用户名: 密码: 验证码:
缺失型α-地中海贫血基因诊断芯片及在分子流行病学研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-地中海贫血是世界上最常见的单基因遗传病,也是我国南方各省最常见、危害最大的遗传病。本病是由于第16号染色体短臂末端α-珠蛋白基因缺陷所致,有缺失型和非缺失型两种,缺失型是主要类型。在广东人中,超过96%的α-地中海贫血是由东南亚缺失(--SEA)、左侧缺失(-α4.2)和右侧缺失(-α3.7)引起。本病尚无有效治疗方法,携带者筛查及产前基因诊断是唯一防止新的患儿出生、提高人口素质的有效措施。实施该措施的前提是对人群中α-地中海贫血的流行病学的了解和相应的诊断技术的建立。
     目前,多种分子诊断技术已用于α-地中海贫血的诊断检测。其中多重Gap-PCR已广泛用于α-地中海贫血的分子筛查和临床诊断,但其在检测陈旧DNA时尚有一定局限性。基因芯片技术已用于多种遗传性疾病的诊断和研究。该技术可为α-地中海贫血的分子诊断提供进一步发展完善的可能。因此,本课题将研制一种可用于临床的、具有稳定性好、重复性高的快速检测中国人中常见的三种缺失型α-地中海贫血的基因芯片。
     在参照国内外文献的基础上,我们首先设计了特异性的PCR引物,建立并优化了PCR反应体系和条件。我们也设计了一系列长短不同的特异性的探针。在对醛基片的质量、探针的合成、点样液成分、探针浓度、杂交和洗涤等条件进行了研究比较后,我们获得了最适合的制备工艺和条件,并制备了含有70个寡核苷酸的探针的芯片。通过对临床标本的检测,设定了检测信号的判定标准:仅信噪比大于10,并且信号强度大于1000的探针才被认为是阳性的;如果-α3.7探针检测为阳性,那么α2的信号值必须大于-α3.7的一半时才能被判定为阳性。
     在上世纪八十年代使用血液学方法对全国范围的地中海贫血的流行病学研究结果对地中海贫血的预防起了巨大的作用。但是伴随我国经济高速发展的大规模的人口移动以及几十年来对地中海贫血的有效防治,我国人群中地中海贫血的流行病学可能发生变化。同时,血液学研究的结果与实际情况可能有偏差,需要从基因水平进一步验证和核实。因此,新一轮的基于分子分析的全国范围的地中海贫血流行病学的调查研究势在必行。这将是一个浩大的工程。一个小规模具有代表性的人群中地中海贫血流行病学的调查研究,将具有积极意义。深圳作为一座移民城市,其人口来源于全国各地,深圳市人群中地中海贫血的流行病学对于全中国人群有一定的代表性。因此,我们也进行了深圳市人群中地中海贫血流行病学的研究。
     使用自制的芯片我们对广东省深圳市人群地中海贫血的分子流行病学进行了调查。在检测过程中,我们检测到了一例特殊的病例,病人--SEA、?α3.7和α2均为阳性。血液血表型表现为典型的α-地中海贫血特点。通过分子分析鉴定其为HKαα和--SEA的复合杂合子。病人母亲基因型也为HKαα/--SEA,其父亲基因型为αα/--SEA。据我们所知,这是首次报道HKαα和--SEA的复合杂合子。由于HKαα/--SEA有典型的α-地中海贫血特点,与αα/--SEA的临床表型一致,因此在HKαα和αα之间并无明显的血液学和临床差异。这也反映了HKαα与αα基因序列的一致性。
     通过对到深圳几家大的医院就诊和寻求产前咨询的3713个人进行了表型筛查和基因分析,我们获得了深圳市人群中地中海贫血的流行病学和突变谱带。深圳人口地中海贫血基因携带率为6.49%,其中α-地中海贫血为4.34%,β-地中海贫血为1.99%;α-地中海贫血和β-地中海贫血双重杂合子0.16%。较广东省其他地区的低。这可能与深圳市人口多为外来移民有关。我们共检测到3种缺失型α-地中海贫血突变、1种非缺失型α-地中海贫血点突变和9种β-地中海贫血。与广东省其他地区相比,深圳人口中地中海贫血基因的突变谱带并无明显差异。
     综上所述,我们通过设计特异性的探针,与使用单管多重PCR扩增产物直接杂交,从而建立了一种新的检测缺失型α-地中海贫血的方法。该方法不仅方便快速,而且灵敏度高、特异性好,有利于在临床中推广应用。通过对深圳市人口地中海贫血流行病学的研究显示,该方法可应用于大规模人口地中海贫血流行病学调查,为地中海贫血的预防、诊断和基因治疗提供科学的理论根据。
α-thalassemia is the most common human monogenic hereditary diseases in the world. Generally,α-thalassemia is mainly resulted fromα-globin gene defects which located in 16p13.3.α-thalassemia is classified as deletional or non-deletional according to the mutational mechanism involved. The deletional types comprise the majority of cases ofα-thalassemia. The Southeast Asian deletion (--SEA), rightward deletion (-α3.7), and leftward deletion (-α4.2) are the most common causes of this disorder in the Guangdong population, accounting for more than 96% of allα-thalassemia. Populations in southern China have such high prevalence rates ofα-thalassemia that they present a public health concern. The screen ofα-thalassemia carrier, antenatal gene diagnosis and selective abortion is the only choice to controlα-thalassemia due to the lack of ideal treatment forα-thalassemia in clinic. The prerequisites for the purpose are the detailed genetic epidemiology of a defined population and the correspondent optimized gene analysis strategy.
     At present, various molecular diagnosis technologies have been applied to theα-thalassemia assay. Gap-PCR is widely applied to the clinical diagnosis and molecular screening of deletionalα-thalassemia carriers. But the method has limits on assay for the old genomic DNA. The DNA microarray technology which has been applied to diagnosis and research of various genetic diseases could provide the further improvement for the diagnosis of deletionalα-thalassemia. Thus, a simple, fast, and highly reproducible protocol for detection of deletionalα-thalassemia using an oligonucleotide microarray was developed.
     Specific PCR primers for the three deletionalα-thalassemia and normalα2 gene were designed through consulting and contrasting the domestic and foreign literatures. A single tube quadruple PCR reaction system was set up and the conditions were optimized. A series of probes specified to different PCR products were designed. The microarray with 70mer oligonucleotide probes was prepared using the optimized technological conditions. PCR products were directly hybridized to the microarrays with different specific probes. Genotypes were determined by quantitative analysis of the fluorescent signals detected by fluorescence scanning. The detection criteria are as follows: (a) spots, with signal-to-background ratios greater than 10.0 and intensities subtracted local background signals more than 1000, were considered positive; (b) spots forα2 were considered positive only when signal of spots forα2 was more than half of that for -α3.7 when the spots for-α3.7 are positive. The preparation protocols and the detection criteria were further optimized based on the analysis of 32 DNA samples.
     As far as the epidemiology of thalassemia is concerned, the epidemiology study of hemoglobinpathies in China mainland in the middle of 80's of last century played critical poles in controlling thalassemia. But a new round epidemiology investigation all over the country is imperative because previous study emphasized on abnormal hemoglobin diseases rather than thalassemia, and the epidemiology of thalassemia may be changed due to massive and long standing migration across the country with the fast social and economic development of China. This will be a tremendous task. A small scale investigation on thalassemia in representative population will be of certain guiding significance for the new round epidemiology. The prevalence and spectrum of thalassemia in Shenzhen is representative for the whole China because its population comes from all of the country. Thus, the molecular epidemiology of thalassemia in Shenzhen populations was carried out by using the home-made microarray.
     In the molecular epidemiological study of thalassemia from Shenzhen population by using the home-made microarray, we found a special case that was positive for the ?α3.7 junction fragment, --SEA junction fragment andα2. Phenotypic analysis revealed that the proband presented a typicalα-thalassemic trait. The molecular analysis identified that the genotype of proband was compound heterozygosity for HKααand --SEA (HKαα/--SEA). To our knowledge, this is the first report on heterozygosity for HKααand --SEA. Thus, the current case provided a chance to investigate the hematological and clinical impact of the HKαα. Asαα/--SEA, HKαα/--SEA presented a typicalα-thalassemic trait and there is no evident haematological and clinical difference between the HKαα/--SEA andαα/--SEA
     We have obtained the prevalence and spectrum ofα- andβ-thalassemia mutations in Shenzhn by screening clinical blood samples. Of total 3721 samples, 241 (6.49%) were carriers of thalassemia, of which 161 (4.34%) hadα-thalassemia, 74 (1.99%) hadβ-thalassemia, and 6 (0.16%) had bothα- andβ-thalassemia. Thus, the prevalence of thalassemia mutations in the Shenzhen population is 6.49%. We identified three deletionalα-thalassemia mutations but only one nondeletional point mutation (–αCS). Of theseα-thalassemia mutations, the Southeast Asian deletion accounted for about 80% ofα-thalassemia chromosomes. More than 90% of theβ-mutations were accounted for by codon 41/42 (–CTTT), IVS-II-654 (C→T), codon 17 (A→T), and–28 (A→G).Compared with other areas in Guangdong Province, the prevalence of thalassemia in Shenzhen was lower, while there was no evident difference for the spectrum of mutations.
     To sum up, an oligonucleotide microarray for detection of the three most frequently observed deletionalα-thalassemia (--SEA, -α3.7, -α4.2) was developed. Purification, fragmentation, and nested PCR are not needed, which makes it possible to complete the entire protocol in a work day. A novel genotype was discovered while the prevalence and spectrum of thalassemia mutations in Shenzhen was investigated by using the home-made microarray. These results showed that the simple, fast, and highly reproducible protocol may be suitable for routine clinical use and population screening for deletionalα-thalassemia.
引文
[1] Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ. A review of the molecular genetics of the human alpha-globin gene cluster[J]. Blood, 1989, 73:1081-1104.
    [2] Gu X, Zeng Y. A review of the molecular diagnosis of thalassemia[J]. Hematology, 2002, 7:203-209.
    [3] Cooley TB, Lee P. Erythroblastic anemia[J]. Am J Dis Child, 1932, 43:705-708.
    [4] Rigas DA, Koler RD, Osgood EE. Hemoglobin H; clinical, laboratory, and genetic studies of a family with a previously undescribed hemoglobin[J]. J Lab Clin Med, 1956, 47:51-64.
    [5] Rigas DA, Koler RD, Osgood EE. New hemoglobin possessing a higher electrophoretic mobility than normal adult hemoglobin[J]. Science (New York, NY, 1955, 121:372.
    [6] Nicholls RD, Higgs DR, Clegg JB, Weatherall DJ. Alpha zero-thalassemia due to recombination between the alpha 1-globin gene and an AluI repeat[J]. Blood, 1985, 65:1434-1438.
    [7] Chen FE, Ooi C, Ha SY, Cheung BM, Todd D, Liang R, Chan TK, Chan V. Genetic and clinical features of hemoglobin H disease in Chinese patients[J]. The New England journal of medicine, 2000, 343:544-550.
    [8] Clarke GM, Higgins TN. Laboratory investigation of hemoglobinopathies and thalassemias: review and update[J]. Clin Chem, 2000, 46:1284-1290.
    [9] Ottolenghi S, Lanyon WG, Paul J, Williamson R. Gene deletion as the cause of alpha thalassaemia: The severe form of alpha thalassaemia is caused by a haemoglobin gene deletion[J]. Nature, 1974, 251:389-392.
    [10] Lauer J, Shen CK, Maniatis T. The chromosomal arrangement of human alpha-like globin genes: sequence homology and alpha-globin gene deletions[J]. Cell, 1980, 20:119-130.
    [11] Michelson AM, Orkin SH. Boundaries of gene conversion within the duplicated human alpha-globin genes. Concerted evolution by segmental recombination[J]. The Journal of biological chemistry, 1983, 258:15245-15254.
    [12] Huisman THJ, Carver MFH, Baysal E. A Syllabus of Thalassemia Mutations[M]. Sickle Cell Anemia Foundation, 1997.
    [13] Lau YL, Chan LC, Chan YY, Ha SY, Yeung CY, Waye JS, Chui DH. Prevalence and genotypes of alpha- and beta-thalassemia carriers in Hong Kong -- implications for population screening[J]. The New England journal of medicine, 1997, 336:1298-1301.
    [14] Xu XM, Zhou YQ, Luo GX, Liao C, Zhou M, Chen PY, Lu JP, Jia SQ, Xiao GF, Shen X, Li J, Chen HP, Xia YY, Wen YX, Mo QH, Li WD, Li YY, Zhuo LW, Wang ZQ, Chen YJ, Qin CH, Zhong M. The prevalence and spectrum of alpha and beta thalassaemia in Guangdong Province: implications for the future health burden and population screening[J]. Journal ofclinical pathology, 2004, 57:517-522.
    [15] Embury SH, Miller JA, Dozy AM, Kan YW, Chan V, Todd D. Two different molecular organizations account for the single alpha-globin gene of the alpha-thalassemia-2 genotype[J]. The Journal of clinical investigation, 1980, 66:1319-1325.
    [16] Baysal E, Huisman TH. Detection of common deletional alpha-thalassemia-2 determinants by PCR[J]. Am J Hematol, 1994, 46:208-213.
    [17] Zhao JB, Zhao L, Fei YJ, Liu JC, Huisman TH. A novel alpha-thalassemia-2 (-2.7-kb) observed in a Chinese patient with Hb H disease[J]. Am J Hematol, 1991, 38:248-249.
    [18] Fischel-Ghodsian N, Vickers MA, Seip M, Winichagoon P, Higgs DR. Characterization of two deletions that remove the entire human zeta-alpha globin gene complex (- -THAI and - -FIL)[J]. British journal of haematology, 1988, 70:233-238.
    [19] Hofgartner WT, West Keefe SF, Tait JF. Frequency of deletional alpha-thalassemia genotypes in a predominantly Asian-American population[J]. Am J Clin Pathol, 1997, 107:576-581.
    [20] Waye JS, Eng B, Chui DH. Identification of an extensive zeta-alpha globin gene deletion in a Chinese individual[J]. British journal of haematology, 1992, 80:378-380.
    [21]肖维威,徐铃.中国人缺失型α-地中海贫血的分子基础及产前基因诊断[J].第一军医大学学报, 1998, 18:68-72.
    [22]曾瑞萍,胡彬.广东地区血红蛋白H病基因型分析及高危胎儿基因诊断[J].中华医学遗传学杂志, 1996, 13:266-268.
    [23]周玉球,李莉艳,肖鸽飞,刘忠英,李文典,徐湘民.珠海市户籍人群中α-地中海贫血的分子流行病学调查[J].中华医学遗传学杂志, 2002, 19:358-360.
    [24]全国血红蛋白病调查协作组. 20个省、市、自治区60万人血红蛋白病调查[J].中华医学杂志, 1983, 64:382-385.
    [25] Taylor JM, Dozy A, Kan YW, Varmus HE, Lie-Injo LE, Ganesan J, Todd D. Genetic lesion in homozygous alpha thalassaemia (hydrops fetalis)[J]. Nature, 1974, 251:392-393.
    [26] Higgs DR, Hill AV, Bowden DK, Weatherall DJ, Clegg JB. Independent recombination events between the duplicated human alpha globin genes; implications for their concerted evolution[J]. Nucleic acids research, 1984, 12:6965-6977.
    [27] Zhao Y, Xu X. Alpha2(CD31 AGG-->AAG, Arg-->Lys) causing non-deletional alpha-thalassemia in a Chinese family with HbH disease[J]. Haematologica, 2001, 86:541-542.
    [28] Mo QH, Zhu H, Li LY, Xu XM. Reliable and High-Throughput Mutation Screening for-Thalassemia by a Single-Base Extension/Fluorescence Polarization Assay. 2004:257-262.
    [29] Chih-chuan L, Hai-nan T, Kuo-feng C. Hemoglobin Handsworth (gamma 18 (A16) Gly leads to Arg) in a Chinese[J]. Hemoglobin, 1981, 5:191-193.
    [30] Zhao W, Wilson JB, Webber BB, Kutlar A, Tamagnini GP, Kuam B, Huisman TH. HbHekinan observed in three Chinese from Macau; identification of the GAG----GAT mutation in the alpha 1-globin gene[J]. Hemoglobin, 1990, 14:627-635.
    [31] Qin WB, Ju TL, Yue XL, Yan XL, Qin LY, Zhao JB, Chen CB. Hemoglobin Constant Spring in China[J]. Hemoglobin, 1985, 9:69-71.
    [32] Clegg JB, Weatherall DJ, Milner PF. Haemoglobin Constant Spring—a chain termination mutant[J]. Nature, 1971, 234:337-340.
    [33] Liebhaber SA, Cash FE. Locus assignment of alpha-globin structural mutations by hybrid-selected translation[J]. Journal of Clinical Investigation, 1985, 75:64.
    [34] Fucharoen S, Winichagoon P. Hemoglobinopathies in Southeast Asia: molecular biology and clinical medicine[J]. Hemoglobin, 1997, 21:299-319.
    [35] Liu TC, Chiou SS, Lin SF, Chen TP, Tseng WP, Chen PH, Chang JG. Molecular basis and hematological characterization of Hb H disease in southeast Asia[J]. Am J Hematol, 1994, 45:293-297.
    [36] Milner PF, Clegg JB, Weatherall DJ. Haemoglobin-H disease due to a unique haemoglobin variant with an elongated alpha-chain[J]. Lancet, 1971, 1:729-732.
    [37] Barbour VM, Tufarelli C, Sharpe JA, Smith ZE, Ayyub H, Heinlein CA, Sloane-Stanley J, Indrak K, Wood WG, Higgs DR. alpha-thalassemia resulting from a negative chromosomal position effect[J]. Blood, 2000, 96:800-807.
    [38] De Gobbi M, Viprakasit V, Hughes JR, Fisher C, Buckle VJ, Ayyub H, Gibbons RJ, Vernimmen D, Yoshinaga Y, de Jong P, Cheng JF, Rubin EM, Wood WG, Bowden D, Higgs DR. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter[J]. Science (New York, NY, 2006, 312:1215-1217.
    [39] Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H, Higgs DR. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation[J]. Nature genetics, 2000, 24:368-371.
    [40] McDowell TL, Gibbons RJ, Sutherland H, O'Rourke DM, Bickmore WA, Pombo A, Turley H, Gatter K, Picketts DJ, Buckle VJ, Chapman L, Rhodes D, Higgs DR. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:13983-13988.
    [41] Gibbons RJ, Picketts DJ, Villard L, Higgs DR. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome)[J]. Cell, 1995, 80:837-845.
    [42] Huisman THJ, Carver MFH, Baysal E. A Syllabus of Thalassemia Mutations Augusta: The Sickle Cell Anemia Foundation 1997.
    [43] Thalhammer-Scherrer R, Knobl P, Korninger L, Schwarzinger I. Automated five-part white blood cell differential counts. Efficiency of software-generated white blood cell suspect flags of the hematology analyzers Sysmex SE-9000, Sysmex NE-8000, and Coulter STKS[J]. ArchPathol Lab Med, 1997, 121:573-577.
    [44] Sanchaisuriya K, Fucharoen S, Fucharoen G, Ratanasiri T, Sanchaisuriya P, Changtrakul Y, Ukosanakarn U, Ussawaphark W, Schelp FP. A Reliable Screening Protocol for Thalassemia and Hemoglobinopathies in Pregnancy[J]. American Journal of Clinical Pathology, 2005, 123:113-118.
    [45] Alter BP, Goff SC, Efremov GD, Gravely ME, Huisman TH. Globin chain electrophoresis: a new approach to the determination of the G gamma/A gamma ratio in fetal haemoglobin and to studies of globin synthesis[J]. British journal of haematology, 1980, 44:527-534.
    [46] Fucharoen S, Winichagoon P, Wisedpanichkij R, Sae-Ngow B, Sriphanich R, Oncoung W, Muangsapaya W, Chowthaworn J, Kanokpongsakdi S, Bunyaratvej A. Prenatal and postnatal diagnoses of thalassemias and hemoglobinopathies by HPLC. Am Assoc Clin Chem 1998:740-748.
    [47] Whisler S, Dahlgren C. Performance Evaluation of the Sysmex pocH-100i Automated Hematology Analyzer[J]. Laboratory Hematology, 2005, 11:107-117.
    [48] Embury SH, Lebo RV, Dozy AM, Kan YW. Organization of the alpha-globin genes in the Chinese alpha-thalassemia syndromes[J]. The Journal of clinical investigation, 1979, 63:1307-1310.
    [49] Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science (New York, NY, 1985, 230:1350-1354.
    [50] Chehab FF, Doherty M, Cai SP, Kan YW, Cooper S, Rubin EM. Detection of sickle cell anaemia and thalassaemias[J]. Nature, 1987, 329:293-294.
    [51] Chang JG, Lee LS, Lin CP, Chen PH, Chen CP. Rapid diagnosis of alpha-thalassemia-1 of southeast Asia type and hydrops fetalis by polymerase chain reaction[J]. Blood, 1991, 78:853-854.
    [52] Shaji RV, Srivastava A, Chandy M, Krishnamoorthy R. A single tube multiplex PCR method to detect the common alpha+ thalassemia alleles[J]. Blood, 2000, 95:1879-1880.
    [53] Chong SS, Boehm CD, Cutting GR, Higgs DR. Simplified multiplex-PCR diagnosis of common southeast asian deletional determinants of alpha-thalassemia[J]. Clin Chem, 2000, 46:1692-1695.
    [54] Chong SS, Boehm CD, Higgs DR, Cutting GR. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia[J]. Blood, 2000, 95:360-362.
    [55] Bowden DK, Vickers MA, Higgs DR. A PCR-based strategy to detect the common severe determinants of alpha thalassaemia[J]. British journal of haematology, 1992, 81:104-108.
    [56] Hsia YE, Ford CA, Shapiro LJ, Hunt JA, Ching NS. Molecular screening for haemoglobin constant spring[J]. Lancet, 1989, 1:988-991.
    [57] Harteveld KL, Heister AJ, Giordano PC, Losekoot M, Bernini LF. Rapid detection of point mutations and polymorphisms of the alpha-globin genes by DGGE and SSCA[J]. Hum Mutat,1996, 7:114-122.
    [58] Zeng YT, Huang SZ. Disorders of haemoglobin in China[J]. Journal of medical genetics, 1987, 24:578-583.
    [59] Li AM, Lee FT, Todd D. The screening of Chinese cord blood for haemoglobinopathies[J]. Human heredity, 1982, 32:62-70.
    [60] Ramsay G. DNA chips: state-of-the art[J]. Nature biotechnology, 1998, 16:40-44.
    [61] Marshall A, Hodgson J. DNA chips: an array of possibilities[J]. Nature biotechnology, 1998, 16:27-31.
    [62] Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL. Expression monitoring by hybridization to high-density oligonucleotide arrays[J]. Nature biotechnology, 1996, 14:1675-1680.
    [63] Lenigk R, Carles M, Ip NY, Sucher NJ. Surface characterization of a silicon-chip-based DNA microarray[J]. Langmuir, 2001, 17:2497-2501.
    [64] Trau D, Lee TMH, Lao AIK, Lenigk R, Hsing IM, Ip NY, Carles MC, Sucher NJ. Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray[J]. Anal Chem, 2002, 74:3168–3173.
    [65] Ruano JM, Glidle A, Cleary A, Walmsley A, Aitchison JS, Cooper JM. Design and fabrication of a silica on silicon integrated optical biochip as a fluorescence microarray platform[J]. Biosens Bioelectron, 2003, 18:175-184.
    [66] Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization[J]. Genome Research, 1996, 6:639-645.
    [67] Pirri G, Damin F, Chiari M, Bontempi E, Depero LE. Characterization of a polymeric adsorbed coating for DNA microarray glass slides[J]. Anal Chem, 2004, 76:1352-1358.
    [68] Kinoshita K, Fujimoto K, Yakabe T, Saito S, Hamaguchi Y, Kikuchi T, Nonaka K, Murata S, Masuda D, Takada W. Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer[J]. Nucleic acids research, 2007, 35:e3.
    [69] Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays[J]. Nature genetics, 1999, 21:20-24.
    [70] Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP. Light-generated oligonucleotide arrays for rapid DNA sequence analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91:5022-5026.
    [71] Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis[J]. Science (New York, NY, 1991, 251:767-773.
    [72] McGall GH, Barone AD, Diggelmann M, Fodor SPA, Gentalen E, Ngo N. The efficiency of light-directed synthesis of DNA arrays on glass substrates[J]. J Am Chem Soc, 1997, 119:5081-5090.
    [73] Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotidearrays[J]. Nature genetics, 1999, 21:20-24.
    [74] Beecher JE, McGall GH, Goldberg MJ. Chemically amplified photolithography for the fabrication of high density oligonucleotide arrays[J]. Polym Mater Sci Eng, 1997, 76:597–598.
    [75] Proudnikov D, Timofeev E, Mirzabekov A. Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips[J]. Analytical biochemistry, 1998, 259:34-41.
    [76] Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science (New York, NY, 1995, 270:467-470.
    [77] Hacia JG, Brody LC, Chee MS, Fodor SPA, Collins FS. Detection of heterozygous mutations in BRCA 1 using high density oligonucleotide arrays and two–colour fluorescence analysis[J]. Nature genetics, 1996, 14:441-447.
    [78] Hacia JG, Edgemon K, Sun B, Stern D, Fodor SP, Collins FS, Journals O. Two color hybridization analysis using high density oligonucleotide arrays and energy transfer dyes[J]. Nucleic acids research, 26:3865-3866.
    [79] Hacia JG. Resequencing and mutational analysis using oligonucleotide microarrays[J]. Nature genetics, 1999, 21:42-47.
    [80]王升启.基因芯片技术及研究进展[J].生物工程进展, 1999, 19:45-51.
    [81] Scangos G. Drug discovery in the postgenomic era[J]. Nature biotechnology, 1997, 15:1220-1221.
    [82] Tonisson N, Galanello R, Cao A, Metspalu A, Romeo G. Reliable Detection of-Thalassemia and G6PD Muta-tions by a DNA Microarray, Federica Gemignani, Chiara[J]. mass spectrometry, 2001, 306:35-41.
    [83] Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D, Ravnik-Glavac M, Hawlina M, Meltzer MR, Caruso RC. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene[J]. Hum Mutat, 2003, 22:395-403.
    [84] Favis R, Barany F. Mutation Detection in K-ras, BRCA1, BRCA2, and p53 Using PCR/LDR and a Universal DNA Microarray[J]. Annals of the New York Academy of Sciences, 2000, 906:39.
    [85] Favis R, Huang J, Gerry NP, Culliford A, Paty P, Soussi T, Barany F. Harmonized microarray/mutation scanning analysis of TP 53 mutations in undissected colorectal tumors[J]. Human Mutation, 2004, 24:63-75.
    [86] Drobyshev A, Mologina N, Shik V, Pobedimskaya D, Yershov G, Mirzabekov A. Sequence analysis by hybridization with oligonucleotide microchip: identification of beta-thalassemia mutations[J]. Gene, 1997, 188:45-52.
    [87] van Moorsel CH, van Wijngaarden EE, Fokkema IF, den Dunnen JT, Roos D, van Zwieten R, Giordano PC, Harteveld CL. beta-Globin mutation detection by tagged single-base extensionand hybridization to universal glass and flow-through microarrays[J]. Eur J Hum Genet, 2004, 12:567-573.
    [88] Bang-Ce Y, Hongqiong L, Zhuanfong Z, Zhengsong L, Jianling G. Simultaneous detection of alpha-thalassemia and beta-thalassemia by oligonucleotide microarray[J]. Haematologica, 2004, 89:1010-1012.
    [89] Lu Y, Kham SK, Tan PL, Quah TC, Heng CK, Yeoh AE. Arrayed primer extension: a robust and reliable genotyping platform for the diagnosis of single gene disorders: beta-thalassemia and thiopurine methyltransferase deficiency[J]. Genet Test, 2005, 9:212-219.
    [90] Foglieni B, Cremonesi L, Travi M, Ravani A, Giambona A, Rosatelli MC, Perra C, Fortina P, Ferrari M. Beta-thalassemia microelectronic chip: a fast and accurate method for mutation detection[J]. Clin Chem, 2004, 50:73-79.
    [91] Ye BC, Zhang Z, Lei Z. Oligonucleotide array for detection of common severe determinants of alpha thalassemia[J]. J Biotechnol, 2005, 115:1-9.
    [92]李明,蔡佩欣,聂李平,黄明辉,陶小梅,李玉珠,王晓玲,向筑,汪明春,杨梦苏.基因芯片法诊断地中海贫血[J].中华血液学杂志, 2003, 24:551-552.
    [93]区小冰,张力,余一平,李梅爱,何艳明.基因芯片诊断地中海贫血的研究[J].中华儿科杂志, 2005, 43:31-34.
    [94]王沙燕,蔡佩欣.基因芯片用于检测缺失型α地中海贫血[J].中华血液学杂志, 2002, 23:603-604.
    [95] Chiu CY, Alizadeh AA, Rouskin S, Merker JD, Yeh E, Yagi S, Schnurr D, Patterson BK, Ganem D, DeRisi JL. Diagnosis of a critical respiratory illness caused by human metapneumovirus by use of a pan-virus microarray[J]. Journal of clinical microbiology, 2007, 45:2340-2343.
    [96] Townsend MB, Dawson ED, Mehlmann M, Smagala JA, Dankbar DM, Moore CL, Smith CB, Cox NJ, Kuchta RD, Rowlen KL. Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance[J]. Journal of clinical microbiology, 2006, 44:2863-2871.
    [97] Martin V, Perales C, Abia D, Ortiz AR, Domingo E, Briones C. Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment[J]. BMC genomics, 2006, 7:117.
    [98] Baxi MK, Baxi S, Clavijo A, Burton KM, Deregt D. Microarray-based detection and typing of foot-and-mouth disease virus[J]. Vet J, 2006, 172:473-481.
    [99] Wenli M, Yan W, Hongmin W, Wenling Z. An oligonucleotide microarray for the detection of vaccinia virus[J]. British journal of biomedical science, 2004, 61:142-145.
    [100] Min W, Wen-Li M, Bao Z, Ling L, Zhao-Hui S, Wen-Ling Z. Oligonucleotide microarray with RD-PCR labeling technique for detection and typing of human papillomavirus[J]. Current microbiology, 2006, 52:204-209.
    [101] Seo SS, Song YS, Kim JW, Park NH, Kang SB, Lee HP. Good correlation of HPV DNA test between self-collected vaginal and clinician-collected cervical samples by the oligonucleotide microarray[J]. Gynecologic oncology, 2006, 102:67-73.
    [102] Oh TJ, Kim CJ, Woo SK, Kim TS, Jeong DJ, Kim MS, Lee S, Cho HS, An S. Development and clinical evaluation of a highly sensitive DNA microarray for detection and genotyping of human papillomaviruses[J]. Journal of clinical microbiology, 2004, 42:3272-3280.
    [103] Hwang TS, Jeong JK, Park M, Han HS, Choi HK, Park TS. Detection and typing of HPV genotypes in various cervical lesions by HPV oligonucleotide microarray[J]. Gynecologic oncology, 2003, 90:51-56.
    [104] Iizuka N, Oka M, Yamada-Okabe H, Mori N, Tamesa T, Okada T, Takemoto N, Tangoku A, Hamada K, Nakayama H, Miyamoto T, Uchimura S, Hamamoto Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method[J]. Cancer research, 2002, 62:3939-3944.
    [105] Perrin A, Duracher D, Perret M, Cleuziat P, Mandrand B. A combined oligonucleotide and protein microarray for the codetection of nucleic acids and antibodies associated with human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infections[J]. Analytical biochemistry, 2003, 322:148-155.
    [106] Yuk CS, Lee HK, Kim HT, Choi YK, Lee BC, Chun BH, Chung N. Development and evaluation of a protein microarray chip for diagnosis of hepatitis C virus[J]. Biotechnology letters, 2004, 26:1563-1568.
    [107] Fukushima M, Kakinuma K, Hayashi H, Nagai H, Ito K, Kawaguchi R. Detection and identification of Mycobacterium species isolates by DNA microarray[J]. Journal of clinical microbiology, 2003, 41:2605-2615.
    [108] Wade MM, Volokhov D, Peredelchuk M, Chizhikov V, Zhang Y. Accurate mapping of mutations of pyrazinamide-resistant Mycobacterium tuberculosis strains with a scanning-frame oligonucleotide microarray[J]. Diagnostic microbiology and infectious disease, 2004, 49:89-97.
    [109] Shieh B, Li C. Multi-faceted, multi-versatile microarray: simultaneous detection of many viruses and their expression profiles[J]. Retrovirology, 2004, 1:11.
    [110] Chou CC, Lee TT, Chen CH, Hsiao HY, Lin YL, Ho MS, Yang PC, Peck K. Design of microarray probes for virus identification and detection of emerging viruses at the genus level[J]. BMC bioinformatics, 2006, 7:232.
    [111] Zhang ZW, Zhou YM, Zhang Y, Guo Y, Tao SC, Li Z, Zhang Q, Cheng J. Sensitive detection of SARS coronavirus RNA by a novel asymmetric multiplex nested RT-PCR amplification coupled with oligonucleotide microarray hybridization[J]. Methods in molecular medicine, 2005, 114:59-78.
    [112] Long WH, Xiao HS, Gu XM, Zhang QH, Yang HJ, Zhao GP, Liu JH. A universal microarrayfor detection of SARS coronavirus[J]. Journal of virological methods, 2004, 121:57-63.
    [113] Zhang R, Huang GB, Sundararajan N, Saratchandran P. Multi-category classification using an Extreme Learning Machine for microarray gene expression cancer diagnosis[J]. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM, 2007, 4:485-495.
    [114] Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W, Haferlach T. Molecular characterization of acute leukemias by use of microarray technology[J]. Genes, chromosomes & cancer, 2003, 37:396-405.
    [115] Hoffmann K, Firth MJ, Beesley AH, de Klerk NH, Kees UR. Translating microarray data for diagnostic testing in childhood leukaemia[J]. BMC cancer, 2006, 6:229.
    [116] O'Neill MC, Song L. Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect[J]. BMC bioinformatics, 2003, 4:13.
    [117] Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis[J]. Bioinformatics (Oxford, England), 2005, 21:631-643.
    [118] Kattamis AC, Camaschella C, Sivera P, Surrey S, Fortina P. Human alpha-thalassemia syndromes: detection of molecular defects[J]. Am J Hematol, 1996, 53:81-91.
    [119]曾溢滔.血红蛋白疾病的诊断和治疗[J].中华血液学杂志, 1996, 17:393-394.
    [120] Chan K, Wong MS, Chan TK, Chan V. A thalassaemia array for Southeast Asia[J]. British journal of haematology, 2004, 124:232-239.
    [121] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd[J]. New York: Cold Spring Harbor Laboratory, 1989, 18:58.
    [122] Hoss M, Paabo S. DNA extraction from Pleistocene bones by a silica-based purification method[J]. Nucleic acids research, 1993, 21:3913-3914.
    [123] Hoff-Olsen P, Mevag B, Staalstrom E, Hovde B, Egeland T, Olaisen B. Extraction of DNA from decomposed human tissue. An evaluation of five extraction methods for short tandem repeat typing[J]. Forensic science international, 1999, 105:171-183.
    [124] Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic acids research, 1988, 16:1215.
    [125] Southern EM, Case-Green SC, Elder JK, Johnson M, Mir KU, Wang L, Williams JC. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids[J]. Nucleic acids research, 1994, 22:1368-1373.
    [126] Li W, Huang J, Fan M, Wang S. MProbe: computer aided probe design for oligonucleotide microarrays[J]. Applied bioinformatics, 2002, 1:163-166.
    [127] Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays[J]. Nucleic acids research, 2000, 28:4552-4557.
    [128] Wang HY, Malek RL, Kwitek AE, Greene AS, Luu TV, Behbahani B, Frank B, Quackenbush J, Lee NH. Assessing unmodified 70-mer oligonucleotide probe performance on glass-slidemicroarrays[J]. Genome biology, 2003, 4:R5.
    [129] Wrobel G, Schlingemann J, Hummerich L, Kramer H, Lichter P, Hahn M. Optimization of high-density cDNA-microarray protocols by 'design of experiments'[J]. Nucleic acids research, 2003, 31:e67.
    [130] Tang DC, Fucharoen S, Ding I, Rodgers GP. Rapid differentiation of five common alpha-thalassemia genotypes by polymerase chain reaction[J]. J Lab Clin Med, 2001, 137:290-295.
    [131] Liu TC, Lin SF, Yang TY, Lee JP, Chen TP, Chang JG. Prenatal diagnosis of thalassemia in the Chinese[J]. Am J Hematol, 1997, 55:65-68.
    [132] Chang JG, Liu TC, Chiou SS, Chen JT, Chen TP, Lin CP. Rapid detection of -alpha 4.2 deletion of alpha-thalassemia-2 by polymerase chain reaction[J]. Ann Hematol, 1994, 69:205-209.
    [133] Diehl F, Grahlmann S, Beier M, Hoheisel JD. Manufacturing DNA microarrays of high spot homogeneity and reduced background signal[J]. Nucleic acids research, 2001, 29:E38.
    [134] Sauer U, Preininger C, Hany-Schmatzberger R. Quick and simple: quality control of microarray data[J]. Bioinformatics (Oxford, England), 2005, 21:1572-1578.
    [135] Polsky-Cynkin R, Parsons GH, Allerdt L, Landes G, Davis G, Rashtchian A. Use of DNA immobilized on plastic and agarose supports to detect DNA by sandwich hybridization[J]. Clin Chem, 1985, 31:1438-1443.
    [136] Lund V, Schmid R, Rickwood D, Hornes E. Assessment of methods for covalent binding of nucleic acids to magnetic beads, Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions[J]. Nucleic acids research, 1988, 16:10861-10880.
    [137] Wilchek M, Bayer EA. The avidin-biotin complex in bioanalytical applications[J]. Analytical biochemistry, 1988, 171:1-32.
    [138] Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports[J]. Nucleic acids research, 1994, 22:5456-5465.
    [139] Zesong L, Ruijun G, Wen Z. Rapid detection of deletional alpha-thalassemia by an oligonucleotide microarray[J]. Am J Hematol, 2005, 80:306-308.
    [140]邓捷,刘新质.应用平均红细胞体积测定法及红细胞脆性一管定量法筛查地中海贫血[J].中华妇产科杂志, 2000, 35:610-612.
    [141] Wang W, Ma ES, Chan AY, Prior J, Erber WN, Chan LC, Chui DH, Chong SS. Single-tube multiplex-PCR screen for anti-3.7 and anti-4.2 alpha-globin gene triplications[J]. Clin Chem, 2003, 49:1679-1682.
    [142] Wang W, Chan AY, Chan LC, Ma ES, Chong SS. Unusual rearrangement of the alpha-globin gene cluster containing both the -alpha3.7 and alphaalphaalphaanti-4.2 crossover junctions: clinical diagnostic implications and possible mechanisms[J]. Clin Chem, 2005, 51:2167-2170.
    [143] Li Z, Li F, Li M, Guo R, Zhang W. The prevalence and spectrum of thalassemia in Shenzhen, Guangdong Province, People's Republic of China[J]. Hemoglobin, 2006, 30:9-14.
    [144] Cheng TC, Orkin SH, Antonarakis SE, Potter MJ, Sexton JP, Markham AF, Giardina PJ, Li A, Kazazian HH, Jr. beta-Thalassemia in Chinese: use of in vivo RNA analysis and oligonucleotide hybridization in systematic characterization of molecular defects[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81:2821-2825.
    [145] Chang JC, Kan YW. beta 0 thalassemia, a nonsense mutation in man[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76:2886-2889.
    [146] Kimura A, Matsunaga E, Takihara Y, Nakamura T, Takagi Y, Lin S, Lee H. Structural analysis of a beta-thalassemia gene found in Taiwan[J]. The Journal of biological chemistry, 1983, 258:2748-2749.
    [147] Atweh GF, Brickner HE, Zhu XX, Kazazian HH, Jr., Forget BG. New amber mutation in a beta-thalassemic gene with nonmeasurable levels of mutant messenger RNA in vivo[J]. The Journal of clinical investigation, 1988, 82:557-561.
    [148] Chan V, Chan TK, Todd D. A new codon 71 (+T) mutant resulting in beta zero thalassemia[J]. Blood, 1989, 74:2304.
    [149] Lin LI, Lin KS, Lin KH. A new codon 31 (-C) mutant resulting in beta zero-thalassemia[J]. Proceedings of the National Science Council, Republic of China, 1992, 16:6-9.
    [150] Orkin SH, Kazazian HH, Jr., Antonarakis SE, Ostrer H, Goff SC, Sexton JP. Abnormal RNA processing due to the exon mutation of beta E-globin gene[J]. Nature, 1982, 300:768-769.
    [151] Chan V, Chan TK, Kan YW, Todd D. A novel beta-thalassemia frameshift mutation (codon 14/15), detectable by direct visualization of abnormal restriction fragment in amplified genomic DNA[J]. Blood, 1988, 72:1420-1423.
    [152] Chiou SS, Chang TT, Chen PH, Lee LS, Chen TS, Chang JG. Molecular basis and haematological characterization of beta-thalassaemia major in Taiwan, with a mutation of IVS-1 3' end TAG-->GAG in a Chinese patient[J]. British journal of haematology, 1993, 83:112-117.
    [153] Kazazian HH, Jr., Orkin SH, Antonarakis SE, Sexton JP, Boehm CD, Goff SC, Waber PG. Molecular characterization of seven beta-thalassemia mutations in Asian Indians[J]. The EMBO journal, 1984, 3:593-596.
    [154] Huang SZ, Xu YH, Zeng FY, Wu DF, Ren ZR, Zeng YT. A novel beta-thalassaemia mutation: deletion of 4 bp (-AAAC) in the 5' transcriptional sequence[J]. British journal of haematology, 1991, 78:125-126.
    [155] Lam VM, Xie SS, Tam JW, Woo YK, Gu YL, Li AM. A new single nucleotide change at the initiation codon (ATG----AGG) identified in amplified genomic DNA of a Chinese beta-thalassemic patient[J]. Blood, 1990, 75:1207-1208.
    [156] Li HJ, Yu WZ, Zhou CW, Hao XJ, Zhou Y. The beta-thalassemia frameshift at codon 8 (-AA)observed in four Chinese of the Uygur nationality[J]. Hemoglobin, 1993, 17:537-541.
    [157]余伍忠,李厚钧.在新疆维吾尔族中首次发现β地中海贫血CDs8/9 (+ G)基因突变[J].中华医学遗传学杂志, 1996, 13:22-24.
    [158] Mo QH, Li XR, Li CF, He YL, Xu XM. A novel frameshift mutation (+G) at codons 15/16 in a beta0 thalassaemia gene results in a significant reduction of beta globin mRNA values[J]. Journal of clinical pathology, 2005, 58:923-926.
    [159] Orkin SH, Sexton JP, Cheng TC, Goff SC, Giardina PJ, Lee JI, Kazazian HH, Jr. ATA box transcription mutation in beta-thalassemia[J]. Nucleic acids research, 1983, 11:4727-4734.
    [160] Antonarakis SE, Boehm CD, Giardina PJ, Kazazian HH, Jr. Nonrandom association of polymorphic restriction sites in the beta-globin gene cluster[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79:137-141.
    [161] Cai SP, Zhang JZ, Doherty M, Kan YW. A new TATA box mutation detected at prenatal diagnosis for beta-thalassemia[J]. Am J Hum Genet, 1989, 45:112-114.
    [162] Lin LI, Lin KS, Lin KH, Cheng TY. A novel -32 (C-A) mutant identified in amplified genomic DNA of a Chinese beta-thalassemic patient[J]. Am J Hum Genet, 1992, 50:237-238.
    [163]杜传书.地中海贫血研究的现状与未来[J].中华医学遗传学杂志, 1996, 13:257-257.
    [164]李明,聂李平,陶小梅,李玉珠,陈秀珍,琴郑,敏罗,汪明春.深圳地区地中海贫血患病率调查及其基因分型[J].热带医学杂志, 2005, 5:301-303.
    [165]蒋南华,梁徐.广西地区中间型β地中海贫血的基因型和临床表现[J].中华血液学杂志, 1996, 17:182-184.
    [166]蔡稔,李莉艳,梁昕.柳州市城镇人群α和β地中海贫血的发生率调查和基因型鉴定[J].中华流行病学杂志, 2002, 23:281-285.
    [167] Pan H, Long G, Li Q, Feng Y, Lei Z, Wei H, Huang Y, Huang J, Lin N, Xu Q. Current status of thalassemia in minority populations in Guangxi, China[J]. Clinical Genetics, 2007, 71:419.
    [168] Cai R, Liu J, Wang L, Liang X, Xiao B, Su L, Zhou Y, Pan L. Study on Molecular Epidemiology of theα-Thalassemias in Liuzhou City, Guangxi Autonomous Region, China[J]. Hemoglobin, 2005, 28:325-333.
    [169] Liang R, Liang S, Jiang N, Wen X, Zhao J, Nechtman J, Stoming T, Huisman T.αandβthalassaemia among Chinese children in Guangxi Province, PR China: molecular and haematological characterization[J]. British journal of haematology, 1994, 86:351-354.
    [170]区采莹,王传文.海南343名黎族小学生α-地中海贫血基因型调查[J].海南医学, 1999, 10:112-113.
    [171] Ye B, Zhang Z, Lei Z. Molecular Analysis ofα/β-Thalassemia in A Southern Chinese Population[J]. Genetic Testing, 2007, 11:75-83.
    [172]周代锋,王政,蔡兰洁,王小英,蔡望伟.海南省汉黎族人群缺失型α-地中海贫血的研究[J].中国热带医学, 2006, 6:1549-1551.
    [173]蔡稔,李莉艳.柳州市城镇人群α和β地中海贫血的发生率调查和基因型鉴定[J].中华流行病学杂志, 2002, 23:281-285.
    [174]张新华,周英杰,李平萍,罗瑞贵,阮丽明,王荣新,吴志奎,李敏,黄有文.广西南宁市农村育龄人群地中海贫血筛查及基因型和血液学参数分析[J].中华流行病学杂志, 2006, 27:769-772.
    [175]周玉球,李莉艳.珠海市户籍人群中α-地中海贫血的分子流行病学调查[J].中华医学遗传学杂志, 2002, 19:358-360.
    [176]吴琦嫦,周裕林,江雨,曾炳勋,王文博,许亚松.厦门地区β地中海贫血基因突变类型及产前基因诊断研究[J].中国优生与遗传杂志, 2007, 15:25-26.
    [177]赵艳,谢渊,单可人,何燕,吴昌学,修谨,齐晓岚,李毅,马骄,张小蕾.贵州三都水族β-地中海贫血筛查及基因分析[J].中国地方病学杂志, 2004, 23:553-555.
    [178]马骄,谢渊,齐晓岚,修瑾,何燕,李毅,赵艳,吴昌学,陈淼鑫,褚迅.贵州黔西部分少数民族β-地中海贫血血液学筛查[J].贵阳医学院学报, 2004, 29:21-24.
    [179]吴蓝黎,单可人.贵州西江苗族β地中海贫血筛查及基因分析[J].中国地方病学杂志, 2001, 20:451-453.
    [180]余伍忠,李厚钧.中国西北三省区β地中海贫血的基因突变类型及其分布特点[J].中华医学遗传学杂志, 1998, 15:224-228.
    [181]李明,张庆.深圳地区地中海贫血发病率及其基因诊断的初步报告[J].中国优生与遗传杂志, 1999, 7:10-10.
    [182]郑桂琴,李明,聂李平,黄健,巫世娟,方光光,高萍.深圳市孕妇地中海贫血产前筛查及产前诊断[J].中国实用妇科与产科杂志, 2003, 19:363-364.
    [183]张松,邹汉良,谭萍,李芳芳,甘志彪.深圳东部地区地中海贫血发病率的调查研究[J].热带医学杂志, 2006, 6:200-201,309.
    [184]吴维青,金睛,蔡筠,徐晓昕,耿茜,谢建生.湖南籍人群α,β地中海贫血流行病学调查及突变类型分析[J].中国优生与遗传杂志, 2007, 15:43-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700