用户名: 密码: 验证码:
古麇地出土青铜器初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年3~11月,在南水北调中线工程中,湖北省文物考古研究所等单位对郧县五峰乡乔家院墓群进行了考古勘探和发掘工作。该遗址发现伊始,因其所处地理位置与历史文献记载的古麇国都城“锡穴”相吻合,立刻得到考古学界、历史学界和社会大众的广泛关注。2006年12月,乔家院春秋墓群被国家文物局评为“全国重大考古新发现”。利用现代科技方法对古麇地出土青铜器进行研究,有利于拓宽对汉水中上游古文化的认识,有利于古麇文化研究的深入,有利于揭示楚文化的西进历程。
     本论文最终的研究目的是,从科技角度对古麇地考古学文化进行一次较为全面、深入的探索,并希望有助于深化人们对古麇国地理地望、手工业活动、贸易往来、生产组织、社会结构等涉及当时政治、经济、文化等多方面、深层次问题的认识。此外,研究结果对阐明古麇国与楚国之间在政治互动、经济往来、文化交流、技术传播等方面的情况,也将有着较为重要的参考价值。
     首先,利电感藕合等离子体发射光谱(ICP-AES)、X射线荧光(XRF)等分析方法,对考古发掘的71件青铜标本和铜器所包含的泥芯,进行了系统的检测分析。铜矿料来源研究结果表明,古麇地青铜器与左塚青铜器具有相近的矿料来源,而异于九连墩、安徽及辽西等地样品。进一步分析还发现,古麇地青铜器中微量元素特征与皖南、宁夏等地古铜锭差异比较明显,而与大冶灵乡铜锭相一致。从而推测,此批青铜器中使用了大冶矿区的铜原料。青铜器产地研究表明,此批器物所包含的泥芯原料很可能来自南方的红土区域,且与盘龙城及左塚的泥芯具有同源性。由此认为,此批青铜器应当为楚国铸造成型后再输入古麇地的。青铜合金配比及制作工艺的研究表明,古麇地出土青铜器的合金配比合理,表明制作者对合金规律有着深刻的认识,青铜合金工艺、铸造技术相当精湛和娴熟。特别指出,当地高铅青铜容器及高锡低铅铜剑,都沿袭了楚国的传统合金工艺。
     显然,第二至第四章是本论文的主要部分之一,综合上述研究结果可知:此批青铜器使用了楚国的铜料、沿袭了楚国的传统合金工艺、由楚国工匠在楚国境内铸造而成。表明墓主应为楚国贵族,这里所见墓群,应是楚人入主麇地后的楚墓。
     接下来,利用金相显微镜、拉曼光谱(Raman)、傅立叶红外光谱(FT-IR)和X射线衍射(XRD)等分析方法,对古麇地出土青铜器上的腐蚀产物及器物上的“附着物”进行了分析。分析结果表明,此批青铜器中普遍存在碱式氯化铜、含水氯化铜等铜的氯化锈蚀,腐蚀种类较为多样、程度较为严重。值得指出的是,分析发现白色胶结状腐蚀物中存在角铅矿,它与铜的氯化锈蚀同属有害锈。在粉状锈产生部位呈现出“铜本体—赤铜矿—副氯铜矿—孔雀石—蓝铜矿”的锈层结构。古麇地青铜器处于一种含氯的弱酸性、季节性变化环境中,器物在此环境中优先腐蚀δ相,主要发生电化学腐蚀,既有缝隙腐蚀,又有点孔状腐蚀。在此基础上,提出了简要的保护方案。
     铜器上“附着物”的分析结果表明,M4:23铜剑镶嵌绿松石处的粘接材料不属于人们所熟知的动物胶、植物胶及矿物胶,其主要成分为蜂蜡。研究结果不仅丰富了我们对古代胶粘材料的认识,对古代蜂蜡研究工作的开展亦起到抛砖引玉的作用。为此指出,有必要开展我国古代蜂蜡的系统研究工作,有必要对铜器上镶嵌宝玉石、贴金银等工艺中使用的粘接(连接)材料进行深入研究。
     对剑鞘上所裹的皮质材料的分析指出,早在春秋中晚期,我国先民就可能发明铁-铝盐混合鞣制的技术。考工记中未见有鞣前准备的记载,其它文献也鲜有提及。本文首次指出,最迟在春秋中晚期,我国先民已开始将纯石灰用于脱毛浸灰处理。
     在合金工艺研究中,笔者发现,已有标准图谱及模拟图谱的分析材料多由铁型、砂型和失蜡法等方法铸造所得,不同于古代范铸而成的青铜器。一般说来,两者的金相组织或多或少会有一定差别。同时,不论是标准图谱或是模拟图谱中都没有提供高锡青铜的形变加工图谱。鉴于此,本论文模拟古代范铸条件,浇铸出成分不同的青铜试样,并对其进行热处理和形变加工处理,得到一系列金相图谱。不论是铸造实验还是热处理实验,这里都得到了一些新的认识,并初步显现出其具有相当的应用价值。除此之外,本实验的最大收获是,获得了含锡6%、14%、22%三种合金材料的形变加工组织。此前未见相关研究。对高锡青铜高温锤打的实验发现,材料最终显示为铸造组织,而非典型的冷加工后热处理或热锻的组织。这对探讨古代青铜兵器等高锡实用器物的制作工艺颇有参考价值。
Over the past two years, archaeologists have conducted several archaeological surveys in and around the Qiaojiayuan site, Yun County, Hubei Province, China. In the process, four tombs were discovered and excavated, all dated to the Autumn-Spring Period of ancient China (770-476 B.C., the formative period of Chinese civilization). More importantly, each tomb contained the remains of a single individual. This is the first time since the foundation of People's Republic of China that archaeologists have discovered Autumn-Spring Period tombs complete with intact burials within the boundary of Hubei province.
     According to historical documents, the Qiaojiayuan site is geographically located within the boundary of the ancient Jun state. During this time period, tombs were reserved for the powerful and elite members of society.
     The archaeological excavations unearthed a total of 132 artifacts, of which the bronzes played the main part (around 71 pieces). The typical bronzes of the period consist of elaborate vessels of interlaced designs known as Ding, Pan, Yi, Fou, Gui, and Ge. Swords and other articles were also made of bronze. For its significance to the study of the culture of ancient Jun, the Qiaojiayuan site was awarded "The National Significant Archaeological New Findings" in 2006.
     According to historical records, ancient Jun had a very long-time history. Through the periods of the Xia, Shang, and Zhou dynasties, Jun maintained a very close relationship with each of these dynasties as they were represented in the Zhongyuan district. By the Spring-Autumn Period, ancient Jun had established a close association with the Chu state. What remained unknown are the details of these relationships, associations and alliances. Through the systematic examination of excavated bronzes from ancient Jun, we should be able to: 1) trace the background of relationships between ancient Jun and dynasties in Zhongyuan district, as well as the relationship between Jun and Chu; and 2) broaden our knowledge about ancient Jun civilization and culture.
     The main research in this dissertation is divided into five parts:
     1) The Provenance Study of Ores for Bronze Casting.
     With a combined use of ICP-AES, XRF, and other analytical methods, we will complete a trace-element analysis on the excavated bronzes from the Qiaojiayuan site. Through a carefully selection of trace elements for cluster analysis, we expect to identify the provenance of the ores that were used for bronzes casting by the craftsman of ancient Jun.
     To this end, the archaeological surveys located a very large ancient mining site, the An Cheng East Zhou copper mining site, nearby. We have carefully and systematically surveyed this site and its surroundings, and sampled the ores. For the sake of comparison, we also sampled the ores from the Zhaobishan copper mining sites within Ningxia Province and from the Tonglvshan copper mining sites within Hubei Province. The former is traditionally believed to be under the control of the Zhongyuan dynasties, while the latter belonged to the ancient Chu state.
     By use of ICP-AES analysis, we want to find out whether the ores chosen for bronze casting in ancient Jun are from the An Cheng East Zhou copper mining site or some other site. If the results indicate the ores are not from An Cheng East Zhou mining site, then we will have to do some additional revisit our work and address a new question: is there a close relationship between the bronzes excavated from ancient Jun and the copper mining sites somewhere else, e.g., the Zhaobishan copper mining site or the Tonglvshan copper mining site?
     2) The Search for the Original Casting Place for the Jun Bronzes.
     Our previous research made use of both ICP-AES and XRF methods to analyze the finely-ground clay found in bronzes as well as the soils from excavation sites and clay moulds found nearby. Using a cluster analysis, we were able to identify what seemed to be a very close relationship between the trace-elements both in the finely-ground clay and the soils from the original casting places for bronzes. This relationship was also observed and reaffirmed in the archaeological evidence. So, in our current research, we will be using this method to determine if the Jun bronzes were cast nearby or in some other place.
     3) The Aim to Better Understand Bronze Production Technology.
     The production technology of ancient bronzes is a very important topic in the discussion about bronze cultural civilization. In the research, we are using XRF analysis and metallurgical information to examine the composition of alloys and their microstructure. In order to better understand the microstructure of ancient bronzes, we also did casting experiments.
     4) Corrosion Studies and Studies for Conservation Work.
     By combining the analyses of corrosion products through XRD, RM, and XRF with analyses of soil, marine environments, etc., we can better understand how some corroded bronzes were so well preserved, while others were not. This study can also provide meaningful information for conservation and restoration work.
     5) The aim to Better Understand Remnant Substance on Bronzes.
     By use of FT-IR, RM, and XRF analysis, we want to find out whether the remnant substance on bronzes belongs to organic material or inorganic material. If the results indicate the remnant substance belongs to organic material, then we will have to do more research and find out what kind of material may it be? From this study, we can better understand the adhering material on ancient bronzes, and the tanbark technology of ancient China.
     From a larger perspective, the overall goal of this research is to develop a comprehensive and in-depth understanding of Jun culture. Most importantly, we are treating the bronzes as proxy for the human actions of this ancient state. We believe that integrating these four technical components of archaeological analysis within a broader context focused on the interaction between Jun culture and the materials it produced, we should be able to develop a more complete picture of the history of ancient Jun.
引文
[1]何洁.麇国地望与灭年[J].求索,1988,2:127-129.
    [2]何光岳.麇子国考。楚史研究专辑[M].武汉:湖北人民出版社,1982:122-133.
    [3]张培玉编著.郧阳古国[M].十堰:十堰市郧县建设局出版,2000:30-40.
    [4]李玉洁.楚史稿[M].郑州:河南大学出版社,1999年.
    [5]郧阳地区博物馆.湖北郧县肖家河春秋楚墓[J].考古,1998,4:42-46.
    [6]黄凤春、黄旭初.湖北郧县乔家院墓群考古取得重大收获,中国文物报,2007年1月10日二版。
    [7]蓝哲,龚玉华.汉水流域古方国的类型及其构成[J].郧阳师范高等专科学校学报,2005,(10):20-24.
    [8]郧阳博物馆.湖北郧县肖家河出土春秋唐国铜器[J].江汉考古,2003,1:3-8.
    [9]黄旭初、黄凤春.湖北郧县新出唐国铜器铭文考释[J].江汉考古,2003,1:9-15.
    [10]尹俊敏.叔姜簠及其相关问题[J].江汉考古,1999,3:49-51.
    [11]徐少华.从叔姜簠析古申国历史与文化的有关问题[J].文物,2005,3:66-68.
    [12]李学勤.论仲爯父簋与申国[J].中原文物,1984,4:31-39.
    [13]刘国胜.湖北枣阳九连墩楚墓获重大发现[J].江汉考古,2003(2):29-30.
    [14]湖北省文物考古研究所等编.荆门左冢楚墓[M].北京:文物出版社.
    [15]魏国锋.古代青铜器矿料来源与产地研究的新进展[D].合肥:中国科学技术大学,2007.
    [16]黄石市博物馆.铜绿山古矿冶遗址[M].北京:文物出版社,1999年.
    [1]夏鼐、殷玮璋.湖北铜绿山古铜矿[J].考古学报,1982,1:1-14.
    [2]王昌燧,邱平,秦颖等.文物断源研究之成果、心得和思考[A].《科技考古论丛》第三辑[C].合肥:中国科学技术大学.
    [3]吴开兴、胡瑞忠、毕献武等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,2002,30(3):73-80.
    [4]魏菊英、王关玉.同位素地球化学[M].北京:地质出版社,1988,59-80.
    [5]张理刚.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质,1988,7(2):55-64.
    [6]沈渭洲.稳定同位素地球化学[M].北京:原子能出版社,1987.
    [7]Brill RH.Ancient glass[J].Scientific American,1963,209(5):120-126.
    [8]Briil RH,Wampler J M.Isotope studies of ancient lead[J].American Journal ofArchaeology,1967,71(1):63-77.
    [9]Barnes I L,Brill R H,Murphy T J,et al.Isotope analysis of Laurion lead ores[A].Archaeological Chemistry[C].Washington:American Chemical Society,Advances in Chemistry Series,1974,138:1-10.
    [10]Shock W,Plimer I R,Reeves S.Application of Pb isotope geochemistry to the study of the corrosion products of archaeological arti-facts to constrain provenance[J].J.Geochem.Exploration,1999,66:421-425
    [11]金正耀.晚商中原青铜的矿料来源研究[D].中国科技大学,1984.
    [12]李晓岑.中国铅同位素考古[M].昆明:云南科技出版社,2000.
    [13]彭子成,刘永刚,刘诗中等.赣鄂豫地区商代青铜器和部分铜铅矿料来源的初探[J].自然科学史研究,1999,18(3):241-249.
    [14]彭子成,王兆荣,孙卫东等.盘龙城商代青铜器铅同位素示踪研究[A].盘龙城[C].北京:文物出版社,2001,552-558.
    [15]万辅彬,郭立新,李晓岑等.古夜郎国铜釜的铅同位素考证[J].广西民族学院学报(自然科学版),1998,4(2):53-56.
    [16]万辅彬,姚舜安,李世红等.古代铜鼓矿料来源的铅同位素考证[J].物理,1990,19(3):148-152.
    [17]姜中宏,张勤远.用铅同位素特征研究中国古代铅(钡)玻璃[J].硅酸盐学报,1998,26(1):109-113.
    [18]金正耀,Chase W T,马渊久夫等.商代青铜器中的高放射成因铅:三星堆器物与沙可乐(赛克勒)博物馆藏品的比较研究[A].“走向二十一世纪的中国考古学”国际讨论会论文集[C].北京:科学出版社,1998:258-266.
    [19]金正耀,W T Chase,平尾良光等.江西新干大洋州商墓青铜器的铅同位素比值研究.考古,1994,(8):744-747.
    [20]金正耀,马渊久夫,W T Chase等.广汉三星堆遗物坑青铜器的铅同位素比值研究.文物,1995,(2):80-85.
    [21]金正耀.二里头青铜器的自然科学研究与夏文明探索[J].文物,2000,(1):56-64.
    [22]金正耀,朱炳泉,常向阳等.成都金沙遗址铜器研究.文物,2004,(4):76-88.
    [23]孙淑云,韩如玢,陈铁梅等.盘龙城出土青铜器的铅同位素比测定报告[A].盘龙城[C].北京:文物出版社,2001:545-551.
    [24]Nobel H.Gale and Zofia Stos-Gale,Lead Isotope Analyses Applied to Provenance Studies,Modern Analytical Methods in Art and Archaeology,John Wiley &Sons,Inc.,2000.
    [25]杨立新.皖南古代铜矿的发现及其历史价值.东南文化,1991,(2):131-13.
    [26]黄石市博物馆.铜绿山古矿冶遗址.北京:文物出版社,1999.154-155.
    [27]Friedrich Begemann,Konrad Kallas,Sigrid Schmitt-Strecker,et al.Tracing ancient tin via isotope analysis.In:The Beginnings of Metallurgy,edited by A.Hauptmann,E.Pernicka,T.Rehren.Der Anschnitt.Deutsches Bergbaumuseum,Bochum,1999:277-284.
    [28]M.Ponting.Fingerprinting of Roman mints using Laser-ablation MC-ICP-MS lead isotope analysis.Archaeometry,2003,45(3):591-597.
    [29]CHANG Xiang_yang,ZHU Bin_quan,Zou R.Lead isotopic exploration intersecting mineralization zones for the depth forecast of con-cealed deposits—A case fromLongbohe Cu deposit,Jinping,Yunnan province,China[J].Science in China(Series D),2000,43(3):293-301.
    [30]马振东.论铅同位素的地质指示作用[J].地球科学,1986,11(4):437-443
    [31]常向阳,朱炳泉,金正耀.殷商青铜器矿料来源与铅同位素示踪应用[J].广州大学学报,2003,4:323-326.
    [32]Woodhead J D,Volker F,Mcculloch MT.Routine lead isotope determinations using a 207Pb-204Pb double spike:a long-termassessment of analytical precision and accuracy[J].Analyst,1995,120:35-39.
    [33]章邦桐,凌洪飞,陈培荣.多体系微量元素地球化学对比中存在的问题及解决途径[J].地质地球化学,2003,31(4):102-106.
    [34]王昌燧.文物产地研究发展简史——兼论科技考古与Archaeometry[A].《科技考古论丛》第二辑[C].合肥:中国科学技术大学.
    [35]李清临.古青铜器矿料来源研究[D].合肥:中国科学技术大学,2004年.
    [36]Bastian J.Tyler.Trace Element and Metallographic Studies of Prehistoric Copper Artifacts in North America:A Review.In:Lake Superior Copper and the Indians:Miscellaneous Studies of Great Lakes Prehistory,Anthropological Papers,Museum of Anthropology,edited by James B.University of Michigan,Griffin.1961,No.17.
    [37]S.Klemenc,B.Budicoe,J.Zupan.Statistical evaluation of data obtained by inductively coupled plasma atomic emission spectrometry(ICP-AES)for archaeological copper ingots.Analytica Chimica Acta.1999,389:141-150.
    [38]王昌燧,邱平,秦颖等.文物断源研究之成果、心得和思考[A].《科技考古论丛》第三辑[C].合肥:中国科学技术大学.
    [39]魏国锋.古代青铜器矿料来源与产地研究的新进展[D].合肥:中国科学技术大学,2007.
    [40]禤锐广,夏晓和.我国古代陨石的研究[J].地球化学,1982,4:412-422.
    [41]秦颍,王昌燧,冯敏等.青铜器所用矿料的地质溯源研究.考古,待刊.
    [42]李仲均.中国古代铜矿床的地质史料研讨[J].有色金属,1989,2:67-74
    [43]黄石市博物馆.铜绿山古矿冶遗址[M].北京:文物出版社,1999年.
    [44]湖北省地质局第一地质.湖北铜绿山铜矿床的成矿特征及探矿条件[A].铁铜矿产专辑(第一集)[C].北京:地质出版社,1972.
    [45]熊继传,郭学全,李辉文.鄂东南夕卡岩型矿床元素轴向分带及分带模式在找矿中的应用[J].地质与勘探,1992,06:43-50.
    [46]穆荣平.皖南古铜矿遗址及其冶炼技术的初步研究[D].合肥:中国科学技术大学,1990.
    [47]刘亮明.大型铜矿集区成矿聚集机制与隐伏矿床定位预测——以中条山矿集区和铜陵矿集区为例[D].中国科学院地球化学研究所,2000.
    [48]唐永成、吴言昌等.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社,1998.
    [49]秦颍,朱继平,王昌燧等.利用微量元素示踪青铜器矿料来源的实验研究[J].东南文化,2004,5:89-92
    [50]秦颍,魏国锋,罗武干等.长江中下游古铜矿及冶炼产物输出方向判别标志初步研究[J].江汉考古,2006,1:65-69
    [51]李清临,朱君孝,秦颍等.微量元素示踪古代青铜器铜矿料来源的可行性[J].文物保护与考古科学,2004,8:13-17
    [52]魏国锋,秦颍,王昌燧等.大井矿冶遗址冶炼产物的输出方向[J].矿物岩石地球化学通报,2006,3:254-259
    [53]罗武干,秦颍,王昌燧等.中条山与皖南地区古铜矿冶炼产物的比较分析[J].岩矿测试,2007,6:209-212
    [54]湖北省郧县地方志编纂委员会.郧县志[M].武汉:湖北人民出版社,2001:964.
    [55]张继承,胡起生,时明杰等.神农架地区铅锌多金属矿地质特征及找矿方向[J].资源环境与工程,2004,12:64-69
    [56]潜伟,孙淑云,韩汝玢.古代砷铜研究综述[J].文物保护与考古科学,2000,(2):43-50.
    [57]Charles,J.A.The coming of copper and copper-based alloys and iron:a metallurgical sequence.In:Wertime T.A.,Muhly J.D.ed.The coming of the age of iron.New Haven and London:Yale University Press.1980.151-182.
    [58]梁宏刚,李延祥,孙淑云等.垣曲商城出土含砷渣块研究[A].中国冶金史论文集[C].北京:北京科技大学,2006.347-353.
    [1]马承源.中国青铜器[M].上海:上海古籍出版社,1988.516-525.
    [2]《中国古代冶金》编写组.中国古代冶金[M].北京:文物出版社,1978.4-9;
    [3]梁中效.汉水上游文化史探微[J].汉中师范学院学报,1991,(1).
    [4]谭德睿.侯马东周陶的材料及其处理技术的研究[J].考古,1986,(4):355-362.
    [5]谭德睿.中国青铜时代陶范铸造技术研究[J].考古学报,1999,(2):211-249.
    [6]谭德睿.商周青铜器陶范处理技术的研究[J].自然科学史研究,1986,5(6):346-360.
    [7]华觉明等.中国冶铸史论集[M].北京:文物出版社,1986.71-75.
    [8]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989.321.
    [9]赵丛苍主编。科技考古学概论[M].北京:高等教育出版社,2006.312.
    [10]Hanson G H.Rare earth elements in petrogenetic studies of igneous systems.Ann Rev Earth Planet Sci,1980,8(4):371-406.
    [11]Meneies M S,Seyfried W J,Blanchard D.Experimental evidence of rare earth element immobility in greenstones.Nature,1979,282(5737):398-399.
    [12]Olin,J.S.,Harbottle.G & Sayre.E.V.(1978).Elemental compositions of Spanish and Spanish-colonial majolica ceramics in the identification of provenance,in Archaeological Chemistry Ⅱ,Advances in Chemistry Series 171,Washington D.C.,American Chemical Society,pp200-229.
    [13]J.Cogswell,H.Neff,M.Glascock.The effect of firing temperature on the elemental characterization of pottery.Journal of Archaeological Science,1996,23(2):283-287.
    [14]魏国锋.古代青铜器矿料来源与产地研究的新进展[D].合肥:中国科学技术大学,2007.
    [15]刘东生.中国的黄土堆积[M].北京:科学出版社,1965.204
    [16]刘东生.中国的黄土堆积(中国黄土分布说明书)[M].北京:科学出版社,1965.202
    [17]张俊民,蔡凤歧,何同康.中国的土壤[M].北京:商务印书馆,1995.
    [18]朱照宇,王俊达,黄宝林.红土.黄土.全球变化[J].第四纪研究,1995(3):268-276.
    [19]郑琰明,周尚哲,康建成,等.南方网纹红土及其形成环境的初步探讨[J].嘉兴学院学报(自然科学),2005,23(3):79-83.
    [20]刘东生等.黄河中游黄土[M].北京:科学出版社,1964:189-190.
    [21]赵志根.含煤岩系稀土元素地球化学研究[M].北京:煤炭工业出版社,2002.
    [22]陈潜德、陈刚编著.实用稀土元素地球化学[M].北京:冶金工业出版社,1990:196.
    [23]章邦桐、凌洪飞、陈培荣等.多体系微量元素地球化学对比中存在的问题及解决途径[J].地质地球化学,2003,31(4):102-106.
    [1]黄凤春、黄旭初.湖北郧县乔家院墓群考古取得重大收获,中国文物报,2007年1月10日二版。
    [2]任怀亮 主编.金相实验技术[M].北京:冶金工业出版社,1986.
    [3]梁克中 主编.金相原理与应用[M].北京:中国铁道出版社,1983.
    [4]北京钢铁学院金相教研室.专业基础实验[M].1981年7月.
    [5]洛阳铜加工厂中心试验室金相组.铜及铜合金金相图谱.北京:冶金工业出版社,1983年.
    [6]陈宗简 等 编.金相显微镜[M].北京:机械工业出版社,1982.1-5.
    [7]李众.中国封建社会前期钢铁冶炼技术发展的探讨[A].中国冶金史论文集[C].北京:北京钢铁学院,1986.53-67.
    [8]杨宽 著.中国古代冶铁技术发展史[M].上海:上海人民出版社,1982.286-306.
    [9]华觉明 等 编、译.世界冶金发展史[M].北京:中国科学技术文献出版社,1985.514-558.
    [10]赵丛苍 主编.科技考古学概论[M].北京:高等教育出版社,2006.270.
    [11]姚鸿年 编.金相研究方法[M].北京:中国工业出版社,1963.21.
    [12]苏荣誉,华觉明,李克敏等.中国上古金属技术[M].济南:山东科学技术出版社,1995.281.
    [13]山西省考古研究所,太原市文物管理委员会 编.太原晋国赵卿墓[M].北京:文物出版社,1996.253-268.
    [14]黄积荣 主编.铸造合金金相图谱[M].北京:机械工业出版社,1980.162.
    [15]黄德山 译.金属组织、性能和热处理[M].北京:中国科学技术出版社,1990.70.
    [16]路迪民,王大业 编著.中国古代冶金与金属文物[M].西安:陕西科学技术出版社,1998.16.
    [17]孙淑云,潜伟.古代铜、砷铜和青铜的使用与机械性能[A].中国冶金史论文集[C].北京:北京科技大学,2002.144-149.
    [18]D.Hanson & W.T.Dell-Wapole.Chill-Cast Tin Bronzes,Edward Arnold & Co.London,1951,242-243.
    [19]王琎.中国古代金属原质之化学[A].中国古代金属化学及炼丹术[C].北京:中国科学图示仪器公司出版,1955.6.
    [20]梁津.周代合金成分考[A].中国古代金属化学及炼丹术[C].北京:中国科学图示仪器公司出版,1955.52.
    [21]张子高.六齐别解[J].清华大学学报,1958,(2):159-166.
    [22]袁翰青.近年来中国化学史研究工作的进展[J].化学通报,1964(1):53.
    [23]周始民.《考工记》六齐成分的研究[J].化学通报,1978,(3):54-57.
    [24]吴来明.商周青铜器化学成分及其演变的研究[J].文物,1986,(11):76-84.
    [25]田长浒.从现代实验剖析中国古代青铜铸造的科学成就[J].成都科技大学学报,1980,(3、4):109-124.
    [26]何堂坤.“六齐”之管窥[A].科技史文集[C].上海:上海科学技术出版社,1989.89.
    [27]苏荣誉,华觉明,李克敏等.中国上古金属技术[M].济南:山东科学技术出版社,1995.182-308.
    [28]马承源 主编.中国青铜器[M].上海:上海古籍出版社,1988.505-515.
    [29]路迪民.“六齐”新探[J].文博,1999,(2):70-74.
    [30]何堂坤,陈跃均.江陵战国青铜器科学分析[J].1999,(2)158-167.
    [31]孙淑云.当阳赵家湖楚墓金属器的鉴定[A].中国冶金史论文集[C].北京:北京科技大学,1994.303-312.
    [32]姚智辉,孙淑云,邹后曦等.峡江地区部分青铜器的成分与金相研究[J].自然科学史研究,2005,(2):106-118.
    [33]何堂坤.先秦合金技术的初步探讨[J].自然科学史研究,1997,(3):273-286.
    [34]I.G.Ravich & N.V.Ryndina.Early copper-arsenic Alloys and the Problems of their Use in the Bronze Age of the North Caucasus[J].Bulletin of Metals Museum,1995,(1):1-8.
    [35]郭凯旋 主编.铜和铜合金牌号与金相图谱速用速查及金相技术创新应用指导手册[M].北京:中国知识出版社,2005.913.
    [36]W.T.Chase & Thomas O.Ziebold.Ternary Representation of Ancient Chinese Bronzes Composition.Archaeological Chemistry-11,Advance in Chemistry Series 171.American Chemical Society.Washington,D.C.1978.P304
    [37]W.T.Chase著,黄龙 译.中国青铜技术研究回顾与展望[J].文物保护与考古科学,1994,(1):16-19.
    [38]孙淑云 主编.中国古代冶金技术专论[M].北京:中国科学文化出版社,2003.157-159.
    [39]孙淑云.太原晋国赵卿墓青铜器的分析鉴定[A].中国冶金史论文集[C].北京:北京科技大学,2002.178-185.
    [40]第一机械工业部机械制造与工艺学研究院材料研究所著.金相图谱 下册[M].北京:机械工业出版社,1959.212.
    [41]山东工学院.金相基础 上册[M].27-38.
    [42]何堂坤,靳枫毅.中国古代焊接技术初步研究[J].华夏考古,2000,(1):61-64.
    [43]后德俊.楚国的矿冶髹漆和玻璃制造[M].武汉:湖北教育出版社,1999.100-105.
    [44]金普军,秦颍,胡雅丽 等.湖北九连墩楚墓出土青铜器钎焊料的分析[J].焊接学报,2007,(11):37-41.
    [45]邹僖.钎焊[M].北京:机械工业出版社,1981.27.
    [46]邓键.钎焊[M].北京:机械工业出版社,1979.34.
    [47]崔殿亨译.软钎焊手册[M].北京:机械工业出版社,,1987.102.
    [1]David A.Scott.Metallography and microstructure of ancient and historic metals[M].Singapore:Tien Wah Press,Ltd.1991.Foreword.
    [2]第一机械工业部机械制造与工艺科学研究所研究院材料研究所 编著.金相图谱 下编[M].北京:机械工业出版社,1959.212-219.
    [3]洛阳铜加工厂中心试验室金相组 编.铜及铜合金金相图谱[M].北京:冶金工业出版社,1983,69-82.
    [4]江苏省机械研究所 等编著.金属材料金相图谱[M].南京:江苏科学技术出版社,1977,124.
    [5]黄积荣 主编.铸造合金金相图谱[M].北京:机械工业出版社,1978,162.
    [6]张宝昌.有色金属及其热处理[M].西安:西北工业大学出版社,1993,139.
    [7]陈玉云.模拟‘六齐'合金金相试验研究[J].文物保护与考古科学,1991,(2):7-16.
    [8]何堂坤.古青铜热处理模拟试验[J].自然科学史研究,1994,(1):76-88.
    [9]孙淑云.中国古代铜镜显微组织的研究[J].自然科学史研究,1992(1):54-67.
    [10]孙淑云.中国响铜器的研究[A].中国冶金史论文集[C].北京:北京科技大学,1994.79-93.
    [11]贾莹,苏荣誉.吴国青铜兵器的金相学考察与研究[A].文物科技研究[C].北京:科学出版社,2004.21-53.
    [12]何堂坤.山东青铜镜金相分析[J].文物保护与考古科学,1998,(2):16-21.
    [13]马承源.中国青铜器[M].上海:上海古籍出版社,1988.516-525.
    [14]路迪民,王大业.中国古代冶金与金属文物[M].西安:陕西科学技术出版社,1998,18.
    [15]黄积荣 主编.铸造合金金相图谱[M].北京:机械工业出版社,1980.162.
    [16]黄德山 译.金属组织、性能和热处理[M].北京:中国科学技术出版社,1990.70-75.
    [17]贾莹 摘译David A.Scott.古代金属的微观组织[J].文物保护与考古科学,1995,(5):56-60
    [18]David A.Scott.Metallography and microstructure of ancient and historic metals[M].Singapore:Tien Wah Press,Ltd.1991.8.
    [19]蒋鹏.半熔融态成形工艺[J].新技术新工艺,1995(6):25-26
    [20]唐靖林 曾大本.半固态加工技术的发展和应用现状[J].兵器材料与科学工程,1998,(3):56-65.
    [21]罗守靖.半固态成形、特点及其应用[J].机械供热,2004,(1):87-88.
    [22]韩汝玢,孙淑云,李秀辉等.中国古代铜器的显微组织[J].北京科技大学学报,2002,(2):219-230
    [1]Gregory D Smith,Robin J H Clark.Raman microscopy in archaeological science [J].Journal of Archaeological Science.2004,31:1137-1160.
    [2]Ian M Bell,Robin J H Clark,Peter J Gibbs.Raman spectroscopic library of natural and synthetic pigments(pre-~1850AD)[J].Spectrochimica Acta.1997,A53:2159-2179.
    [3]M Bouchard,D C Smith.Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology,especially on corroded metals and coloured glass[J].Spectrochimica Acta.2003,A59:2247-2266.
    [4]Lucia Burigo,Robin J H Clark.Library of FT-Raman spectra of pigments,minerals,pigment media and varnishes,and supplement to existing library of Raman spectra of pigments with visible excitation[J].Spectrochimica Acta.2001,A57:1491-1521.
    [5]Lowell I McCann,K Trentelman,T Possley,et al.Corrosion of Ancient Chinese Bronze Money Trees Studiey by Raman Microscopy[J].Journal of Raman Spectroscopy.1999,30:121-132.
    [6]范崇正,王昌燧,赵化章等.氯化亚铜氧化反应得化学动力学初探[J].物理化学学报,1992,(5):685-689.
    [7]I.Constantinides,A.Adriaens,F.Adams.Surface characterization of artificial corrosion layers on copper alloy reference materials[J].Applied Surface Science 2002,(189):90-101.
    [8]范崇正,胡克良,邢锦云等.青铜粉状锈生长过程的跟踪观测[J].文物保护与考古科学,1997,(5):20-24.
    [9]范崇正,王昌燧,王胜君等.青铜器粉状锈生成机理研究[J].中国科学B辑,1991,(3),239.
    [10]程德润,赵明仁,刘成等.古代青铜器粉状腐蚀机理新探[J].西北大学学报,1989,(1):30.
    [11]杨德钧、沈卓身主编.金属腐蚀学[M].北京:冶金工业出版社,1999,132.
    [12]Lowell I McCann,K Trentelman,T Possley,et al.Corrosion of Ancient Chinese Bronze Money Trees Studiey by Raman Microscopy[J].Journal of Raman Spectroscopy.1999,30:121-132.
    [13]朱元保 等.电化学数据手册[M].长沙:湖南科学技术出版社,1985,198.
    [14]Clare Gee,Michael H.Ramsey,John Maskall etc.Mineralogy and weathering processes in historical smelting slags and their effect on the mobilization lead[J].Journal of Geochemical Exploration,1997,(58):249-257.
    [15]R.Herrera-Urbina,D.W.Fuerstenau.The effect of Pb(Ⅱ)species,pH and dissolved carbonate on the potential at the quartz/aqueous solution interface[J].Colloids and Surfaces,1998,(98):25-33.
    [16]Vojtech Ettler,Martin Mihaljevic,Ondrej Sebek etc.Leaching of APC residues from secondary Pb metallurgy using single extraction tests:the mineralogical and the geochemical approach[J].Journal of Hazardous Materials,2005,(B 121):149-157.
    [17]C.M.Pina,L.Fernandez-Diaz,M.Prieto,A.Putnis.In situ atomic force microscope observations of a phosgenite-cerussite transformation reaction:The phosgenite-cerussite transformation[J].Geochimica et Cosmochimica Acta,2002,(2):215-221.
    [1]李建伟,牛瑞红.中国青铜器图录(下)[M].北京:中国商业出版社,2000,400.
    [2]湖北省博物馆编.曾侯乙墓[M].北京:文物出版社,1980,30.
    [3]郑利平.中国古代青铜器表面镶嵌工艺技术[J].金属世界,2007,(1):48-51.
    [4]荆煦瑛编.付里叶变换红外光谱的应用研究[M].长春:吉林大学出版社,1989,1.
    [5]轻工院校有机化学编写组.有机化学[M].北京:北京师范大学出版社,1992,105-115.
    [6]卢涌泉,邓振华编.实用红外光谱解析[M].北京:电子工业出版社,1989,21、99-149.
    [7]路纯明,牛安妮,叶维明.实用仪器分析[M].北京:航空工业出版社,1997,501.
    [8]陈盾.中国上古胶粘剂及应用[J].中国科技史料,2003,(4):359-365.
    [9]何秋菊,王丽琴.现代仪器分析在彩绘文物胶结物鉴定中的应用研究[J].中国胶粘剂,2007,(3):19-22.
    [10]《化工百科全书》编辑部 编.树脂与塑料·《化工百科全书》专业卷[M].北京:化学工业出版社,2003,1276-1277.
    [11]蔡奋编写.生漆化学[M].贵阳:贵州人民出版社,1987,1-3.
    [12]和玲,聂麦茜,Giuseppe Chiavari.热裂解气相色谱质谱应用于古代壁画中油类黏合剂的分析[J].西安交通大学学报,2006,(10):1134-1138.
    [13]周长江,李亚亭.蜂蜡及其应用[J].化工之友,2001,(1):38-39.
    [14]轻工院校有机化学编写组.有机化学[M].北京:北京师范大学出版社,1992,308.
    [15]牛庆生,闫德斌,吴艳玲.蜂蜡的生产[J].特种经济动植物,2000,(1):14.
    [16]姚小琴,李军,朱苏闽.蜡油净油挥发性成分的分析和研究[J].香料香精化妆品,2003,(4):10-13.
    [17]杨小源,顾秀琰,张琳.蜂蜡在中药传统制剂中的应用[J].甘肃中医,2005,(18):42-43.
    [18]M.Regert,S.Colinart,L.Degrand etc.Chemical alteration and use of beeswax through time:accelerated ageing tests and analysis of archaeological samples from various environmental contexts[J].Archaeometry,2001,(4):549-569.
    [19]C.Heron,N.Nemcek and K.M.Bonfield.The Chemistry of Neolithic Beeswax[J].Naturwissenschaften,1994,(81):266-269.
    [20]Gregory D.Smith,Robin J.H.Clark.Raman microscopy in archaeological science[J].Journal of Archaeological Science,2004,(31):1137-1160.
    [21]Martine Regert.Investigating the history of prehistoric glues by gas chromatography-mass spectrometry[J].J.Sep.Sci.2004,(27):244-254.
    [22]蒋三俊.我国虫蜡的保健与应用[J].特种经济动植物,2003,(2):10-11.
    [23]夏冬波.蜂蜜、蜂蜡在书画装裱中的妙用[J].蜜蜂杂志,1994,(5):7-8.
    [1]魏世林.制革工艺学[M].北京:中国轻工业出版社,2001,1-3.
    [2]李闻欣.我国古代皮革科学技术的发展[J].西北轻工业学院学报,2002,(2):89-92.
    [3]庞贻燮.我国古代制革与毛皮工业的初步探讨[J].皮革科技动态,1977,(4):28-32.
    [4]Ian M Bell,Robin J H Clark,Peter J Gibbs.Raman spectroscopic library of natural and synthetic pigments(pre-~1850AD)[J].Spectrochimica Acta.1997,A53:2159-2179.
    [5]Lucia Burigo,Robin J H Clark.Library of FT-Raman spectra of pigments,minerals,pigment media and varnishes,and supplement to existing library of Raman spectra of pigments with visible excitation[J].Spectrochimica Acta.2001,A57:1491-1521.
    [6]轻工院校有机化学编写组.有机化学[M].北京:北京师范大学出版社,1992,110.
    [7]卢涌泉,邓振华编.实用红外光谱解析[M].北京:电子工业出版社,1989,22-176.
    [8]彭文世,刘高魁.矿物红外光谱图集[M].北京:科学出版社,1982,106-146.
    [9]张丽平,李桂菊.皮革加工技术[M].北京:中国纺织出版社,2006,4-31.
    [10]王建辉,李琦,刘在群 等.鹿皮胶原的提取与性质[J].吉林大学自然科学学报,2001,(1):106-109.
    [11]俞从正,丁绍兰,孙根行.皮革分析检测技术[M].北京:化学工业出版社,2005,4.
    [12]魏世林.制革工艺学[M].北京:中国轻工业出版社,2001,81-116.
    [13]魏世林.制革工艺学[M].北京:中国轻工业出版社,2001,130.
    [14]魏世林.制革工艺学[M].北京:中国轻工业出版社,2001,159.
    [15]张汉波,程凤侠.铁鞣研究的历史进展[J].中国皮革,2004,(6):39-42.
    [16]Ruppenthal K F,Malik J P.Investigation of iron and iron-chrome tannages[J].Shoe Leather Repter,1943,229,(3):13-14.
    [17]闻人军.考工记导读图译[M].台北:明文出版社,1990,174-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700