crosslinking of glutaraldehyde with the poricine bone:Crosslinking of glutaraldehyde with the poricine bone prepared by the selected group was performed and concentration ofα-Gal was defined and compared with that of fresh porcine bone,enzyme treated porcine bone and human bone.The processing programe then was decided according to the testing result.(3) Morphological observation:Gross observation and SEM observation were performed and diameters of the caves of the porcine cancellous bone were measured.(4)Mechanic properties testing:The compressive properties of porcine bone at different stage of processing were tested to evaluate the effects of different treatment on its mechanic property.
     Sstatistical analysis was performed with SPSS11.5 software package and the data were presented with(Mean±Standard Deviation).The data were tested with variance analysis,being significant when P<0.05.
     Results:(1) Enzyme treatment of porcine bone:The OD value of different groups in ELISA test were significantly different.The selected enzyme treatment was digesting byα-Galactosidase with an activity of 30U/ml for 8 hours at 37℃.(2) Crosslinking of glutaraldehyde with the poricine bone:No statistic significance was found among the OD values of cross-linked porcine bone and human bone,while there were significant difference between fresh porcine bone and other groups. According to the results,the finally processing methods wasα-Galactosidase of a 30U/ml activity digesting for 8 hours.(3) Morphological observation:The porous structure of prepared porcine cancellous bone was similar to that of human cancellous bone.The diameters of the caves were between 150μm -600μm,while the diameters of small pore in the trabecula were between 10μm-100μm.(4) Mechanic testing of porcine bone:Strength and elastic module of different groups had no statistical difference (P<0.05) for the compressive test,indicating that different processing methods had no significant effect on the mechanical property of the porcine bone.
     Conclusion:The antigen of porcine bone was removed effectively byα-Galactosidasse digesting,while the morphological structure and mechanic properties of the porcine bone remained
     Chapter 2 Biological Evaluation of the Prepared Porcine Bone Graft
     Objective:To evaluate the biocompatibility of the prepared porcine bone by in vitro cytotoxity experiment and in vivo animal experiment.
     Methods:(1) Culture of rabbit BMSCs:Rabbit BMSCs were obtained as the experimental cells and the activity and content of CD44 surface antigen of the BMSCs were tested.(2)In vitro cytotoxity experiment:The leaching liquor of porcine bone was made by immersing the bone into L-DMEM medium with a scale of 10ml medium per gram bone materials at 37℃for 72 hours in a sterilized condition and L-DMEM medium which contained 10%FBS served as the control medium.200μl of BMSCs suspension with a cell concentration of 1×10~5/ml were seeded to the and cultured for 24 hours.Then the culture medium was removed and 200μl leaching liquor or control culturing medium were added according to groups respectively. Then cells were cultured at 37℃and 5%CO_2.The medium were exchanged every 3 days according to groups.Every 24 hours,5 wells of each group were selected and 20μl 5mg/ml MTT solution was added to each well.150μl DMSO was added after cultured for 4 hours.The 96-well plate was slightly shaken for about 10 minutes and the OD value at 490 nm was determined.(3)Co-culturing of the porcine bone and rabbit BMSCs:The prepared porcine bone,sized 5mm×5mm×5mm,were placed in the 12-well plate and 150μl BMSCs suspension of a concentration of 1×10~5/ml was seeded to the surface of the porcine bone and 10%FBS L-DMEM was added to immerse the porcine bone.Inverted phase contrast microscope observation and SEM observation were performed at 1,2,3 weeks.(4)Biological evaluation in vivo:18 Wistar mice,weighted 150-180g,were anesthetized.Subcutaneous and intramuscular implantation of prepared porcine bone and human bone pieces was performed.6 of the mice were killed each time respectively at 1,4,12 weeks and gross observation and histological observation were performed.
     Results:(1) Culture of rabbit BMSCs:The cultured BMSCs were in a good condition.About 95%of F1 to F3 generation cells was active.93.9%of F1 generation,95.1%of F2 generation and 95.8%of F3 generation cells contained CD44 surface antigen.(2) In vitro cytotoxity experiment:The OD values of study group and control group at different time had no significant difference.(3) Co-culturing of porcine bone and BMSCs:Postoperatively 1-3 weeks,Polygon shaped and fusiform shaped BMSCs with a well condition adhered tightly to the surface of the porcine bone.Lots of pseudopodia from BMSCs reached the surface of the porcine bone.
     Conclusion:The enzyme degested porcine bone had no obviously effect on the growth of BMSCs and showed good cell affinity when co-cultured with BMSCs. The local implantation also showed the prepared porcine bone contains good tissue compatibility.The porcine bone contained good biocompatibility and could be safe for clinic use.
     Chapter 3 Study on the Osteoinductivity of the Prepared Porcine Bone Graft
     Objective:To evaluate the osteoinductivity of the prepared porcine graft by histological observation and ALP activity determination in an ectopic bone formation model,using immuno-suppressed Wistar rats as experimental animal.
     Methods:Samples of study group were enzyme-treated porcine bone, demineralized with 0.6N hydrochloric acid.The control group samples were the demineralized porcine bone,which were treated with autoclave for 30 minutes to destroy the activity of bone formation material.All samples were freezedried and irradiated at a does of 20kGy.Dexamethasone was intraperitoneally injected into Wistar rats in order to suppress their imunno-response.Intramuscular bone transplantation was performed by placing the demineralized porcine bone and control samples between bluntly dissected muscle groups of hind limbs of the rats. Histological observation was performed at different time post-operatively.ALP activity was tested postoperatively to determine the osteoinductivity of the demineralized porcine bone implants.
     Result:The study group:Mesenchymal cells migrated into the absorpted lacuna and chondrocytes could be seen within the porcine bone implants at 3 weeks postoperatively;more cartilage presented at 4 weeks;adult cartilage was formed within the implants at 5 weeks;at 6 weeks,bone formation was more active and lots of cartilage within the implants and osteoid in the absorbed lacuna could be seen.No bone formation could be found in the control group 3-6 weeks postoperatively.ALP activity of the experimental group was obviously higher than that of the control group 3-6 weeks postoperatively.
     Conclusion:The prepared porcine bone contained good osteoinductivity and could be a potential bone substitute for clinic implantation.
     Chapter 4 Experimental Study of the Prepared Porcine Bone for Bone Reparation in a Radial Segmental Defect of Rabbit
     Objective:To investigate the reparation of segmental bone defect by the prepared porcine bone and provide experimental reference for potential clinic use.
     Methods 24 rabbits,weighted 2-2.5kg,were anesthetized and a 12mm-long bone defect was made by cutting the middle shaft of both side radii.Grafts were implanted according to groups:(A)Control group:no implantation was performed to the defect;(B) Xenogeneic bone group:the prepared porcine bone were implanted;(C) Allogeneic bone group:rabbit allogeneic cancellous bone were implanted;(D) Autograft group:the cut bone were implanted to the opposite side radius.8 animals were sacrificed(4 graft for each group were obtained) for each time respectively at 4, 8,12 weeks postoperatively.Generally and X-ray,histological observation were performed to evaluate the reparation of the segmental defect..
     Results:Gross observation:All the animals were in good status and no detectable complications were found.X-ray observation:Postoperatively 4 weeks, little callus was formed and the defect was clear in the control group;bone defect was filled with shadow with a lower density than that of the rabbit radius and ulna,small quantity of callus was formed in the xenogeneic bone group;allogeneic bone group was similar to the porcine bone group;a little callus was formed in auto graft group. 8 weeks post-operationally,bone defect was clear and small quantity of callus was formed in control group;bone defect was filled with a lower density shadow and the bridge area was not very sharp in xenogeneic bone group;callus was formed and high-density shadow could be seen along the ulna in allogeneic bone group;the auto graft and the rabbit radius was connected with blurry shadow.12 weeks postoperatively,callus was formed in the end of the radius and the marrow cavity was blocked and bone non-union was formed in the control group;the defect was filled with low-density shadow and the bridge area was blurry in porcine bone group and allogeneic bone group;recanalization of the marrow cavity was formed between the graft and the radius in auto graft group.Score of X-ray of xenogeneic bone group ahc no significant difference while the difference of the xenogeneic bone group with control group or autograft group are both significant.Histological observation:the defect of control group was filled with connective tissue without active bone formation.postoperatively 4 weeks,bone defect of control group was filled with fibrous tissue which contained lots of lymphocytes;bone defect was filled with connective tissue and lots of lymphocytes could be seen in porcine bone group and rabbit allogeneic bone group;chondrocytes and osteoid grown between the radius and the auto graft in auto graft group.Postoperatively 8 weeks,the defect of control group was filled with fibrous tissue which contained lymphocytes;bone absorption and cement line could be seen in the xenogeneic bone group and rabbit allogeneic bone group;the autograft was connected with the rabbit radius shaft with active bone formation and absoption within the graft.Postoperatively 12 weeks,the defect of control group were filled with connective tissue;small quantity of new bone formation could be seen in xenogeneic bone group and rabbit allogeneic bone group; the autograft was mainly substituted by newly formed bone with active bone formation.
     Conclusion The prepared porcine xenogeneic bone cobtained a cure effect similar to that of rabbit allogeneic bone in a rabbit radial segmental defect model, hence it may be a potential good bone substitute for bone implantation.
引文
[1]Giannoudis PV,Dinopoulos H,Tsiridis E.Bone substitutes:an update[J].Injury.2005,36(3):$20-27.
    [2]Thomas EM,Patrich WS,Srya NS,et al.Bone graft substitutes in spinal surgery [J].Operative Techniques in Orthopaedics,2003,13(3):146-151.
    [3]Seth Greenwald,D Phill,Scott D.Boden,et,al.Bone-graft substitutes:facts,fictions,and applications[J].The Joumal of Bone & Joint Surgery,2001,83-A,Supplement 2:98-103.
    [4]Christopher G;Finkemeier.Bone-grafting and bone-graft substitutes[J].The Joumal of bone and Joint Surgery,2002,84-A(3):454-464.
    [5]Epstein NE.A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions[J].J Spinal Disord Tech.2006,19(6):424-429.
    [6]So K,Fujibayashi S,Neo M,et al.Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by the addition of glass[J].Biomaterials.2006,27(27):4738-4744.
    [7]杨志民.组织工程骨的研究成果及存在的问题[J].中国修复重建外科杂志,2005,19(2):87-89.
    [8]Mangano C,Scarano A,Iezzi G,et al.Maxillary sinus augmentation using an engineered porous hydroxyapatite:a clinical,histological,and transmission electron microscopy study in man[J].J Oral Implantol.2006;32(3):122-131.
    [9]Ueda M,Yamada Y,Ozawa R,Okazaki Y.Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement[J].Int J Periodontics Restorative Dent.2005,25(2):129-137.
    [10]Yamamoto M,Takahashi Y,Tabata Y.Enhanced bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogen[J].Tissue Eng.2006,12(5):1305-1311.
    [11]Alan L.Jones,Robert W.Bucholz,Michael J.Bosse,etc.Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of Diaphyseal tibial[J].The Journal of Bone and Joint Surgery,2006,88-A(7):1431-1442.
    [12]Vaccaro AR,Anderson DG,Toth CA.Recombinant human osteogenic protein-1(bone morphogenetic protein-7) as an osteoinductive agent in spinal fusion[J]. Spine,2002,27:S59-S65.
    [13]邱贵兴,孙世荃.同种异体骨植入材料的临床应用[J].中华骨科杂志,2004,24(10):635-637.
    [14]李宝兴,孙世荃.骨库技术与操作规范[J].中华骨科杂志,2004,24(10):638-610.
    [15]J.L.Platt,Immunobiology of xenotransplantation[J].Transl Int,2000,13(Supplement 1):7-10.
    [16]Marilia Cascalho,Jeffrey L.Platt.Xenotransplantation and other means of organ replacement[J].Nature Review:Immunology,2001,1:154-161.
    [17]M D Dooldeniya;A N Warrens.Xenotransplantation:Where are we today?[J].Journal of the Royal Society of Me...Mar 2003,96(3) Health & Medical Complete:111-117.
    [18]Galili U.Xenotransplantation and ABO incompatible transplantation:the similarities they share[J].Transfus Apher Sci,2006,35(1):45-58.
    [19]Tearle RG,TangeMT,Zanettino ZL,et al.The al,3-galactosyl transferase knockout mouse.Implications for xenotransplantation[J].Transplantation,1996,61:13.
    [20]张永刚、刘维刚.异种骨移植研究现状及进展[J].农垦医学,2005,27(4):311-313.
    [21]Thomas EM,Patrich WS,Srya NS,et al.Bone graft substitutes in spinal surgery [J].Operative Techniques in Orthopaedics,2003,13(3):146-151.
    [22]蓝旭,杨志明,罗静聪,等.不同保存方法对生物衍生骨支架材料细胞相容性的影响[J].中国修复重建外科杂志,2004,18(3):209-213.
    [23]Hashizume H,Tamaki T,Oura H,et al.Changes in the extracellular matrix on the surface of sintered bovine bone implanted in the femur of a rabbit:an immunohistochemical study[J].J Orthop Sci,1998,3(1):42-53.
    [24]Kang JS.Kim NH.The biomechanical properties of deep freezing and freeze drying bones and their biomechanical changes after in-vivo allograft[J]o Yonsei Med J.1995 36:332-335.
    [25]Sun X reviewing.The actuality of studies in the biological characteris of different bio-active bones[J].Joumal of Medical Postgraduates,2003,16:945-950.
    [26]Joschek S,Nies B,Krotz R,et al.Chemical and physico-chemical characterization of porous hydroxyapatite ceramics made of natural bone[J].Biomaterials,2000,21(16):1645-1658.
    [27]Stavropoulos A,Kostopoulos L,Nyengaard JR,et al.Deproteinized bovine bone (Bio-Oss) and bioactive glass(Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration(GTR):an experimental study in the rat[J].J Clin Periodontol,2003,30:636-643.
    [28]Charalambos Charalambides,Marilyn Beer,Andrew G Cobb.Poor results after augmenting autograft with xenograft(Surgibone) in hip revision surgery A report of 27 cases[J].Acta Orthopaedica,2005,76(4):544-549.
    [29]Sun X,Zhao L,Hu Y,et,al.Preparation of massive anti-infective reconstituted bone xenograft and related studies[J].J Pediatr Orthop B.2006,15(2):113-119.
    [30]Tuominen T,Jamsa T,Tuukkanen J.Bovine bone implant with bovine bone morphogenetic protein in healing a canine ulnar defect[J].Int Orthop.2001,25(1):5-8.
    [31]Tuominen T,Jamsa T,Tuukkanen J,et,al.Immunosuppression with FK506increases bone induction in demineralized isogeneic and xenogeneic bone matrix in the rat[J].Journal Of Bone And Mineral Research,2000,15(9):1825-1834.
    [32]Kawalec-Carroll JS;Hetherington VJ;Dockery DS.Immunogenicity of unprocessed and photooxidized bovine and human osteochondral grafts in collagen-sensitive mice[J].BMC Musculoskelet Disord 2006;7:32.
    [33]檀英霞,李素波,王捷熙,等.牛、猪红细胞表面异种抗原改造的比较[J].中国实验血液学杂志,2005,13(5):878-882.
    [34]李胜芝,刘秉乾,马志方,等转人A21,2岩藻糖苷转移酶基因在异种移植中的研究[J].中华实验外科杂志,2005,22(8):1001-1002.
    [1]Ken Urabe,Moritoshi Itoman,Ysohiaki Toyama,et al.Current trends in bone grafting and the issue of banked bone allografts based on the fourth nationwide survey of bone grafting status from 2000 to 2004[J].J Orthop Sci,2007,12:520-525.
    [2]Christopher G,Finkemeier.Bone-grafting and bone-graft substitutes[J].The Journal of bone and Joint Surgery,2002,84-A(3):454-464.
    [3]T.W.Bauer.Bone graft substitutes.SkeletalRadiol,2007,36:1105-1107.
    [4]邱贵兴,孙世荃.同种异体骨植入材料的临床应用.中华骨科杂志,2004,24(10):635-637.
    [5]Poumarat G,Squire P.Comparison of mechanical properties of human,bovine bone and a new processed bone xenograft[J].Biomaterials.1993,14(5):337-340.
    [6]Marilia C,Jeffrey L.Platt.Xenotransplantation and other means of organ replacement[J].Nature Reviews,2001,1:154-161.
    [7]Uri Galili.Special Feature:Glycobiology Of Xenotransplantation And Cancer Part Ⅱ The-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy[J].Immunology and Cell Biology,2005,83:674-686.
    [8]张永刚、刘维刚.异种骨移植研究现状及进展[J].农垦医学,2005,27(4):311-313.
    [9]Kang JS.Kim NH.The biomechanical properties of deep freezing and freeze drying bones and their biomechanical changes after in-vivo allograft[J].Yonsei Med J.1995 36:332-335.
    [10]杨克强,王臻,桑宏勋,等.深低温冷冻异体骨生物力学特性与储存时间的关系.医用生物力学,2000,15:183-186.
    [11]Y.M.Hafeez,A.B.Z.Zuki2,N.Yusof,et al.Effect of freeze-drying and gamma irradiation on biomechanical properties of bovine pericardium[J].Cell and Tissue Banking(2005) 6:85-89.
    [12]Karatzas P Triantafyllou N,Doganis A,etc.The effects of dehydration and rehydration on the quality of allografts.In:Phillips GO,Tallentire A,Triantafyllou N,eds.Radiation sterilization:irradiated tissues and their potential clinical use.Clwyd UK:The North E Wales Institute,1978,141-145.
    [13]Rock MG..Biomechanics of Allografts.In:Czitrom AA,Winkler,eds.Orthopaedic Allograft Surgery.Wien:Springer,1996,29-37.
    [14]Anna DG,Artur K,Izabela U,et al.Irradiation as a safety procedure in tissue banking[J].Cell and Tissue Banking,2005,6:201-219.
    [15]M.J Eagle,P.Rooney,R.Lomas,et al.Validation of radiation dose received by frozen unprocessed and processed bone during terminal sterilization[J].Cell and Tissue Banking,2005,6:221-230.
    [16]何创龙,王远亮,杨立华,等.Kiel骨理化性能的实验分析.重庆大学学报,2004,27(7):40-44.
    [17]Stavropoulos A,Kostopoulos L,Nyengaard JR,et al.Deproteinized bovine bone (Bio-Oss) and bioactive glass(Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration(GTR):an experimental study in the rat.J Clin Periodontol,2003,30:636-643.
    [18]Charalambos Charalambides,Marilyn Beer,Andrew G Cobb.Poor results after augmenting autograft with xenograft(Surgibone) in hip revision surgery A report of 27 cases.Acta Orthopaedica,2005,76(4):544-549.
    [19]Marc F.Swiontkowski,Hannu T.Aro,Simon Donell,etc.Recombinant human bone morphogenetic protein-2 in open tibial fractures[J].The Journal of Bone and Joint Surgery,2006,88-A(6):1258-1266.
    [20]Sandrin MS,Fodor WL,Mouhtouris E,et al.Enzymatic remodeling of the carbohydrate surface of a xenogeneic cell substantially reduces human antibody binding and complement-mediated cytolysis.Nat Med,1995,1:1261-1267
    [21]檀英霞,李素波,王捷熙,等.牛、猪红细胞表面异种抗原改造的比较[J].中国实验血液学杂志,2005,13(5):878-882.
    [22]李胜芝,刘秉乾,马志方,等转人A21,2岩藻糖苷转移酶基因在异种移植中的研究[J].中华实验外科杂志,2005,22(8):1001-1002.
    [23]Kawalec-Carroll JS;Hetherington VJ;Dockery DS.Immunogenicity of unprocessed and photooxidized bovine and human osteochondral grafts in collagen-sensitive mice[J].BMC Musculoskelet Disord 2006,7:32.
    [1]K.C.迪伊,D.A.普莱奥,R.比齐奥斯,编著.黄楠,译.组织-生物材料相互作用导论[M].第一版.北京:化学工业出版社,2005,199-210.
    [2]International Organization for Standardization.Biological evaluation of medical devices--Part 12:sample preparation and reference materials(ISO 10993-12:1996)[M].Geneva:ISO,1996.
    [3]International Organization for Standardization.Biological evaluation of medical devices—Part 5:Test for in vitro cytotoxicity (ISO 10993-5:1999)[M].Geneva:ISO,1999.
    [4]中华人民共和国国家质量监督检验检疫总局.中华人民共和国国家标准医疗器械生物学评价第5部分:体外细胞毒性试验(GB/T 16886.5-2003/ISO 10993-5:1999)[M].2003.
    [5]中华人民共和国国家国家技术监督局.中华人民共和国国家标准医疗器械生物学评价第6部分:植入后局部反应试验(GB/T 16886.6-1997 idt ISO 10993-6:1994)[M].1997.
    [6]中华人民共和国国家质量监督检验检疫总局.中华人民共和国国家标准医疗器械生物学评价第10部分:刺激与致敏试验(GB/T 16886.10-2000/ISO 10993-5:1999)[M].2000.
    [7]Nieola Di M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J].Blond,2002,99:3838-3843.
    [8]程宝鸾.动物细胞培养技术[M].第一版.广州:华南理工大学出版社,2003,131-133.
    [9]Hashizume H,Tamaki T,Oura H,et al.Changes in the extracellular matrix on the surface of sintered bovine bone implanted in the femur of a rabbit:an immunohistochemical study[J].J Orthop Sci,1998,3(1):42-53.
    [10]蓝旭,杨志明,罗静聪,等.不同保存方法对生物衍生骨支架材料细胞相容性的影响[J].中国修复重建外科杂志,2004,18(3):209-213.
    [11]Kang JS.Kim NH.The biomechanical properties of deep freezing and freeze drying bones and their biomechanical changes after in-vivo allograft.Yonsei Med J.1995 36:332-335.
    [12]李彦林,杨志明,韩睿,等.成骨细胞支架材料中复合型完全脱蛋白骨的细胞相容性研究[J].中国临床康复,2003,8(29):6334-6336
    [1]Seth Greenwald,D Phill,Scott D.Boden,et,al.Bone-graft substitutes:facts,fictions,and applications.The Journal of Bone & Joint Surgery,2001,83-A,Supplement 2:98-103.
    [2]Kang JS.Kim NH.The biomechanical properties of deep freezing and freeze drying bones and their biomechanical changes after in-vivo allograft.Yonsei Med J.1995 36:332-335.
    [3]何创龙,王远亮,杨立华,等.Kiel骨理化性能的实验分析.重庆大学学报,2004,27(7):40-44.
    [4]Stavropoulos A,Kostopoulos L,Nyengaard JR,Karring T(2003) Deproteinized bovine bone(Bio-Oss) and bioactive glass(Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration(GTR):an experimental study in the rat.J Clin Periodontol 30:636-643.
    [5]Charalambos Charalambides,Marilyn Beer,Andrew G Cobb.Poor results after augmenting autograft with xenograft(Surgibone) in hip revision surgery A report of 27 cases.Acta Orthopaedica,2005,76(4):544-549.
    [6]施新猷.现代医学实验动物学[M].第一版.北京:人民军医出版社,2000,493-521.
    [7]Oakes DA,Lee CC,Lieberman JR.An evaluation of human demineralized bone matrices in a rat femoral defect model[J].Clin Orthop,2003,(413):281-290.
    [8]T.W.Baeur.Bone graft substitutes.Skeletal Radiol(2007) 36:1105-1107.
    [9]Takikawa S,Bauer TW,Kambic H,et al.Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix.J Bone Miner Res,2003,65(1):37-42.
    [10]Lee YP,Jo M,Luna M,et al.The efficacy of different commercially availabledemineralized bone matrix substances in an athymic rat model.J Spinal Disord Tech,2005,18(5):439-444.
    [11]Han B,Tang B,Nimni M.Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix.J Orthop Res,2003, 21:648-654.
    [12]0akes DA, Lee CC, Lieberman JR. An evaluation of human demineralized bone matrices in a rat femoral defect model. Clin Orthop, 2003, (413):281-290.
    [13] Jeffrey C, Wang A, Alanay D, et al. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J, 2007, 16: 1233-1240.
    [14] Brett Peterson, Peter G. Whang, Roberto I, et al. Osteoindutivity of commercially available demineralized bone matrix. The journal of bone and joint surgery.2004, 2243-2250.
    [15]Don M. Ranly, Jacquelyn M, Mbchb, et al. Platelet-Derived Growth Factor Inhibits Demineralized Bone Matrix-Induced Intramuscular Cartilage and Bone Formation. J Bone Joint Surg, 2005, 87-A (9): 2052-2065.
    [1]Christopher G,Finkemeier.Bone-grafting and bone-graft substitutes[J].The Journal of bone and Joint Surgery,2002,84-A(3):454-464.
    [2]李宝兴,孙世荃.骨库技术与操作规范[J].中华骨科杂志,2004,24(10):638-610.
    [3]Lane JM,Sandhu HS.Current approaches to experimental bone grafting[J].Orhtop Clin Nort Am,1987,18(2):213-225.
    [4]Einhorn TA,Lane JM,Burstein AH,et al.The healing of segmental bone defects induced by demineralized bone matrix.A radiographic and biomechanical study [J].J Bone Joint Surg(Am),1984,66:274-279.
    [5]Yang GY,Simmons DJ,Lozano R,et al.The healing of grafts combining freeze-dried and demineralized allogenic bone in rabbits[J].Clin Orthop,1994,298:289-294
    [6]Schwartz C.Is there still an indication for bovine xeno-graft in human orthopaedic and trauma surgery? Eur J Orthop Surg Traumatol,1997,7:135-137.
    [7]Bolander ME,Balain G.The use of demineralized bone matrix in the repair of segmental defects[J].J Bone Joint Surg(Am),1986,68:1264-1274.
    [8]Yamamoto M,Takahashi Y,Tabata Y.Enhanced bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein-2from a biodegradable hydrogel[J].Tissue Eng.2006,12(5):1305-1311.
    [9]练克俭,翟文亮,李扬,等.富血小板血浆重组脱蛋白异种修复兔桡骨骨缺损的放射学评估[J].中国骨与关节损伤杂志,2006,21(5):363-365.
    [10]罗晓中,杨志明,邓力,等.低温保存的组织工程骨修复骨缺损的实验研究[J].中国修复重建外科杂志,2005,19(7):569-573.
    [11]Bolander ME,Balain G.The use of demineralized bone matrix in the repair of segmental defects[J].J Bone Joint Surg(Am),1986,68:1264-1274.
    [12]Charalambos Charalambides,Marilyn Beer,Andrew G Cobb.Poor results after augmenting autograft with xenograft(Surgibone) in hip revision surgery A report of 27 cases[J].Acta Orthopaedica,2005,76(4):544-549.
    [13]Stavropoulos A,Kostopoulos L,Nyengaard JR,et al.Deproteinized bovine bone (Bio-Oss) and bioactive glass(Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration(GTR):an experimental study in the rat[J].J Clin Periodontol,2003,30:636-643.
    [1]Christopher G,Finkemeier.Bone-grafting and bone-graft substitutes[J].The Journal of bone and Joint Surgery,2002,84-A(3):454-464.
    [2]Thomas EM,Patrich WS,Srya NS,et al.Bone graft substitutes in spinal surgery [J].Operative Techniques in Orthopaedics,2003,13(3):146-151.
    [3]Seth Greenwald,D Phill,Scott D.Boden,et,al.Bone-graft substitutes:facts,fictions,and applications[J].The Journal of Bone & Joint Surgery,2001,83-A,Supplement 2:98-103.
    [4]Giannoudis PV,Dinopoulos H,Tsiridis E.Bone substitutes:an update[J].Injury.2005,36(3):S20-27.
    [5]Parikh SN.Bone graft substitutes in modem orthopedics[J].Orthopedics,2002,25(11):1301-1309.
    [6]Bayerlein T,Mundt T,Mack F,et al.Bone graft substitutes in periodontal and peri-implant bone regeneration[J].Folia Morphol(Warsz).2006,65(1):66-69.
    [7]Muscolo DL,Ayerza MA,Aponte-Tinao LA.Massive allograft use in orthopedic oncology[J].Orthop Clin North Am.2006,37(1):65-74.
    [8]Krbec M,Adler J.Bone grafts in hip prosthesis revisions[J].Messner P JrActa Chir Orthop Traumatol Cech.2003,70(2):83-8.
    [9]Eppley BL,Pietrzak WS,Blanton MW.Allograft and alloplastic bone substitutes:a review of science and technology for the craniomaxillofacial surgeon[J].J Craniofac Surg,2005,16(6):981-989.
    [10]Beaman FD,Bancroft LW,Peterson JJ,et al.Bone graft materials and synthetic substitutes[J].Radiol Clin North Am,2006,44(3):451-61.
    [11]Epstein NE.A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions[J].J Spinal Disord Tech.2006,19(6):424-429.
    [12]So K,Fujibayashi S,Neo M,et al.Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by the addition of glass[J].Biomaterials.2006,27(27):4738-4744.
    [13]Mistry AS,Mikos AG.Tissue engineering strategies for bone regeneration[J].Adv Biochem Eng Biotechnol.2005,94:1-22.
    [14]杨志民.组织工程骨的研究成果及存在的问题[J].中国修复重建外科杂志,2005,19(2):87-89.
    [15]Mangano C,Scarano A,Iezzi G,et al.Maxillary sinus augmentation using an engineered porous hydroxyapatite:a clinical,histological,and transmission electron microscopy study in man[J].J Oral Implantol.2006;32(3):122-131.
    [16]Ueda M,Yamada Y,Ozawa R,Okazaki Y.Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement[J].Int J Periodontics Restorative Dent.2005,25(2):129-137.
    [17]A H R W Simpson;L Mills;B Noble.The role of growth factors and related agents in accelerating fracture healing[J].Joumal of Bone and Joint Surgery;Jun 2006;88(6) Health & Medical Complete:701-706.
    [18]Vincent Alert,Liang Jiang,Thomas Steffen,etc.Harvesting local cylinder autograft from adjacent vertebral body for anterior lumbar interbody fusion:surgical technique,operative feasibility and preliminary clinical results[J].European Spine Journal,2006,15(9):1352-1359.
    [19]James BM,Sterling RS,R Gilbert T.Proximal tibia bone harvest:review of technique,complicatons,and use in maxillofacial surgery[J].Int J Oral Maxillofac Impl,2004,19(4):586- 593.
    [20]O'Keefe RM,Riemer BL,Butterfield SL.Harvesting of autogenous cancellous bone graft from the proximal tibial metaphysis.J Orthop Trauam.1991,5:469-474.
    [21]Alt V,Meeder PJ,Seligson D,et al.The proximal tibia metaphysis:A reliable donof site for bone grafting[J].Clin Orthopae Relres,2003,414:315-321.
    [22]Nels T,John S E.Harvesting cancelous graft from the proximal tibia[J].Tech foot ankle surg,2004,3(4):206-209.
    [23]Danziger MB,Abdo Rv,Decker E.Distal tibia bone graft for arthrosesis of the foot and ankle[J].Foot Ankle Int.1995,16:187-190
    [24]Cockin J.Autologous bone grafting:Complications at the donor site[J].J Bone Joint Surg,1971,53BG:153.
    [25]Goulet JA,Senunas LE,DeSilva GL,et al.Autogenous iliac crest bone graft[J].Clin Orthop.1997,337:76-81.
    [26]Laurie SWS,KabanLB,Mulliken JB,et al.Donor site Morbidity after harvesting rib and iliac bone[J].Plast Reconstr Srug,1984,73:933-938.
    [27]邱贵兴,孙世荃.同种异体骨植入材料的临床应用[J].中华骨科杂志,2004,24(10):635-637.
    [28]李宝兴.骨库操作规程的制定——美国组织库协会骨保存标准简介[J].中国骨肿瘤骨病,2004,3(1):28-30.
    [29]D.Michael Strong,Karen Nelson,Marge Pierce.Preventing disease transmission by deceased tissue donors by testing blood for viral nucleic acid.Cell and Tissue Banking,2005,6:255-262.
    [30]Sun X,Shi X,Zhao JN,et al.The studies on biomechanics of gradient freezing
    and cryopreservation bone allograft tissue[J].Journal of medical biomechanics.
    2004,19:48-50.
    
    [31]孙翔.不同生物活性骨生物学特性的研究现状[J].医学研究生报,2003,16:945-950.
    [32]Kang JS.Kim Nil.The biomechanical properties of deep freezing and freeze drying bones and their biomechanical changes after in-vivo allograft[J].Yonsei Med J.1995 36:332-335.
    [33]杨克强,王臻,桑宏勋,等.深低温冷冻异体骨生物力学特性与储存时间的关系[J].医用生物力学,2000,15:183-186.
    [34]Y.M.Hafeez,ABZ,Zuki,N.Yusof,et al.Effect of freeze-drying and gamma irradiation on biomechanical properties of bovine pericardium[J].Cell and Tissue Banking(2005) 6:85-89.
    [35]贾潇凌,张宏明.几种制备因素对同种骨移植物的生物力学特性的影响[J].实用骨科杂志,1996,4:77-79.
    [36]Karatzas P Triantafyllou N,Doganis A,etc.The effects of dehydration and rehydration on the quality of allografls[M].In:Phillips GO,Tallentire A,Triantafyllou N,eds.Radiation sterilization:irradiated tissues and their potential clinical use.Clwyd UK:The North E Wales Institute,1978,141-145.
    [37]Rock MG.Biomechanics of Allografts[M].In:Czitrom AA,Winkler,eds.Orthopaedic Allograft Surgery.Wien:Springer,1996,29-37.
    [38]Anna Dziedzic-Goclawskal,Artur Kaminski,Izabela Uhrynowska,et al.Irradiation as a safety procedure in tissue banking[J].Cell and Tissue Banking,2005,6:201-219.
    [39]M.J.Eagle,P.Rooney,R.Lomas,et al.Validation of radiation dose received by frozen unprocessed and processed bone during terminal sterilization[J].Cell and Tissue Banking,2005,6:221-230
    [40]R.J.Lomas,L.M.Jennings,J.Fisher,et al.Effects ofa peracetic acid disinfection protocol on the biocompatibility and biomechanical properties of human patellar tendon allografts[J].Cell and Tissue Banking,2004,5:149-160.
    [41]Jun-Wen Wang,Liang-Kuang Chen,Chin-En Chen.Fractures of the greater trochanter associated with osteolytic lesions[J].The Journal of Bone & Joint Surgery,2005,87-A,(12):2724-2729.
    [42]Rajan GP,Fomaro J,Trentz O,et al.Cancellous allograft versus autologous bone grafting for repair of comminuted distal radius fractures:a prospective,randomized trial[J].J Trauma,2006,60(6):1322-1329.
    [43]Acarturk TO;Hollinger JO.Commercially available demineralized bone matrix compositions to regenerate calvarial critical-sized bone defects[J].Plastic And Reconstructive Surgery,2006,118(4),862-873.
    [44]Wilkins RM,Kelly CM.The effect of allomatrix injectable putty on the outcome of long bone applications[J].Orthopedics,2003,26(5Suppl):567-570.
    [45]Thalgott JS,Giuffre JM,Klezl Z,et al.Anterior lumbar interbody fusion with titanium mesh cages,coralline hydroxyapatite,and demineralized bone matrix as part of a circumferential fusion[J].Spine J,2002,2(1):63-69.
    [46]Etienne G,Ragland PS,Mont MA.Use of cancellous bone chips and demineralized bone matrix in the treatment of acetabular osteolysis:preliminary 2-year follow-up[J].Orthopedics,2004,27(1 Suppl):123-126.
    [47]J.L.Platt,Immunobiology of xenotransplantation[J].Transl Int,2000,13(Supplement 1):7-10.
    [48]Tearle RG,TangeMT,Zanettino ZL,et al.The α-1,3-galactosyl transferase knockout mouse:Implications for xenotransplantation[J].Transplantation,1996,61:13.
    [49]张永刚、刘维刚.异种骨移植研究现状及进展[J].农垦医学,2005,27(4):311-313.
    [50]Michael R.Norton,Edward W.Odell,Ian D.Thompson.Efficacy of bovine bone mineral for alveolar augmentation:a human histologic study.Clinical Oral Implant Research,2003,4:775-783.
    [51]Tuominen T,Jamsa T,Tuukkanen J.Bovine bone implant with bovine bone morphogenetic protein in healing a canine ulnar defect[J].Int Orthop.2001,25(1):5-8.
    [52]Sandrin MS,Fodor WL,Mouhtouris E,et al.Enzymatic remodeling of the carbohydrate surface of a xenogeneic cell substantially reduces human antibody binding and complement-mediated cytolysis[J].Nat Med,1995,1:1261-1267.
    [53]李胜芝,刘秉乾,马志方,等.转人A21,2岩藻糖苷转移酶基因在异种移植中的研究[J].中华实验外科杂志,2005,22(8):1001-1002.
    [54]Kawalec-Carroll JS;Hetherington VJ;Dockery DS.Immunogenicity of unprocessed and photooxidized bovine and human osteochondral grafts in collagen-sensitive mice[J].BMC Musculoskelet Disord 2006;7:32.
    [55]Stavropoulos A,Kostopoulos L,Nyengaard JR,et al.Deproteinized bovine bone (Bio-Oss) and bioactive glass(Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration(GTR):an experimental study in the rat[J].J Clin Periodontol 2003,30:636-643.
    [56]Charalambos Charalambides,Marilyn Beer,Andrew G Cobb.Poor results after augmenting autograft with xenograft(Surgibone) in hip revision surgery A report of 27 cases[J].Acta Orthopaedica,2005,76(4):544-549.
    [57]Christopher G,Finkemeier.Bone-grafting and bone-graft substitutes[J].The Journal of bone and Joint Surgery,2002,84-A(3):454-464.
    [58]Caroline Demers,C.Reggie H,Karin Corsi,et,al.Natural coral exoskeleton as a bone graft substitute:A review[J].Bio-medical Materials and Engineering,2002,12:15-35.
    [59]Fujishiro.Takaaki,Nishikawa.Tetsuo,Niikura.Takahiro,et,al.Impaction bone grafting with hydroxyapatite[J].Acta Orthopaedica,2005,76(4):550-554.
    [60]Burstein FD,Williams JK,Hudgins R,et,al.Hydroxyapatite cement in craniofacial reconstruction:experience in 150 patients[J].Plastic and Reconstructive Surgery,2006,118(2):484-489.
    [61]Elisabeth Liljensten,Erik Aolfsson,Karl Gustav Strid,et al.Resorbable and nonresorbable hydroxyapatite granules as bone graft substitutes in rabbit cortical defects[J].Clinical Implant Dentistry and related Research,2003,5(2):95-103.
    [62]Bibbo C,Patel DV.The effect of demineralized bone matrix-calcium sulfate with vancomycin on calcaneal fracture healing and infection rates:a prospective study [J].Foot and Ankle International,2006,27(7):487-493.
    [63]ichael R.Sarkar,Jens-Peter Stah,Nikolaus Wachter,et al.Defect reconstruction in articular calcaneus fractures with a novel calcium phosphate cement[J].European Journal of Trauma,2002,6:340-349.
    [64]陈德敏.生物陶瓷材料[J].口腔材料器械杂志,2005,14(3):157-158.
    [65]Al-Sukhun J,Lindqvist C.A comparative study of 2 implants used to repair inferior orbital wall bony defects:autogenous bone graft versus bioresorbable poly-L/DL-Lactide[P(L/DL)LA 70/30]plate[J].Journal of Oral Maxillofacial Surgery,2006,64(7):1038-1048.
    [66]Naoto Saito,Takao,Okada,et al.Biodegradable Poly-d,l-Lactic Acid-Polyethylene Glycol Block Copolymers as a BMP Delivery System for Inducing Bone[J].The Journal of bone & Joint Surgery,2001,83-A,S1:92-98.
    [67]Charles A Vacanti,Lawrence J Bonassar,Martin P Vacanti,et,al.Replacement of an avulsed phalanx with tissue-engineered bone[J].The New England Journal of Medicine,2001,344(20):1511-1514.
    [68]Zuk PA,Zhu M,Mizuno H,etal.Multilineage cells fromhuma adipose tissue:implications for cell-based therapies[J].Tissue Eng,2001,7(2):211-228.
    [69]Rogers J J,Young HE,AdkisonLR,etal.Differentiation factors induce expression of muscle,fat,cartilage,and bone in a clone mouse pluripotent mesenchymal stem cells[J].AmSurg,1995,6(3):231-236.
    [70]裴雪涛.成体干细胞分化的可塑性及其在组织工程中的应用[J].中国修复重建外科杂志,2004,18(2):81.
    [71]Quarto R,Mastrogiacomo M,Cancedda R,etal.Repair of large Bone defects with the use of autologous bone marrow stromal cells[J].The New England Journal Medicine,2001,344(5):385-386.
    [72]Ueda M,Yamada Y,Ozawa R,Okazaki Y.Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement[J].Int J Periodontics Restorative Dent.2005,25(2):129-137.
    [73] Scott D. Boden. The ABCs of BMPs [J]. Orthopaedic Nursing, 2005, 24(1):49-53.
    [74] Marc F. Swiontkowski, Hannu T. Aro, Simon Donell, etc. Recombinant human bone morphogenetic protein-2 in open tibial fractures [J]. The Journal of Bone and Joint Surgery, 2006, 88-A(6): 1258-1266.
    [75] Alan L. Jones, Robert W. Bucholz, Michael J. Bosse, etc. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of Diaphyseal tibial [J]. The Journal of Bone and Joint Surgery, 2006, 88-A(7): 1431-1442.
    [76] Boden SD, Kang J, Sandhu H, et al. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans. A prospective, randomized clinical pilot tria [J]. Spine, 2002;27:2662-2673.
    [77]Glassman SD, Dimar JR, Carreon LY, et al. Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion [J]. Spine, 2005,30:1694-1698.
    [78]J. Kenneth Burkus, Harvinder S. Sandhu, Matthew F. Gornet,et al. Use of rhBMP-2 in Combination with Structural Cortical Allografts: Clinical and Radiographic Outcomes in Anterior Lumbar Spinal Surgery Shields [J]. The Journal of Bone & Joint Surgery, 2005, 87-A (6): 1205-1213.
    [79]ST Yoon, SD Boden. Spine fusion by gene therapy [J]. Gene therapy, 2004, 11:360-367.
    [80] Lisa B.E., Rague, George H., et, al. Adverse effects associated with hig-dose recombinant human bone morphogenetic protein-2 used in anterior cervical spine fusion [J]. Spine, 2006,31(5): 542-547.
    [81] van den Bergh JPA, ten Bruggenkate CM, Groeneveld HHJ, et al. Recombinant human bone morphogenetic protein-7 in maxillary sinus floor elevation surgery in 3 patients compared to autogenous bone grafts. A clinical pilot study [J]. Journal of Clinical Periodontal, 2000,27: 627-636.
    [82]Vaccaro AR, Anderson DG, Toth CA. Recombinant human osteogenic protein-1 (bone morphogenetic protein-7) as an osteoinductive agent in spinal fusion [J]. Spine, 2002,27:S59-S65.
    [83]D.R. Sumner, T.M. Turner, R.M. Urban, et, al. Additive enhancement of implant fixation following combined treatment with rhTGFp2 and rhBMP-2 in a canine model [J]. The Journal of Bone and Joint Surgery, 2006, 88-A(4): 806-818.
    [84]McGuire MK, Kao RT, Nevins M, rhPDGF-BB promotes healing of periodontal defects: 24-month clinical and radiographic observations [J]. Inter J Periodontics Restorative Dent. 2006 Jun, 26(3):223-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700