用户名: 密码: 验证码:
登革热监测方法的系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     登革热是由伊蚊传播的一种急性传染病,主要分布于热带和亚热带的国家和地区,是分布最广、发病人数最多的虫媒传染病之一,估计全球每年有1亿例感染者,对人群健康造成极大威胁。登革热在我国主要分布在东南沿海的广东、福建、海南和台湾四省,近年来在浙江等地也出现了局部流行。随着全球气候的不断变暖,登革热有向北逐渐扩散的趋势,同时,全球化趋势、自然生态系统的破坏也使得该传染病的预防和控制工作越发复杂。
     疾病监测是指长期、连续、系统地收集疾病的动态分布及其影响因素的资料,经过分析将信息上报和反馈,以便及时采取干预措施并评价其效果。疾病监测工作包括4个基本环节:收集资料、分析资料、反馈信息和利用信息。其中充分利用监测信息对疾病流行进行预测预警是疾病监测的主要目的之一。我国目前对登革热的监测包括人间疫情监测(疫情监测、血清学监测、病原学监测)和媒介监测(媒介密度监测、病毒监测)两方面。
     信息管理是疾病监测的核心环节。传统的监测信息管理无论是“逐级上报”还是“网络直报”模式都只能完成一般的属性信息管理工作,不能完成从地理概念出发的操作,往往缺乏有关疾病的地理空间信息,这就难以有效反映疾病的地理空间分布特征和空间关系,无法准确掌握疾病的流行规律,因此,尽快研究设计出方便实用的疾病监测信息管理系统成为迫在眉睫的事情。近年来地理信息系统技术发展迅速,其与公共卫生领域的结合不断紧密,它已成为处理、分析和可视化空间资料必不可少的工具。建立基于地理信息系统相关技术的信息管理系统是对传染病疫情适时监控、预警、快速反应的重要手段,它可以及时掌握传染病疫情的发展、变化,使疫情信息的传递更加及时、准确,使有关部门能够在第一时间内及时采取应急措施,减少不必要的损失。
     媒介监测对于登革热的预测具有重要意义。目前对媒介伊蚊的监测主要采用幼虫监测法,指标为房屋指数、容器指数和布雷图指数等;2005年5月提出的《全国病媒生物监测方案(试行)》将诱蚊诱卵器列为伊蚊的监测方法之一,但应用还不广泛。数据信息的管理是传染病监测过程中的重要一环。2004年之前,我国传染病疫情信息主要由医疗卫生机构使用纸质报告卡,通过邮寄或电话方式向区疾病预防控制机构报告,由其按全国统一的软件录入计算机的逐级上报的模式;从2004年元月开始,国家卫生部规定所有法定传染病和其他一些重要传染病疫情全部通过联网数据库“中国疾病预防控制信息系统”进行网络直报,但一些虫媒传染病如登革热等的媒介昆虫监测资料由各监测单位自行管理,并不统一上报。在预测预警方面,目前无论是国内还是国外,都还没有有效的方法可以对登革热流行进行预测预警。有相关研究认为,伊蚊房屋指数、容器指数和布雷图指数较高时,登革热流行的危险性增加,因此全球多数国家主要以这些指标作为登革热流行前的预警指标,我国要求平时将布雷图指数控制在20以下,而登革热流行时,则要求迅速将其控制在5以下。
     我国现行的伊蚊监测方法主要为幼虫监测法,这种方法最早是用于黄热病媒介埃及伊蚊的监测,存在工作量大,干扰因素多的缺点,也不完全适用于半野栖的白纹伊蚊。它主要是通过对房屋、庭院中积水容器里的伊蚊幼虫、蛹数量进行监测,进而对环境中的成蚊密度进行估算,但由于现代社会的发展,城市中的建筑主要以楼房为主,庭院和积水容器的数量越来越少,对它们的监测已不足以反映环境中的蚊虫密度。林立丰等设计的新型伊蚊监测工具诱蚊诱卵器已经作为常规监测方法之一在我国一些地区进行应用,这种装置对白纹伊蚊的特异性较强,但诱蚊诱卵效率并不高。而国外应用较广的伊蚊监测方法——诱卵杯法,也存在不能捕获成蚊和诱卵效率低的缺点。因此,改进传统的监测方法,提高蚊媒监测工具的诱蚊和诱卵效率,使之更准确的反映环境中的蚊虫密度和带毒情况,是对登革热进行有效预防和预测的先决条件。寻找合适的蚊虫诱引剂是解决方法之一。
     传统的登革热预警指标主要是蚊媒的监测数据,但仅用该指标预测效果不理想。例如,新加坡自1979年以来房屋指数控制在2以下和巴西布雷图指数控制在5以下,登革热仍不断流行。因为登革热是由媒介伊蚊传播的急性传染病,因此环境中伊蚊的密度以及影响伊蚊密度的一些因素如气候变化等都会对登革热的流行产生影响,若想对登革热进行较准确的预测预警,必须在登革热流行数据的基础上,结合气候因素、环境因素等建立多因素的预测预警模型。气候变化可以使蚊虫的地理分布范围发生变化,提高繁殖速度,增加叮咬率等而直接影响疾病传播。因此,监测气候因素的变化,进而分析气候因素在传染病发生中所起的作用,将有助于制定更有效的传染病预防控制策略。登革热主要由伊蚊进行传播,而蚊虫密度又受到气温、降雨量、湿度等气侯因素的影响,因此通过进行登革热与气侯因素的相关研究,可以建立基于气侯因素的登革热早期预测预警系统。
     鉴于上述背景和分析,我们进行了登革热监测方法的系列研究,旨在提高登革热监测的效能与预警水平,促进登革热预防与控制工作的科学发展。
     目的
     1.构建基于地理信息系统的登革热监测信息管理系统;
     2.筛选有效的诱引剂,提高白纹伊蚊的监测效果;
     3.分析气候因素对登革热流行的影响,为进一步建立登革热预警模型提供科学依据。
     方法
     1.基于GIS的登革热监测信息管理系统研究
     采用北京超图地理信息技术有限公司开发的SuperMap Objects5.2全组件式开发平台实现系统的构建。以Visual Basic6.0为集成环境,通过Active数据对象(ADO)、数据访问对象(DAO)和数据环境(DE)等软件工程技术利用SuperMapObjects核心组件实现登革热相关空间数据库的集成,通过调用动态函数库(DLL)实现GIS组件功能与数据库程序之问的数据传递和数据表现,并且构成统一的无缝界面。
     2.不同诱引剂对白纹伊蚊密度监测效果影响的研究
     2.1诱引剂的准备
     (1)容器颜色实验:
     对照组:诱蚊诱卵器中放入1张直径为10 cm的圆形滤纸,加入20ml过夜自来水,加盖,标记,备用;杯身黑色组:诱蚊诱卵器杯身上部2/3用黑色塑料包裹,其余同对照组。
     (2)浸出液实验:
     大黍组:称取3g新鲜大黍叶,剪碎,浸泡于盛有300ml过夜自来水的烧杯中,放在60℃水浴加热2h,然后用纱布过滤,所得液体即为大黍叶浸出液;轮胎组:废旧汽车轮胎块,剪成碎块,浸泡于一个有300ml过夜自来水的烧杯中,放在60℃水浴中加热2h,然后用纱布过滤,所得液体即为轮胎浸出液;对照组同(1)。
     (3)化学诱引剂实验:
     乳酸组:左旋乳酸与过夜自来水混合稀释为0.5mg/ml、1mg/ml、2mg/ml、5mg/ml、10mg/ml、20mg/ml溶液,备用;对照组同(1)。
     (4)酵母来源CO_2实验:
     实验一:分为实验组和对照组。实验组每个诱蚊诱卵器中加入50ml过夜自来水配制的25%蔗醣溶液和0.25g酵母粉,并在杯壁上部用双面胶贴一圈宽3cm的滤纸,加盖,标记,备用;对照组同(1)。
     实验二:实验分为五个组,分别为A组:自来水+酵母粉+蔗醣,B组:自来水+蔗醣,C组:自来水+酵母粉,D组:自来水,E:原诱蚊诱卵杯。其中ABCD组每个诱蚊诱卵杯中加50ml液体,杯壁上部用双面胶贴一圈宽3cm的滤纸。蔗醣浓度为25%,酵母粉为0.25g/杯。E组为对照组,同(1)。
     实验三:实验分为六个组,分别为A组:5%蔗糖溶液50ml+0.25g酵母粉,B组:15%蔗糖溶液50ml+0.25g酵母粉,C组:25%蔗糖溶液50ml+0.25g酵母粉,D组:35%蔗糖溶液50ml+0.25g酵母粉,E组:45%蔗糖溶液50ml+0.25g酵母粉,F组:对照组,同(1)。
     2.2布放和回收
     (1)室内实验:
     从野外获得白纹伊蚊蚊卵进行培养,羽化后3~4d,将小白鼠固定挂在蚊笼内供成蚊吸血,1d后取50只雌蚊放入蒙式蚊帐(1.2 m×1.8 m×1.5 m),在四个角落布放诱蚊诱卵器。连续布放5天后,观察计算诱到的蚊虫数,并将虫卵倒进白搪瓷盆,在放大镜下观察计算蚊卵数。每一实验重复2次。
     (2)室外实验:
     将准备好的诱蚊诱卵器布放到家属区周围的绿化带内和地下停车场里,每个布放点内诱蚊诱卵器间隔20cm,点与点间隔25m左右。在诱蚊诱卵器布放后的每天下午15~16点钟检查诱蚊诱卵情况,连续7天。检查时用10倍放大镜观察,记录捕获的蚊虫数及种类,完成后将其放回原来位置,7天后统一收回。
     3.气候因素对登革热的影响
     收集广州市历年蚊媒监测资料(人工小时捕蚊数)、登革热发病人数和气候资料,用SPSS13.0软件建立数据库及进行统计分析。蚊虫密度与气候因素的关系应用Spearson等级相关和逐步多元线性回归方法进行分析,登革热发病与白纹伊蚊密度、气候因素的关系应用主成分logistic回归方法进行分析。
     应用误差反向传播神经网络建立白纹伊蚊密度的预测模型。使用Matlab软件作为建模工具,以广州市1996至2000年间的气候和白纹伊蚊监测数据作为网络的学习训练样本,以2001年的数据作为预测样本。
     结果
     1.基于GIS的登革热监测信息管理系统研究
     本系统根据登革热数据管理的特点,简化了用户操作,使系统的易用性得到增强。主要的功能有以下几方面:
     (1)文件管理。
     (2)数据库建立
     (3)地图的创建与操作。
     (4)查询:图查属性,属性查图,图形和属性数据双向查询检索。
     (5)专题图的制作:根据用户选择的属性数据项进行专题图的显示。
     (6)空间分析:缓冲区分析。
     (7)进行有关属性数据的统计分析。
     (8)提供操作结果多种形式的输出。
     2.不同诱引剂对白纹伊蚊密度监测效果影响的研究
     (1)容器颜色实验:
     诱蚊诱卵器杯身变为黑色并没有增强其诱捕白纹伊蚊的能力,反而增加了蚊虫逃逸的概率,室内和室外实验中实验组蚊虫逃逸率分别为50%和66.7%,而对照组为0。
     (2)浸出液实验:
     大黍浸出液、轮胎浸出液在室内和室外实验中诱蚊阳性杯数、诱蚊数、诱卵数均与对照组相差不大,在诱蚊指数、诱蚊密度指数、诱卵指数、诱卵密度指数的比较上,差异均没有统计学意义(P>0.05)。
     (3)化学诱引剂实验:
     在室内乳酸实验中,随L-乳酸浓度的升高,诱蚊诱卵器捕获白纹伊蚊和蚊卵的数量均呈先升后降的趋势,在浓度为1mg/ml时诱引力最强,随后逐渐下降。乳酸各浓度组诱蚊指数、诱蚊密度指数、诱卵指数、诱卵密度指数与对照组比较差异均没有统计学意义(P>0.05)。室外现场实验的结果与实验室研究结果一致,1mg/ml L-乳酸的诱蚊指数、诱蚊密度指数、诱卵指数和诱卵密度指数分别为55.56%,1.8,55.56%,60.50,高于对照组的38.89%,1.14,50%,56.89,但差异均没有统计学意义(P>0.05)。
     (4)酵母来源CO_2实验
     实验一:
     诱蚊诱卵器随布放时间的延长,捕获白纹伊蚊的数量、诱蚊指数和诱蚊密度指数均呈逐渐上升的趋势。布放7天,CO_2组的诱蚊指数从40.74%增长到74.07%,诱蚊密度指数从1.64上升为3.10;对照组的诱蚊指数从18.52%增长到40.74%,诱蚊密度指数从1.20上升为1.36。CO_2组每天的诱蚊指数、诱蚊密度指数均高于对照组,其中2~7天的诱蚊指数和诱蚊密度指数两组比较差异有统计学意义(P<0.05)。
     实验二:
     实验组每天的诱蚊指数和诱蚊密度指数均为CO_2组最高,对照组较低。布放7天的诱蚊指数由高到低分别为CO_2组(89.66%)、蔗醣组(44.83%)、酵母组(40.00%)、自来水组(33.33%)和对照组(26.67%)。统计检验显示各组每天的诱蚊指数比较差异均有统计学意义(P<0.01)。布放7天的诱蚊密度指数由高到低分别为CO_2组(6.19)、蔗醣组(2.08)、酵母组(1.58)、自来水组(1.40)和对照组(1.75)。统计检验显示各组4~7天的诱蚊密度指数比较差异均有统计学意义(P<0.05)。
     实验三:
     布放7天的诱蚊指数由高到低分别为5%蔗醣浓度组(96.55%)、15%蔗醣浓度组(93.33%)、25%蔗醣浓度组(93.10%)、对照组(90.00%)、35%蔗醣浓度组(88.89%)、45%蔗醣浓度组(82.76%)。统计检验显示各组1~5天的诱蚊指数比较差异均有统计学意义(P<0.05)。布放7天的诱蚊密度指数由高到低分别为45%蔗醣浓度组(5.21)、5%蔗醣浓度组(5.04)、15%蔗糖浓度组(4.64)、35%蔗醣浓度组(4.08)、25%蔗醣浓度组(3.70)和对照组(2.52)。统计检验显示各组间每天的诱蚊密度指数比较差异没有统计学意义(P>0.05)。
     3.气候因素与登革热流行的关系
     (1)相关分析
     广州市在连续7年里人工小时捕蚊总数与同期的蒸发量、相对湿度、日照、温度、降雨量都存在正相关关系,而与气压有负相关关系(P<0.05);而人工小时捕获白纹伊蚊数与同期的蒸发量、相对湿度、绝对湿度、日照、温度、降雨量存在正相关关系,与气压存在负相关关系(P<0.05)。
     (2)回归分析
     采用逐步多元回归的方法筛选影响蚊虫密度的主要气候因素,以人工小时捕蚊总数为因变量,以各气候因素为自变量,进行逐步多元回归分析,发现仅绝对湿度一个因素对蚊虫密度的影响有统计学意义,可以纳入回归方程。模型的复相关系数为0.835,决定系数为0.697。用方差分析对整个回归模型进行检验,F=215.839,P<0.001,说明模型具有统计学意义。经回归分析得到回归方程:(?)=362.230+0.835X
     以人工小时白纹伊蚊数为因变量,以各气候因素为自变量,进行逐步多元回归分析,结果显示日照(X_1)、风速(X_2)、绝对湿度(X_3)和温度(X_4)四个因素对白纹伊蚊密度的影响有统计学意义,可以纳入回归方程。模型的复相关系数为0.850,决定系数为0.723。用方差分析对整个回归模型进行检验,F=59.323,P<0.001,说明模型具有统计学意义。经回归分析得到方程:(?)=1.959+0.609X_1-0.186X_2-0.256X_3+0.349X_4
     (3)主成分logistic回归分析
     选中前4个主成分代替原来的自变量,特征根分别为3.652、2.490、1.150、0.905,累积贡献率为88.626%。通过主成分因子负荷矩阵可知,第一主成分主要包含原变量温度、日照、相对湿度、蒸发量、伊蚊密度、降雨量和绝对湿度的信息,第二主成分主要包含原变量绝对湿度、降雨量和伊蚊密度的信息,第三主成分主要包含原变量风速的信息,第四主成分主要包含原变量气压的信息。
     主成分logistic回归后,将标准自变量还原为原变量,得到应变量y与原自变量X_1-X_9的回归方程:(?)=exp(-3.3926-0.0005X_1+0.0241X_2-0.00004X_3-0.0001X_4+0.0253X_5+0.0341X_6+0.0165X_7-0.0012X_8+0.0202X_9)/1+exp(-3.3926-0.0005X_1+0.0241X_2-0.00004X_3-0.0001X_4+0.0253X_5+0.0341X_6+0.0165X_7-0.0012X_8+0.0202X_9)(X_1-X_9分别代表:气压、蒸发量、相对湿度、绝对湿度、日照、温度、风速、降雨量、捕蚊数)
     (4)基于人工神经网络技术建立白纹伊蚊密度预测模型
     建立的BP神经网络模型经25次学习和训练,误差从0.305539下降至2.93751×10~(-14),预测符合率为80%。考虑到样本的容量比较小的原因,可以接受结果。
     结论
     基于GIS建立的登革热信息管理系统能够较好的将属性数据和空间信息结合,为相关数据的管理、展示和空间分析提供简单易用的操作平台。酵母来源的二氧化碳对白纹伊蚊有较强的吸引力,可以作为诱引剂与伊蚊监测工具结合应用,提高对蚊媒密度和带毒情况监测的准确度。气候因素中日照、风速、绝对湿度和温度对白纹伊蚊密度的影响较大,而温度、日照、蒸发量、白纹伊蚊密度与登革热的发生关系较为密切,有效的预警指标可以通过进一步研究从气候因素中进行提取;基于BP神经网络建立的白纹伊蚊密度预测模型有较好的预测效果,可以作为潜在的登革热预测预警模型进行更深入的研究。
Dengue fever is an acute infectious disease transmitted by Aedes mosquitoes, which distributes primarily in tropical and subtropical countries and regions. In the world, it's approximately one hundred million cases to be infected annually, and the disease has threatened human being health greatly. In our country, dengue fever mostly distributes in Guangdong, Fujian, Hainan and Taiwan provinces, while the disease also emerges in other provinces such as Zhejiang. With global climate getting warmer gradually, this disease tends to diffuse from the south to the north. Meanwhile, trend of globalization and destroy of natural ecosystem make the prevention and control of this epidemic more complicated. As Aedes mosquito is easily affected by many environmental factors, it's difficult to use traditional measures to surveil and control the disease, so that the research and application of the new surveillance measures is urgent for the epidemiology staffs.
     Disease surveillance refers to collecting the information of the dynamic distribution and the influential factors consistently and systematically, and reporting the information after analysis in order to take preventive measures and evaluate the effects. Disease surveillance includes 4 basic steps, collecting, analyzing, reporting and using the information. Make full use of the information to predict the epidemics is the main purpose of disease surveillance. At present, the main surveillance methods of our country are larval survey, and the indices are house index, container index and Breteau index. The vector biology and control surveillance scheme includes mosq-ovitrap as a surveillance method, while its application is not extensive. The management of data information is an important link of the epidemic surveillance process. Before 2004, the epidemic disease information is mainly reported through paper reporting cards. After receiving the hospital's letters or phone calls, the district disease prevention control center will type into the computer by mode of reporting to the next higher level of authority. From 2004, ministry of health regulates that all the legal epidemics and other important epidemic diseases must be reported directly through computer network data system "China disease prevention control information system". The insect-borne surveillance information of dengue fever is managed by individual surveillance unit. There is no effective means to pre-warning the dengue fever in the world. Some researches think that the danger increases when the house index, container index and Breteau index are high. So most countries refer to these indexes as the warning index. In our country, the Breteau index must be lower than 20 at ordinary times. When dengue fever breaks out, the index should be controlled under 5.
     The main problem is that with the development of the society, the traditional surveillance methods do not fit the current society environment, while the new effective method is not yet found out. The current surveillance method in our country is larval survey. The method is used to supervise the yellow fever vector Egyptian Aedes mosquito. Shortcoming of this method is too much work and interfering factors. This method supervises the number of Aedes mosquito larvae and chrysalides, and estimates the mosquito density of the environment. With the development of modern society, the buildings in the city are mostly storied buildings. Courtyards and containers are less and less. Supervising the courtyards and containers is not enough to reflect the mosquito density. The new mosa-ovitrap designed by Lin Lifen has become one of the regular surveillance methods in our country. This device is not good at trapping the larvae. Thus, improving the traditional surveillance method is the prerequisite of preventing and predicting the dengue fever. Proper mosquito attractant is one of the solving methods.
     Whether "reporting of grade by grade" or "reporting direct through the computer network" mode can just fulfill the ordinary attribute information management work, while cannot fulfill the work from geography concept. Lack of geography space information of the disease will lead to hardly reflecting geography space distribution characters and space relations, thus hardly controlling the epidemic rules of the disease. It's urgent to design a convenient disease surveillance information management system. In recent years, GIS technology developed rapidly, and has become a necessary facility to deal with and analyze the space information. Establishing an information management system based on GIS is an important instrument of surveillance, pre-warning and rapid-reacting to the epidemics. It can handle the development and change of epidemic in time, transfer the information exactly, so that the relevant agency can adopt emergency measures in time, reducing the unnecessary loss.
     During the course of urbanization, traditional dengue fever early-warning indexes do not suit modern society environment. Singapore has controlled the house index under 2 and the Brazil Breteau index under 5 Since 1979, while the dengue fever still exists. As the dengue fever is an acute infectious disease transmitted by Aedes mosquitoes, the density of the Aedes mosquito and some factors influencing the density will affect the prevalence of the dengue fever. We must establish a early forecasting and warning system based on dengue fever data, climate factors, environment factors, and so on. Among these factors, climate factors are important to dengue fever, and it can affect the transmission of insect-borne infectious disease. Thus, supervising changes of the climate factors and analyzing the function of these factors will help to formulate more effective strategy to control infectious diseases. Dengue fever is an insect-borne infectious disease and transmitted by Aedes mostly. Mosquito density is affected by some climate factors such as temperature, rainfall and humidity. Research on the relation between dengue fever and climate factors will help to establish a climate-based early-warning system.
     At present, main problems include that surveillance cannot reflect the mosquito density exactly, people cannot analyze the disease combining with local environment factors such as vegetation and climate, and cannot do the research on the space relation of the surveillance data. So it's hard to catch the dynamic change rules. In order to provide an easy-handling platform for data management, demonstration and space analysis, we have developed a series of research on dengue fever surveillance methods. In the meantime, we research the attractant for Aedes albopictus and the relation between dengue fever and climate factors. These researches offer theory base for the improvement of dengue fever surveillance system.
     1. Objective
     (1) Using geographic information system platform software to develop an information management system for dengue fever.
     (2) Screening potential mosquito attractant, and enhancing the surveillance effect of Aedes albopictus.
     (3) Analyzing the influence of climate factor, providing scientific proof for establishing dengue fever early warning mode.
     2. Methods
     2.1 Study of dengue fever information management system
     We use SuperMap Objects5.2 platform software to develop this system, with Visual Basic6.0 software as integration environment. As developing this system, the integration of dengue fever space data base is finished through SuperMap Objects core component and some software engineering technique such as active data object, data access object and data environment. After that, using dynamic link library to implement data transmission and data display between GIS component function and data base program, then constituted unified seamless interface.
     2.2 Influence of different attractants to Aedes albopictus surveillance effectiveness
     2.2.1 Preparation of attractants
     (1) Experiments of container color
     Control group: In the bottom of Mosq-ovitraps, put a sheet of 10cm filter paper and infunde 20ml overnight tap water, then head up and mark. Black bottle group: Mosq-ovitraps are wrapped up by a plastic bag in black at its upper 2/3 part.
     (2) Experiments of infusions
     Panicum maximum infusion group: 3g fresh Panicum maximum leaves, shorn to broken bits and soak to a beaker which filled 300ml overnight tap water, then the beaker is put to water bath of 60 degree and warmed up for two hours, after that, the liquid is filtered by gauze, which is Panicum maximum infusion. Tyre leachate group: used automobile tyre is shorn to broken bits and soaked to a beaker which filled 300ml overnight tap water, then the beaker is put to water bath of 60 degree and warmed up for two hours, after that, the liquid is filtered by gauze, that is tyre infusion. Control group was same to (1).
     (3) Experiments of chemical attractants
     L-lactic acid group: L-lactic acid is diluted to 0.5mg/ml, 1mg/ml, 2mg/ml, 5mg/ml, 10mg/ml and 20mg/ml through overnight tap water. Control group was same to (1).
     (4) Experiments of yeast generated CO_2
     Experiment one: Add the mixture that consist of 50ml overnight tap water, 25%cane sugar solution and 0.25g yeast powder to each Mosq-ovitrap in experiment group, then stick a wrap of 3cm width filter paper in the upper part of Mosq-ovitrap. Comparison group was same to (1).
     Experiment two: This test had five groups, they were A group, B group, C group, D group and E group, and A group adds overnight tap water, yeast powder and cane sugar to each Mosq-ovitrap, B group adds overnight tap water and cane sugar, C group adds overnight tap water and yeast powder, D group adds overnight tap water, E group is control group which is same to (1).
     Experiment three: This test has six groups. A group adds 50ml 5% cane sugar solution and 0.25g yeast powder to each Mosq-ovitrap, B group adds 50ml 15% cane sugar solution and 0.25g yeast powder, C group adds 50ml 25% cane sugar solution and 0.25g yeast powder, D group adds 50ml 35% cane sugar solution and 0.25g yeast powder, E group adds 50ml 45% cane sugar solution and 0.25g yeast powder, and F group is control group which is same to (1).
     2.2.2 Installation and retrieval Mosq-ovitraps
     (1) Indoor experiments
     After being fed mouse blood for 2 days, 50 adult female mosquitoes are placed into a large mosquito net(l.2×1.8×1.5m~3) for testing. Mosq-ovitraps with different attractants are installed at four corners of the mosquito net for 5days. Then count the number of the trapped adult mosquitoes and collect the eggs laid in a white porcelain bowl and estimated with a 10x magnifier. The experiment is done for 2 times.
     (2) Outdoor experiments
     Mosq-ovitraps with different attractants are set at intervals of 20cm, and two close spots are at intervals of about 20m. Count the number of adult mosquitoes and eggs every afternoon for 7 days. Count and record mosquitoes captured and the egg positively trapped every day.
     2.3 The influence of climate factor to dengue fever
     We collect mosquito monitoring data, dengue fever incidence and climate data for several years in Guangzhou, then use SPSS 13.0 statistic software to establish data base and do statistic analysis. The relation between mosquitoes density and climate factors is studied through statistic means of Spearson rank correlation and multiple linear regression. The relation between dengue fever and Aedes albopictus density, climate factors is analyzed by principal component logistic analysis.
     Use Matlab software to establish a model of BP neural network to forecast the density of Aedes albopictus. Training sample is data from 1996 to 2000, and predictive sample is data in 2001.
     3. Results
     3.1 Development of dengue fever monitoring information management system basing on GIS
     According to the feature of public health, we simplify user operation and function of this system, make it more easy to apply. Main functions are as follows:
     (1) Document management: open workspace, close workspace, save workspace, save another workspace, print, exit, and so on.
     (2) Establishing data base: the system can establish new database, as well as change old database.
     (3) Drawing and operation to map.
     (4) Inquest: through map to inquire about attribute, through attribute to inquire about map.
     (5) Manufacture of special subject map: According to special attribute data to form subject map.
     (6) Space analysis: buffer area analysis.
     (7) Some statistic analysis to attribute data such as maximum value, minimum value, total sum and standard deviation, and so on.
     (8) The system can output different format results.
     3.2 Influence of different attractants to Aedes albopictus density monitoring effectiveness
     (1) Experiments of container color
     In the experiments, we find that making containers black could not strengthen their ability to catch more Aedes albopictus. Adversely, it raises the number of escaped mosquitoes. The escaping rates of mosquitoes in indoor and outdoor experiments are 50% and 66.7% respectively, while the number in Comparison group was 0.
     (2) Experiments of infusion
     There is no significant difference in mosquito-trap positive index, mosquito-trap density index, oviposition index and oviposition density index between Panicum maximum infusion, tyre infusion and control group(P>0.05).
     (3) Experiments of chemical attractants
     In lactic acid experiments, with lactic acid concentration heightening, the number of Mosq-ovitraps-caught mosquitoes and eggs shows a trend of increasing to decreasing. At the concentration of 1mg/ml, the ability of lactic acid in attracting mosquito is most powerful. But in both indoor and outdoor experiments, there is no significantt difference in mosquito-trap positive index, mosquito-trap density index, oviposition index and oviposition density index between different concentration of lactic acid and control group(P>0.05).
     (4) Yeast generated CO_2 experiments
     Experiment one:
     By prolonging installation time, mosquito-trap positive index and mosquito-trap density index in two groups show a trend of increasing by degrees, but variation amplitude in experiment is above control group. In the period of 7 days, mosquito-trap positive index in experiment group varies from 40.74% to 74.07%, mosquito-trap density index varies from 1.64 to 3.10; mosquito-trap positive index in control group varies from 18.52% to 40.74%, mosquito-trap density index varies from 1.20 to 1.36. After mosq-ovitraps are installed for 2-7 days, there is significant difference in mosquito-trap positive index and mosquito-trap density index between experiment group and control group(P<0.05).
     Experiment two:
     By prolonging the installation time, mosquito-trap positive index and mosquito-trap density index in all groups show a trend of increasing by degrees. From high to low, mosquito-trap positive indexes are 89.66%(CO_2 group), 44.83%(cane sugar group), 40.00%(yeast group), 33.33%(tap water group), 26.67%(control group); and mosquito-trap density indexes are 6.19(CO_2 group), 2.08(cane sugar group), 1.58(yeast group), 1.40(tap water group), 1.75(control group). There is significant difference in mosquito-trap positive indexes among all groups each day, and mosquito-trap density index has statistical significance in all groups for 4-7 days (P<0.05).
     Experiment three:
     By prolonging the installation time, mosquito-trap positive index and mosquito-trap density index in all groups show a trend of increasing by degrees. From high to low, mosquito-trap positive indexes are 96.55%(5% sugar group), 93.33%(15% sugar group), 93.10% (25 sugar group), 90.00%(control group), 88.89%(35% sugar group), 82.76%(45% sugar group); and mosquito-trap density indexes are 5.21(45% sugar group), 5.04(5% sugar group), 4.64(15% sugar group), 4.08(35% sugar group), 3.70(25% sugar group), 2.52(control group). There is significant difference in mosquito-trap positive index among all groups for 1-5 day, and mosquito-trap density index has no statistical significance in all groups for each day (P>0.05).
     3.3 The influence of climate factor to dengue fever
     (1) Correlation analysis
     There is positive correlation relation between the number of captured mosquito and homeochronous evaporation capacity, relative humidity, absolute humidity, sunshine, precipitation (P<0.05), but there is negative correlation relation with pressure(P<0.05).
     (2) Regression analysis
     We use stepwise regression to screen main climate factors of affecting mosquito density, and the result shows that only absolute humidity could enter regression equation. Correlation coefficient of the regression model is 0.835, and coefficient ofdetermination is 0.697. The final equation is: Y =362.230 + 0.835X.
     We regarded Aedes albopictus density as dependent variable and regarded climate factors as independent variable to run stepwise regression analysis. The result shows that sunshine(x_1), wind speed(x_2), absolute humidity(x_3) and temperature(x_4) could enter regression equation. Correlation coefficient of the regression model is0.850, and coefficient of determination is 0.723. The final equation is: (?) =1.959 + 0.609X_1 -0.186X_2-0.256X_3 + 0. 349X_4.
     (3) Principal component logistic regression analysis.
     We choose fore-four principal constituent to take the place of independent variable, and their characteristic roots are 3.652、2.490、1.150、0.905 respectively, accumulation contribution rate is 88.626%. After principal component logistic regression analysis, we make principal component independent variable convert to incipient independent variable, and got the regression equation: (?)=exp(-3.3926-0.0005X_1+0.0241X_2-0.00004X_3-0.0001X_4+0.0253X_5+0.0341X_6+0.0165X_7-0.0012X_8+0.0202X_9) / 1+exp(-3.3926-0.0005X_1+0.0241X_2-0.00004X_3-0.0001X_4+0.0253X_5+0.0341X_6+0.0165X_7-0.0012X_8+0.0202X_9)(X_1-X_9: pressure, evaporation capacity, relative humidity, absolute humidity, sunshine, temperature, wind speed, precipitation, number of captured Aedes albopictus )
     (4) Using ANN method to establish a forecasting model for Aedes albopictus densityFor 25 times learning and training, network error decreases from 0.305539 to 2.93751×10~(-14), and predictive coincidence rate is 80%.
     4. Conclusion
     Dengue fever information management system may be a operation platform that apply for data management, data display and data space analysis and so on. Meanwhile, it also apply for the related analysis of other infectious disease. So, it can become a general GIS platform system for public health research.
     Comparing with the control group, Panicum maximum infusion, tyre infusion could not attract Aedes albopictus entering and oviposition in mosq-ovitrap. To a certain extent, L-lactic acid could raise the ability of trap in captured Aedes albopictus, but there is no significant difference between experiment and control group, so its ability in attracting Aedes albopictus need to be confirmed in the further study. Yeast generated CO_2 had strong attractive to Aedes albopictus.
     There is positive correlation relation between the number of captured Aedes albopictus and homeochronous evaporation capacity, relative humidity, absolute humidity, sunshine, precipitation (P<0.05), but there is negative correlation relation with pressure(P<0.05). Sunshine, wind speed, absolute humidity and temperature could significantly influence the density of Aedes albopictus in environment (P<0.05). Dengue fever has close relation with some climate factors such as temperature, sunshine, evaporation capacity and density of Aedes albopictus. The ANN forecasting model displays a good ability in forecasting Aedes albopictus density. So, we should study it further and establish dengue fever early warning model based the ANN method.
引文
[1]李立明主编。流行病学(第四版)。北京:人民卫生出版社,2001,151-155
    
    [2]施侣元主编。流行病学(第五版)。北京:人民卫生出版社,2004,278
    
    [3]杨维中,祖荣强。突发公共卫生事件预警。中华预防医学杂志,2005,39 (6):427-429
    
    [4]胡培,赵世文,郑克勤,许玲。突发公共卫生事件监测与预警系统理论概 念及应用。职业与健康,2004,20(8):5-7
    
    [5]杜虹。疾病监测信息报告系统使用前后传染病报告质量分析。疾病监测, 2007,22(7):485-488
    
    [6]吴笃卿,胡东风,吴幂。中国疾病预防控制信息系统的结构与功能。地方 病通报,2007, 22(2):65-67
    
    [7]房静,张芳,徐成。信息管理系统在疾病预防控制中的应用。寄生虫病与 感染性疾病,2007,5(2):109-111
    
    [8] http://www.chinacdc.net.cn/n272442/n272530/n294176/n339986/appendix/200 50810008
    
    [9]曲江文,聂绍发。登革热预警指标的探讨疾病控制杂志。2007,11(2): 196-199
    
    [10] Ooi EE. Changing pattern of dengue transmission in Singapore. DengueBulletin, 2001, 25: 40-44
    
    [11] Teixeira MG, Barreto MI, Costa M, et al. Dynamics of dengue viruscirculating: a silent epidemic in a complex urban area. Tro[ Med Ont Health,2002, 7: 757-762
    
    [12] Teixeira MG, Costa M, Barreto MI, et al. Epidemiologia do dengue emSalvador-Bahis, 1995-1999. Rev Soc Bras Med Trop, 2001, 34:269-274
    
    [13]汤国安,刘学军等。地理信息系统教程。高等教育出版社,2007:4
    
    [14]马家奇,戚晓鹏。公共卫生地理信息系统。北京:人民卫生出版社,2006, 1
    
    [15]陈述彭,鲁学军,周成虎.地理信息系统导论.北京:科学出版社,1999,5
    
    [16] Mott KE, Nuttall I, Desjex P, et al. New geograpgic approches to control ofsome parasitic zoonooses. WHO Bull, 1995, 73: 247-257
    
    [17] Briggs DJ, Elliott P. The use of geographic information systems in studies onenviroment and health. Wld Hlth Statist Quart, 1995,48: 85-94.
    
    [18] Kitron U. Landscope ecology and epidemiology of vector-borne diseases:tools for spatial analysis. J Med Entomol, 1998, 35: 435-445.
    
    [19] Use of geographic information systems in epidemiology ( GIS-Epi). BullPAHO, 1996,17: 126.
    
    [20] Bavia ME , Hale L E , Malone JB , et al. Geographic information systemsand the enviromental risk of schistosomiaisi in Bahia, Brazil. Am J TropMed Hyg, 1999, 60: 566-572.
    
    [21]戚晓鹏,吕繁,何武。地理信息系统在流行病学中的应用及开发。中华 流行病学杂志,2004,25(11):997-999
    
    [22] Glass GE, Schwarrz BS, Morgan JM, etal. Environmental risk factors for Lyme disease identified with geographic information system. Am J Public Health, 1995,85:944
    
    [23] 苏永强,张治英,徐德忠等。运用空间局部内插研究海南省疟疾空间 分布特征。中华流行病学杂志,2003,24(4):269-271
    
    [24] 王晓军,卢永,张彦平等。中国流行性乙型脑炎发病水平变迁。中国 计划免疫,2004,10(5):302-304
    
    [25] 杨国静,周晓农,Malone JB等。江苏省疟疾流行地理信息系统预测模 型的研究。中华预防医学杂志,2002,36(2):103-105
    
    [26] 周晓农,胡晓抒,杨国静等。中国卫生地理信息系统基础数据库构建。 中华流行病学杂志,2003,24(4):253-256
    
    [27] 杨天赐,傅桂明,任樟尧。GIS技术在蚊媒传染病监测中的应用与发展 前景。中国卫生检验杂志,2007,17(4):761-762
    
    [28] 慕富强,傅晨,刘毅。甘肃SARS疾病控制辅助决策支持系统简介。甘 肃科技,2003,19(6):27-32
    
    [29] 刘纪远,钟耳顺,庄大方。SARS控制与预警地理信息系统的研制与应 用。遥感学报,2003,7(5):337-344
    
    [30] 邱士起,谭爱军,邹接华等。突发化学中毒事故医学应急救援危害评 估GIS系统。实用预防医学,2007,14(6):1665-1669
    
    [31] 刘刚,黄琼瑶,彭飞。基于GIS技术网格定点式螺情信息系统的开发 与应用。中国血吸虫病防治杂志,2007,19(4):296-299
    
    [32] 鹿凤苓,杨其法,张宝津,王妮。杭州余杭区疾病监测地理信息系统研制 与应用。中国公共卫生,2007,23(9):1137-1138
    
    [33] 徐勇,曾四清,余阳,李玮。疾病预防控制地理信息系统的应用研究, 疾病监测,2006,21(1):45-47
    
    [34] 李朝品主编.医学昆虫学.第一版.北京:人民军医出版社,33-34
    
    [35] 金进良.昆虫诱引剂的研究概况及其进展.化学世界,1965,4,145-149
    
    [36] 林立丰,蔡松武,卢文成等.诱蚊诱卵器与诱卵杯现场监测效果的比较 研究.中国媒介生物学及控制杂志,2006,17(6):450-453
    
    [37] Oli. K, Jeffery.J, Vythilingam. A comparative study of adult mosquito trapping using dry ice and yeast generated carbon dioxide. Tropical Biomedicine, 2005, 22(2): 249-25
    
    [38] 安继尧,严格,张学文等.白纹伊蚊-登革热的重要媒介.医学动物防 制,2003,17(8):449-452
    
    [39] WHO. Guidelines for dengue surveillance and mosquito control. Manila:??WHO Regional Office for the Western Pacific,1995:104.
    
    [40] 林立丰,卢文成,蔡松武等.新型登革热媒介监测诱蚊诱卵器的设计及 效果研究.中国媒介生物学及控制杂志,2005,16(1):26-28
    
    [41] 林立丰,蔡松武,段金花等.诱蚊诱卵器在登革热暴发流行时媒介监测 应用.中国公共卫生,2005,21(12):1459-1461
    
    [42] Chua KB; Chua IL; Chua IE;Chua KH. Differential preferences of oviposition by Aedes mosquitos in man-made containers under field conditions. Southeast Asian J Trop Med Public Health JT, 2004, 599-607
    
    [43] 黄恩炯,吴珍泉。白纹伊蚊生活习性及年数量消长。福建农林大学学报 (自然科学版),2006,35(3):246-250
    
    [44] Yap HH, Lee CY, Chong NL. Oviposition site preference of Aedesalbopictus in the laboratory. J Am Mosq Control Assoc. 1995, 11(1):128-32
    
    [45] Thavara U; Tawatsin A;Chompoosri J. Evaluation of attractants andegg-laying substrate preference for oviposition by Aedes albopictus (Diptera:Culicidae). J Vector Ecol JT, 2004: 66-72
    
    [46] Geetha I; Paily KP; Padmanaban V;Balaraman K. Oviposition response ofthe mosquito, Culex quinquefasciatus to the secondary metabolite(s) of thefungus, Trichoderma viride. Mem Inst Oswaldo Cruz JT, 2003: 223-6
    
    [47] Poonam S; Paily KP;Balaraman K. Oviposition attractancy of bacterialculture filtrates: response of Culex quinquefasciatus. Mem Inst OswaldoCruz JT, 2002: 359-62
    
    [48] Sivagnaname N; Amalraj DD; Kalyanasundaram M. Ovipositionattractancy of an infusion from a wood inhabiting fungus for vectormosquitoes. Indian J Med Res JT, 2001: 18-24
    
    [49] Rasnitsyn SP; Lebedeva MN. The attraction of the female urban mosquitoCulex pipiens (Diptera, Culicidae) for oviposition by different attractants.??Med Parazitol (Mosk) JT, 1996: 29-33
    
    [50] Beehler JW; Millar JG;Mulla MS. Protein hydrolysates and associatedbacterial contaminants as oviposition attractants for the mosquito Culexquinquefasciatus. Med Vet Entomol JT, 1994: 381-5
    
    [51] Burkett-Cadena ND, Mullen GR.Field comparison of Bermuda-hayinfusion to infusions of emergent aquatic vegetation for collecting femalemosquitoes. J Am Mosq Control Assoc, 2007, 23(2): 117-23
    
    [52] Santana AL, Roque RA. Characteristics of grass infusions as ovipositionattractants to Aedes (Stegomyia) (Diptera: Culicidae). Eiras AE J MedEntomol. 2006, 43(2):214-20
    
    [53] Allan SA; Bernier UR;Kline DL. Evaluation of oviposition substrates andorganic infusions on collection of Culex in Florida. J Am Mosq ControlAssoc JT, 2005, 21(3): 268-73
    
    [54] Trexler JD; Apperson CS;Schal C. Laboratory and field evaluations ofoviposition responses of Aedes albopictus and Aedes triseriatus (Diptera:Culicidae) to oak leaf infusions. J Med Entomol JT, 1998: 967-7
    
    [55] 陆宝麟.蚊虫综合治理[M].北京:科学出版社,1999.41 64.
    
    [56] 郑能雄,罗斌,林云钦。不同材料容器与水质对白纹伊蚊孳生状况的 影响。海峡预防医学杂志,2002,8(6):17-20
    
    [57] 张衡谦,吴炜,朱笠,齐福菊。大连市白纹伊蚊分布情况调查。中国 媒介生物学及控制杂志,2003,14(2):146
    
    [58] Pinheiro VC, Tadei WP. Frequency, diversity, and productivity study onthe Aedes aegypti most preferred containers in the city of Manaus, Amazonas, Brazil. Rev Inst Med Trop Sao Paulo, 2002, 44(5): 245-50.
    
    [59] 于虹,赵彤言,陆宝麟。北京市轮胎积水滋生蚊虫的调查。中国媒介 生物学及控制杂志,2000,11(2):107-109
    
    [60] 林立辉,李锦清,温卫东,刘建伟等。佛山市城区登革热媒介白纹伊 蚊的监测与防治研究。中华卫生杀虫药械,2004,10(6):363-367
    
    [61] 徐友祥,王韶华。室外废旧轮胎白纹伊蚊的越冬情况调查。中国媒介 生物学及控制杂志,2006,17(3):175-176
    
    [62] Carlos J. Pena, Guillermo Gonzalvez, and Dave D. Chadee. A modified tireovitrap for monitoring Aedes albopictus in the field. Journal of VectorEcology, 2004, 374-375
    
    [63] Bosch OJ; Geier M;Boeckh J. Contribution of fatty acids to olfactory hostfinding of female Aedes aegypti. Chem Senses JT, 2000: 323-30
    
    [64] Murphy MW; Dunton RF; Perich MJ;Rowley WA. Attraction of Anopheles(Diptera: culicidae) to volatile chemicals in Western Kenya. J Med EntomolJT, 2001: 242-4
    
    [65] Steib BM, Geier M, Boeckh J. The effect of lactic acid on odour-relatedhost preference of yellow fever mosquitoes. Chem Senses. 2001, 26(5):523-8
    
    [66] Williams CR; Ritchie SA; Russell RC; Eiras AE; Kline DL;Geier M.Geographic variation in attraction to human odor compounds by Aedesaegypti mosquitoes (Diptera: Culicidae): a laboratory study. J Chem Ecol JT,2006, 1625-34
    
    [67] Dogan EB; Ayres JW;Rossignol PA. Behavioural mode of action of deet:inhibition of lactic acid attraction. Med Vet Entomol JT, 1999: 97-100
    
    [68] Dekker T, Steib B, Carde RT, Geier M. L-lactic acid: a human-signifyinghost cue for the anthropophilic mosquito Anopheles gambiae. Med VetEntomol, 2002, 16(1): 91-8.
    
    [69] Braks MAH, Meijerink J, Takken W. The response of the malaria mosquito,Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer. Physiol Entomol, 2000, 26: 142-148
    [70] Geier M, Boeckh J. A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Experimentalis Appl, 1999, 92 :9-19.
    [71 ] Smith CN, Smith N, Gouck HK, et al. L-lactic acid as a factor in the attraction of Aedes aegypti (Diptera : Culicidae) to human hosts. Ann Entomol Soc Am, 1970, 63: 760-770.
    [72] Brown AWA, Sarkaria DS, Thompson RP. Studies on the responses of the female Aedes mosquito. Part I . The search for attractant, vapours. Bull Entomol Res, 1951, 42: 10-11
    [73] Shone SM, Ferrao PN, Lesser CR, Glass GE, Norris DE. Evaluation of carbon dioxide- and l-octen-3-ol-baited Centers for Disease Control Fay-Prince traps to collect Aedes albopictus. J Am Mosq Control Assoc, 2003, 19(4): 445-7.
    [74] Kline DL, Allan SA, Bernier UR, Posey KH. Olfactometer and large cage evaluation of a solid phase technology for the controlled production of CO2. J Am Mosq Control Assoc, 2006, 22(3): 378-81
    [75] Takken W. The role of olfaction in host-seeking of mosquitoes : a review. Insect SciAppl, 1991, 12 (2): 87-95
    [76] Becker N; Zgomba M; Petric D;Ludwig M. Comparison of carbon dioxide, octenol and a host-odour as mosquito attractants in the Upper Rhine Valley, Germany. Med Vet Entomol JT, 1995: 377-80
    [77] Dekker T, Geier M, Carde RT. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol. 2005 Aug;208(Pt 15):2963-72.
    [78] Russell RC. The relative attractiveness of carbon dioxide and octenol in
    ??CDC- and EVS-type light traps for sampling the mosquitoes Aedes aegypti (L.), Aedes polynesiensis Marks, and Culex quinquefasciatus say in Moorea, French Polynesia. J Vector Ecol, 2004,29(2): 309-14
    
    [79] 李剑泉,沈佐锐,刘志桥.二氧化碳对白纹伊蚊的引诱活性.中国媒介 生物学及控制杂志,2003,14:165-167
    
    [80] Bernier UR, Kline DL, Allan SA, Barnard DR. Laboratory comparison of Aedes aegypti attraction to human odors and to synthetic human odor compounds and blends. J Am Mosq Control Assoc. 2007, 23(3): 288-93.
    
    [81] Pates HV, Takken W, Stuke K, Curtis CF. Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory. Bull Entomol Res. 2001, 91(4): 289-96.
    
    [82] Takken W, Dekker T, Wijinholds YG Odor-mediated flight behavior of A nopheles gambiae giles sensu stricto and A n. stephensi liston in response to CO2, acetone, and 12octen232ol. J Insect Behav, 1997,10: 395-407.
    
    [83] Saitoh Y, Hattori J, Chinone S, Nihei N. Yeast-generated CO2 as aconvenient source of carbon dioxide for adult mosquito sampling. J Am Mosq Control Assoc. 2004, 20(3):261-4.
    
    [84] 林立丰.新型登革热传播媒介监测诱蚊诱卵器开发应用研究[D].第一 军医大学,2006,7
    
    [85] http://www.chinacdc.net.cn/n272442/n272530/n294176/n339986/appendix/20050810008
    
    [86] WHO. Guidelines for dengue surveillance and mosquito control[M].Manila: WHO Regional Office for the Western Pacific, 1995: 104.
    
    [87] 林立丰,蔡松武,李荣彪.时空因素对诱蚊诱卵器监测白纹伊蚊效果的 影响.寄生虫与医学昆虫学报,2006,13(1):25-27
    
    [88] 徐仁权,蒋丽亚,任文军等.白纹伊蚊诱蚊诱卵器现场应用效果初步研??究[J].中华卫生杀虫药械,2006,12(5):345-348
    
    [89] 徐保海,郭洪,张国贤等.城市高层建筑地下层蚊虫调查研究.中华卫 生杀虫药械,2002,8(1):36-38
    
    [90] 叶世伟,史忠植译。神经网络原理。机械工业出版社,2004:1-3
    
    [91] 高隽著。人工神经网络原理及仿真实例。机械工业出版社,2005:45
    
    [92] 飞思科技产品研发中心。神经网络理论与MATLAB 7实现。电子工业 出版社,2005:101-108
    
    [93] 阚飚。中国登革热的流行及对监测研究的建议。中国媒介生物学及控 制杂志,1997,8(2):152-156
    
    [94] Hurtado-Diaz M, Riojas-Rodriguez H, Rothenberg SJ. Shortcommunication: impact of climate variability on the incidence of dengue inMexico. Trap Med Int Health. 2007, 12(11): 1327-37
    
    [95] Bangs MJ, Larasati RP, Corwin AL, Wuryadi S. Climatic factorsassociated with epidemic dengue in Palembang, Indonesia: implications ofshort-term meteorological events on virus transmission. Southeast Asian JTrop Med Public Health. 2006, 37(6): 1103-16
    
    [96] Depradine C, Lovell E. Climatological variables and the incidence ofDengue fever in Barbados. Int J Environ Health Res. 2004, 14(6): 429-41
    
    [97] Rosa-Freitas MG, Schreiber KV, Tsouris P. Associations between dengueand combinations of weather factors in a city in the Brazilian Amazon. RevPanam Salud Publica. 2006, 20(4): 256-67
    
    [98] 易彬樘,张治英,徐德忠,席云珍等。广东省登革热流行与气候因素 变化的相关性。第四军医大学学报,2003,24(2):143-146
    
    [99] 奚国良。气象因素对蚊虫密度的影响研究。中国媒介生物学及控制杂 志,2000,11(1):24-26
    
    [100] 潘志明,邱季春,罗惠容等。广州市1990至1993年登革热监测资料??分析.中国媒介生物学及控制杂志,1995,6:207-209
    
    [101] 周昌清,陈海东,张玉珍。致倦库蚊在广州地区自然种群消长规律的 研究。中山大学学报(自然科学版),1990,29.55-62
    
    [102] 贾凤龙,张秀梅,冯南贵,梁焯南,张韶华。深圳市致倦库蚊季节变 化规律。中国媒介生物学及控制杂志,2002,13(5):374-375
    
    [103] 安继尧,严格,张学文,阎丙申。白纹伊蚊.登革热的重要媒介。医 学动物防制,2003, 17(8):449-452
    
    [104] Theo H, Dana A. Potential change in the distribution of denguetransmission under climate wanning. A m J Trop Med Hyg, 1999, 57 (3): 285-297.
    
    [105] 宇传华主编。SPSS与统计分析。北京:电子工业出版社,254
    
    [106] Ellenius J, Groth T. Dynamic decision support graph-visualization ofANN-generated diagnostic indications of pathological conditions developingover time. Artif Intell Med. 2008 Mar;42(3): 189-98
    
    [107] Eggers KM, Ellenius J, Dellborg M. Artificial neural network algorithmsfor early diagnosis of acute myocardial infarction and prediction of infarctsize in chest pain patients, 2007,114(3): 366-74.
    
    [108] Petalidis LP, Oulas A, Backlund M. Improved grading and survivalprediction of human astrocytic brain tumors by artificial neural networkanalysis of gene expression microarray data. Mol Cancer Ther, 2008, 29.
    
    [109] Erol R, Ogulata SN, Sahin C, Alparslan ZN. A radial basis function neuralnetwork (RBFNN) approach for structural classification of thyroid diseases. JMed Syst, 2008, 32(3): 215-20
    
    [110] Bugliosi R, Spera G, La Torre A, Campoli L, Gianferro M, Talocci S. A twoyears study results in the use of artificial neural networks to forecastPlasmopara viticola infection in viticulture. Commun Agric Appl Biol Sci,??2007, 72(2): 321-5.
    
    [111] Walczak S, Nowack WJ. An artificial neural network approach todiagnosing epilepsy using lateralized bursts of theta EEGs. J Med Syst, 2001,25(1): 9-20
    
    [112] Lee J S, Lee DS, Kim SK, et al. Localization of epileptogenic zones in F-18 FDG brain PET of patients with temporal lobe epilepsy using artificialneural network. IEEE Trans Med Imaging, 2000, 19 (4): 347-355
    
    [113] Batuello J T, Gamito EJ, Crawford ED, et al. Artificial neural networkmodel for the assessment of lymph node spread in patients with clinicallylocalized prostate cancer. Urology, 2001, 57 (3): 481-485
    
    [114] Fatimah Ibrahima, Mohd Nasir Taibb, Wan Abu Bakar Wan Abasa, et al. Anovel dengue fever (DF) and dengue haemorrhagic fever (DHF) analysisusing artificial neural network (ANN). Computer Methods and Programs inBiomedicine, 2005, 79: 273-281
    
    [115] Daniel J, Sargent. Comparison of Artificial Neural Networks with otherstatistical approaches. Cancer, 2001, 91 (8 Suppl): 1636-1644
    
    [116] 闫以聪。回归方程与神经网络在数值预测方面的对比研究综述。数理 医药学杂志,2007,20(1):66-69
    
    [117] 贺宪民,贺佳,范思昌。Cox模型与BP神经网络在处理非线性数掘时 的性能比较。数理统计与管理,2004,23(2):69-72
    
    [118] 李丽霞,王彤,范逢曦。BP神经网络与logistic回归的比较研究。中 国卫生统计,2005,22(3):138-140
    
    [119] 曲波,黄德生,郭海强等。干旱地区伤寒副伤寒与气象因素关系的BP 神经网络模型。中国卫生统计,2004,21(3):165-168
    
    [120] 曲波,黄德生,郭海强等。流行性脑脊髓膜炎与气象因素关系的BP神 经网络模型研究。中国医科大学学报,2006,35(20):158-160
    
    [121] 马玉霞,谢月玉,王式功,尚可政。人工神经网络方法在气象因素预 测高血压发病中的应用。环境与健康杂志,2007,24(3):139-142
    
    [122] 高春玉,熊鸿燕,易东等。智能神经网络模型用于气象因素对疟疾发 病影响的初步研究。中华流行病学杂志,2003,24(90):831-834
    
    [123] 陈涛。基于BP神经网络的艾滋病预测模型。科学技术与工程,2007, 16(7):4176-4178
    
    [124] 吴家兵,张新平,张琴。基于人工神经网络方法对流感分级的判别。 中国预防医学杂志,2007,8(5):655-656
    
    [1]李朝品主编.医学昆虫学[M].第一版.北京:人民军医出版社,33-34
    
    [2]金进良.昆虫诱引剂的研究概况及其进展[J].化学世界,1965,4,145-149
    
    [3]郝蕙玲,杜家纬.气味调控的蚊虫行为学研究.中国媒介生物学及控制杂志, 2006,17(6):526-528
    
    [4] Z M Zhang, J J Cai, G H Ruan et al. J. Chromatogr. B, 2005, 822: 244-252.
    
    [5] Bernier UR, Kline DL , Barnard DR, et al. Analysis of human skin emanationsby gas chromatography/ mass spectrometry. 2. Identification of volatilecompounds that are candidate attractants forme yellow fever mosquito (Aedesaegypti). Anal Chem , 2000 , 72 :747 756
    
    [6] Pates HV, Takken W, Stuke K, Curtis CF. Differential behaviour of Anophelesgambiae sensu stricto (Diptera: Culicidae) to human and cow odours in thelaboratory. Bull Entomol Res. 2001, 91(4): 289-96.
    
    [7] Silva IM, Eiras AE, Kline DL, Bernier UR. Laboratory evaluation of mosquitotraps baited with a synthetic human odor blend to capture Aedes aegypti. J AmMosq Control Assoc JT, 2005: 229-33
    [8] Dia I, Diallo D, Duchemin JB, Ba Y. Comparisons of human-landing catches and odor-baited entry traps for sampling malaria vectors in Senegal. J Med Entomol JT, 2005: 104-9
    [9] Njiru BN, Mukabana WR, Takken W, Knols BG. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J, 2006, 15(5): 39.
    [10] Allan SA, Bernier UR, Kline DL. Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol JT, 2006: 225-31
    [11] Costantini C, Birkett MA, Gibson G Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med Vet Entomol JT, 2001: 259-66
    [12] Knols BGJ. Odour-mediated host-seeking behaviour of the Afra-tropical malaria vector A nopheles gambiae Giles. PhD thesis. Wageningen Agric Univ , The Netherlands, 1996:213.
    [13] Knols BGJ, De Jong R, Takken W. Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans R Soc Trop Med Hyg, 1995, 89: 604 606
    [14] Bernier UR, Kline DL, Schreck CE, et al. Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc, 2002, 18:186-195
    [15] Mukabana WR, Takken W, Killeen GF, et al. Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector A nopheles gambiae. Malaria J, 2004, 3: 1
    [16] Healy TP, Copland MJW. Human sweat and 22oxopentanoic acid elicit a landing response from A nopheles gambiae. Med Vet Entomol, 2000, 14: 195-200.
    [17] Skinner WA, Tong H , Pearson T , et al. Human sweat components attractive to mosquitoes. Nature, 1965, 207: 661-662.
    [18] Eiras AE , Jepson PC. Responses of female Aedes aegypti (Diptera : Culicidae) to host odours and convection currents using an olfactometer bioassay. Bull Entomol Res, 1994, 84: 207-211
    [19] Braks MAH , Takken W. Incubated human sweat but not fresh sweat attracts the malaria mosquito. A nopheles gambiae sensu stricto. J Chem Ecol, 1999, 25: 663-672
    [20] Dekker T, Geier M, Carde RT. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol. 2005 Aug;208(Pt 15):2963-72.
    [21] Steib BM, Geier M, Boeckh J. The effect of lactic acid on odour-related host preference of yellow fever mosquitoes. Chem Senses. 2001, 26(5): 523-8
    [22] Brown AWA, Sarkaria DS, Thompson RP. Studies on the responses of the female Aedes mosquito. Part I . The search for attractant, vapours. Bull Entomol Res, 1951,42: 10-11
    [23] Shone SM, Ferrao PN, Lesser CR, Glass GE, Norris DE. Evaluation of carbon dioxide- and l-octen-3-ol-baited Centers for Disease Control Fay-Prince traps to collect Aedes albopictus. J Am Mosq Control Assoc, 2003, 19(4): 445-7.
    [24] Kline DL, Allan SA, Bernier UR, Posey KH. Olfactometer and large cage evaluation of a solid phase technology for the controlled production of CO2. J Am Mosq Control Assoc, 2006, 22(3):378-81
    [25] Takken W. The role of olfaction in host-seeking of mosquitoes : a review. Insect SciAppl, 1991, 12 (2): 87-95
    
    [26] Becker N; Zgomba M; Petric D;Ludwig M. Comparison of carbon dioxide, octenol and a host-odour as mosquito attractants in the Upper Rhine Valley, Germany. Med Vet Entomol JT, 1995: 377-80
    
    
    [27] Russell RC. The relative attractiveness of carbon dioxide and octenol in CDC-and EVS-type light traps for sampling the mosquitoes Aedes aegypti (L.), Aedes polynesiensis Marks, and Culex quinquefasciatus say in Moorea, French Polynesia. J Vector Ecol, 2004, 29(2): 309-14
    
    [28]李剑泉,沈佐锐,刘志桥.二氧化碳对白纹伊蚊的引诱活性[J].中国媒介 生物学及控制杂志,2003,14:165-167
    
    [29] Bernier UR; Kline DL; Posey KH; Booth MM. Synergistic attraction of Aedesaegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, ordimethyl disulfide. J Med Entomol JT, 2003: 653-6
    
    [30] Pates HV, Takken W, Stuke K, Curtis CF. Differential behaviour of Anophelesgambiae sensu stricto (Diptera: Culicidae) to human and cow odours in thelaboratory. Bull Entomol Res. 2001, 91(4): 289-96.
    
    [31] Takken W, Dekker T, Wijinholds YG Odor-mediated flight behavior of Anopheles gambiae giles sensu stricto and A n. stephensi liston in response toCO2, acetone , and 1-octen-ol. J Insect Behav, 1997, 10: 395-407.
    
    [32] Saitoh Y, Hattori J, Chinone S, Nihei N. Yeast-generated CO2 as a convenientsource of carbon dioxide for adult mosquito sampling. J Am Mosq ControlAssoc. 2004, 20(3):261-4.
    
    [33] Oli K, Jeffery J, Vythilingam LA comparative study of adult mosquito trappingusing dry ice and yeast generated carbon dioxide. Trop Biomed. 2005Dec;22(2):249-51.
    
    [34] Rapaport AS, Lampman RL, Novak RJ. Evaluation of selected modifications to CO2 andnfusion-baited mosquito traps in Urbana, Illinois. J Am Mosq Control Assoc,2005, 21(4): 395-9
    
    [35] Bosch OJ; Geier M;Boeckh J. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses JT, 2000: 323-30
    [36] Murphy MW; Dunton RF; Perich MJ;Rowley WA. Attraction of Anopheles (Diptera: culicidae) to volatile chemicals in Western Kenya. J Med Entomol JT, 2001:242-4
    [37] Williams CR; Ritchie SA; Russell RC; Eiras AE; Kline DL;Geier M. Geographic variation in attraction to human odor compounds by Aedes aegypti mosquitoes (Diptera: Culicidae): a laboratory study. J Chem Ecol JT, 2006, 1625-34
    [38] Dogan EB; Ayres JW;Rossignol PA. Behavioural mode of action of deet: inhibition of lactic acid attraction. Med Vet Entomol JT, 1999: 97-100
    [39] Dekker T, Steib B, Carde RT, Geier M. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol, 2002, 16(1): 91-8.
    [40] Braks MAH, Meijerink J, Takken W. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer. Physiol Entomol, 2000, 26: 142-148
    [41] Smallegange RC, Qiu YT, van Loon JJ. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chem Senses. 2005, 30(2): 145-52.
    [42] Shirai Y; Kamimura K; Seki T;Morohashi M. Proboscis amputation facilitates the study of mosquito (Diptera: Culicidae) attractants, repellents, and host preference. J Med Entomol JT, 2000: 637-9
    [43] Shirai Y, Kamimura K, Seki T, et al. L-lactic acid as a mosquito (Diptera : Culicidae) repellent on human and mouse skin. J Med Entomol, 2001, 38:51-54
    [44] Cork A. Olfactory basis of host location by mosquitoes and other haematophagous Diptera. Ciba Found Symp JT, 1996: 71-84
    [45] Kline DL. Olfactory attractants for mosquito surveillance and control: l-octen-3-ol. J Am Mosq Control Assoc JT, 1994: 280-7
    [46] Van den Hurk AE, Montgomery BL, Zborowski P. Does l-octen-3-ol enhance trap collections of Japanese encephalitis virus mosquito vectors in northern Australia? J Am Mosq Control Assoc JT, 2006, 15-21
    [47] Vythilingam I; Chiang GL;Chan ST. Evaluation of carbon dioxide and l-octen-3-ol as mosquito attractants. Southeast Asian J Trop Med Public Health JT, 1992: 328-31
    [48] Cooper RD, Frances SP, Popat S, Waterson DG. The effectiveness of light, l-octen-3-ol, and carbon dioxide as attractants for anopheline mosquitoes in Madang Province, Papua New Guinea. J Am Mosq Control Assoc, 2004, 20(3): 239-42.
    [49] Rueda LM; Harrison BA; Brown JS. Evaluation of l-octen-3-ol, carbon dioxide, and light as attractants for mosquitoes associated with two distinct habitats in North Carolina. J Am Mosq Control Assoc JT, 2001: 61-6
    [50] Sunish IP; Rajendran R;Reuben R. The role of urea in the oviposition behaviour of Japanese encephalitis vectors in rice fields of South India. Mem Inst Oswal do Cruz JT, 2003: 789-91
    [51] Kline DL; Lemire GF. Field evaluation of heat as an added attractant to traps baited with carbon dioxide and octenol for Aedes taeniorhynchus. J Am Mosq Control Assoc JT, 1995: 454-6
    [52] Braks MAH, Meijerink J, Takken W. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer. Physiol Entomol, 200, 26: 142-148
    
    
    [53] Geier M , Boch OJ , Boeckh J . Ammonia as an attractive component of host odour for the yellow fever mosquito , Aedes aegypti. Chem Sense, 1999, 24: 647-653
    
    [54] Smallegange RC, Qiu YT, van Loon JJ. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chem Senses. 2005, 30(2): 145-52.
    
    [55] Williams CR; Ritchie SA; Russell RC; Eiras AE; Kline DL;Geier M. Geographic variation in attraction to human odor compounds by Aedes aegypti mosquitoes (Diptera: Culicidae): a laboratory study. J Chem Ecol JT, 2006,1625-34
    
    [56] Knols BG, De Jong R. Limburger cheese as an attractant for the malaria mosquito Anopheles gambiae s.s. Parasitol Today. 1996, 12(4):159-61
    
    [57]张时妙,莫建初,潘程远,程家安.几种人体气味物质对淡色库蚊雌成虫的 引诱和驱避作用.昆虫知识,2004,41(6):545-547
    
    [58]丁思悦,黄求应,雷朝亮.淡色库蚊对四种化学物质的嗅觉反应.昆虫知识, 2007,44(3):289-292
    
    [59] Chua KB, Chua IL, Chua IE, Chua KH. Differential preferences of ovipositionby Aedes mosquitos in man-made containers under field conditions. SoutheastAsian J Trop Med Public Health JT, 2004:599-607
    
    [60] Santana AL, Roque RA. Characteristics of grass infusions as ovipositionattractants to Aedes (Stegomyia) (Diptera: Culicidae). Eiras AE J Med Entomol,2006 Mar;43(2):214-20
    
    [61] Thavara U; Tawatsin A;Chompoosri J. Evaluation of attractants and egg-layingsubstrate preference for oviposition by Aedes albopictus (Diptera: Culicidae). JVector Ecol JT, 2004: 66-72
    
    [62] Geetha I; Paily KP; Padmanaban V;Balaraman K. Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Mem Inst Oswaldo Cruz JT, 2003: 223-6
    [63] Poonam S; Paily KP;Balaraman K. Oviposition attractancy of bacterial culture filtrates: response of Culex quinquefasciatus. Mem Inst Oswaldo Cruz JT, 2002:359-62
    [64] Sivagnaname N; Amalraj DD; Kalyanasundaram M. Oviposition attractancy of an infusion from a wood inhabiting fungus for vector mosquitoes. Indian J Med Res JT, 2001: 18-24
    [65] Trexler JD; Apperson CS;Schal C. Laboratory and field evaluations of oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) to oak leaf infusions. J Med Entomol JT, 1998: 967-7
    [66] Rasnitsyn SP; Lebedeva MN. The attraction of the female urban mosquito Culex pipiens (Diptera, Culicidae) for oviposition by different attractants. Med Parazitol (Mosk) JT, 1996: 29-33
    [67] Beehler JW; Millar JG;Mulla MS. Protein hydrolysates and associated bacterial contaminants as oviposition attractants for the mosquito Culex quinquefasciatus. Med Vet Entomol JT, 1994: 381-5
    [68] Allan SA; Bernier UR;Kline DL. Evaluation of oviposition substrates and organic infusions on collection of Culex in Florida. J Am Mosq Control Assoc JT, 2005: 268-73
    [69] Burkett-Cadena ND, Mullen GR.Field comparison of Bermuda-hay infusion to infusions of emergent aquatic vegetation for collecting female mosquitoes. J Am Mosq Control Assoc, 2007, 23(2): 117-23
    [70] Olagbemiro TO; Birkett MA; Mordue Luntz AJ;Pickett JA.Laboratory and field responses of the mosquito, Culex quinquefasciatus, to plant-derived Culex spp. oviposition pheromone and the oviposition cue skatole. J Chem Ecol JT, 2004:
    ??965-76
    
    [71] Beehler JW, Millar J G, Mulla MS. Field evaluation of synthetic compoundsmediating oviposition in Culex mosquitoes (Diptera: Culicidae). J Chem Ecol,1994, 20(2): 81-91.
    
    [72] Michaelakis A; Mihou AP; Couladouros EA. Oviposition responses of culexpipiens to a synthetic racemic Culex quinquefasciatus oviposition aggregationpheromone. J Agric Food Chem JT, 2005: 5225-9
    
    [73] Millar J G, Chaney JD , Mulla MS. Identification of oviposition attractants forCulex quefasciatus from fermented Bermuda grass infusions. J Am MosqControl Assoc, 1992, 8:11-17.
    
    [74] Trexler JD; Apperson CS; Gemeno C. Field and laboratory evaluations ofpotential oviposition attractants for Aedes albopictus (Diptera: Culicidae). J AmMosq Control Assoc JT, 2003: 228-34
    
    [75]浦冠勤.昆虫性信息素的研究与应用.常熟高专学报,2001,15(4):62-64
    
    [76] Hallem EA, Dahanukar A, Carlson JR. Insect odor and taste receptors. AnnuRev Entomol JT, 2006: 113-35
    
    [77] Kent LB, Walden KK, Robertson HM.The Gr Family of Candidate Gustatory and Olfactory Receptors in the Yellow-Fever Mosquito Aedes aegypti. Chem Senses. 2007 Oct 10
    
    [78] Syed Z, Leal WS. Maxillary palps are broad spectrum odorant detectors inCulex quinquefasciatus. Chem Senses. 2007, 32(8): 727-38
    
    [79] Qiu YT, van Loon JJ, Takken W, Meijerink J, Smid HM. Olfactory Coding in Antennal Neurons of the Malaria Mosquito, Anopheles gambiae.Chem Senses. 2006 Nov;31(9):845-63.
    
    [80] Iatrou K, Biessmann H. Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem Mol Biol, 2008 , 38(2):268-74.
    [81] Davis EE; Bowen MR Sensory physiological basis for attraction in mosquitoes. J Am Mosq Control Assoc JT, 1994: 316-25
    [82] Lu T, Qiu YT, Wang G, Kwon JY. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr Biol, 2007, 17(18): 1533-44
    [83] Grant AJ, O'Connell RJ. Age-related changes in female mosquito carbon dioxide detection. J Med Entomol, 2007, 44(4): 617-23.
    [84] Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature, 2007, 445(7123): 30-1
    [85] Xue RD; Barnard D. Attraction, feeding, and repellency responses in mutant strains of Aedes aegypti. J Am Mosq Control Assoc JT, 2005: 263-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700