用户名: 密码: 验证码:
Delta算子系统若干控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Delta算子系统控制是近年来控制理论与应用研究中受到广泛关注的一个问题。采用Delta算子方法离散化连续时间系统,得到的离散时间系统称为Delta算子系统。对于高频采样控制,采用Delta算子离散化方法可以避免传统前向移位算子离散化方法引起的数值不稳定问题。当采样周期趋于零时,Delta算子离散化模型趋近于原来的连续时间系统,这使得连续时间系统和离散时间系统的分析与综合可以统一到Delta算子系统框架中进行研究。
     本文对Delta算子系统控制问题进行研究,主要工作如下。
     研究Delta算子线性不确定系统的鲁棒协方差控制问题:①讨论基于动态输出反馈的鲁棒协方差控制器设计,给出系统满足协方差指标要求的一个充分条件,在此基础上,采用消元处理方法,推导得到满足性能要求的鲁棒协方差控制器存在条件的矩阵不等式刻画,由此提出相应控制器设计方法;②运用同样处理手段,给出了基于动态输出反馈的具有圆形区域极点约束的鲁棒协方差控制器设计方法。这样的处理手段,克服了控制器求解时须人为选取参数的问题,避免了由人为选择参数可能带来的保守性。借助数学与工程软件MATLAB的LMI工具箱对数值算例进行演算,所得结果验证了设计方法的可行性。
     较为系统地研究了Delta算子系统的可靠控制问题。即设计可靠控制器,确保当执行器和(或)传感器发生故障时,控制系统仍具有要求的性能。本文研究中针对的故障模型是更具一般性描述的连续故障模型。运用线性矩阵不等式方法,分别研究了Delta算子线性不确定系统的可靠鲁棒圆形区域极点配置、可靠鲁棒镇定、可靠鲁棒H∞控制等三个问题。针对控制系统含执行器故障、含传感器故障、同时含执行器和传感器故障这三种情形,分别推导得出了相应可靠控制器的存在条件,并由此提出控制器设计方法。一个不同于以往研究的特点是,充分利用了连续故障模型的结构信息,得到了具有更小保守性的控制器存在条件。数值算例验证了这一点。此外,用同样方法可以处理Delta算子标称系统相关可靠控制问题,本文以可靠鲁棒圆形区域极点配置为例,给出了Delta算子标称系统可靠圆形区域极点配置状态反馈控制器的存在条件。
     较为系统的研究了Delta算子系统的非脆弱控制问题。在控制器设计时,考虑了控制器含有不确定性的因素。这一部分的研究中,采用的仍是线性矩阵不等式处理方法,在假设控制器含有乘性(加性)增益不确定性的情况下:①研究了Delta算子系统的非脆弱鲁棒镇定问题,提出非脆弱二次稳定性概念,推导了Delta算子不确定系统非脆弱鲁棒二次稳定的充分必要条件,由此提出非脆弱鲁棒稳定控制器设计方法;②通过问题的等价转换,构造新的Delta算子系统,利用①的结论,得到Delta算子不确定系统非脆弱二次D-稳定的充分必要条件。这样的处理方法揭示了Delta算子系统稳定和D-稳定之间的特殊关系,具有一定的通用性;③在根据Lyapunov稳定性理论分析系统性能的基础上,推导得到Delta算子不确定系统非脆弱鲁棒保性能控制器存在的条件,由此提出相应控制器设计方法;④推导给出Delta算子不确定系统具有方差约束的非脆弱鲁棒D-镇定控制器存在条件和设计方法。对于上述四个问题,均通过算例验证了设计方法的可行性和有效性。利用文中的方法可以同样处理Delta算子标称系统相关非脆弱控制问题。
     研究了Delta算子线性时不变系统鲁棒极点配置的正规化方法,即在满足系统暂态性能和稳态性能要求的极点可配置的前提下,鉴于多输入情况下实现极点配置的控制器的不唯一性,考虑选择适当控制器,使得闭环系统状态矩阵为正规矩阵,藉此确保闭环控制系统具有更强的鲁棒性。利用正规矩阵性质和矩阵广义逆理论,分别得到期望极点可状态反馈正规配置和可静态输出反馈正规配置的充分必要条件。
Control problems of the delta operator formulated discrete-time systems have recently drawn considerable attention in the field of systems and control. Delta operator based discretization method can avoid ill-conditioned problems caused by the conventional shift operator when fast sampling is used, and the delta operator model converges to corresponding continuous-time model as the sampling interval goes to zero, thus analysis and synthesis for continuous-time and discrete-time systems can be treated in the unified delta operator framework.
     This dissertation makes some researchs on the delta operator formulated systems. The main works are stated in brief as follows.
     Firstly, robust covariance control problems of the delta operator formulated uncertain linear discrete-time systems are studied. This work includes two aspects:①Design approach of robust covariance controllers based on dynamic output feedback is investigated. A sufficient condition for the delta operator system which satisfying the expected covariance constraints is proposed, and then a sufficient condition for the existence of the robust covariance controllers is derived based on the linear matrix inequality(LMI) approach and , a parametrized characterization of the controllers(if they exist) is given in term of the feasible solution to a certain LMIs.②Similarly, a design method of robust covariance output feedback controllers for the delta operator uncertain system with D-stability constraints is also presented. In both processing, the elimination method is introduced to aviod parameter turning when the controllers are solving, and to reduce the conservativeness. The numerical examples solved by MATLAB shows the usefulness of the controller design method.
     Secondly, reliable control problems of the delta operator systems are studied. The aim is to design reliable controller which can meet the desired performance and tolerate actuator and(or) sensor failure. In this section, a more general failures model, so called continuous failure model is adopted for actuator and(or) sensor failure. Based on the LMI approach, reliable robust stabilization, reliable robust D-stabilization and reliable robust H∞control for the delta operator uncertain system are researched respectively. The conditions of the existence of corresponding controllers are deduced, and then the design methods of corresponding controllers are suggested respectively. A distinctive feature of the proposed method is that the structural information of the continuous failure model is fully utilized, which brings less conservativeness in controller design. This is demonstrated by some numerical examples.
     Thirdly, non-fragile control problems are studied. The cotrollers to be designed are assumed to have multiplicative(or additive) gain variations. Based on the LMI approach, four problems are discussed.①A criterion of non-fragile quadratic stabilizability is derived, and then the design method of the state feedback cotrollers for non-fragile robust stabilization is presented.②Using the above conclusion, a sufficent and necessary condition of non-fragile quadratic D-stabilizability is obtained via construct an auxiliary delta operator system.③A non-fragile robust guaranteed cost controller design method for uncertain delta operator systems is presented.④An existence condition of the non-fragile robust state feedback control law satisfying disk pole and variance constraints for the delta operator systems is derived, and then the design method of relevant controller is suggested. For all cases, numerical examples are provided to illustrate the corresponding design methods.
     Finally, robust pole assignment for the delta operator linear time-invariant system is discussed. A method so call pole normal assignment is evolved. The objective is to find a control law, such that the closed-loop system has desired poles and the closed-loop system matrix is a normal matrix, and then robustness of the control system is enhanced. Using the properties of normal matrix and generalized inverse theory of matrix, necessary and sufficient conditions are given to state feedback pole normal assignment and static output feedback pole normal assignment respectively. When the condition holds, the unified expression of the control laws are showed.
引文
[1] Middleton R H, Goodwin G C. Improved finite word length characteristics in digital control using delta operators[J]. IEEE Transactions on Automatic Control, 1986, 31(11) : 1015-1021.
    [2] Goodwin G C, Leal R L, Middleton R H. Rapprochement between continuous and discrete model reference adaptive control[J]. Automatica, 1986, 22(2): 199-207.
    [3] Middleton R H, Goodwin G C. Digital Control and Estimation: A Unified Approach[M]. Englewood Cliffs: Prentice-Hall, 1990.
    [4] Goodwin G C, Middleton R H, Poor H V. High-speed digital signal processing and control[J]. Proceedings of the IEEE, 1992, 80(2): 240-259.
    [5]陈宗基,高金源,张建贵. Z变换和△变换的有限字长研究[J].自动化学报, 1992, 18(6): 662-669.
    [6]李渭华,萧德云,方崇智.基于δ算子的格形故障检测滤波器[J].自动化学报, 1994, 20(4): 413-418.
    [7]金井喜美雄,堀宪之著,张平译.计算机控制系统入门:δ算子的应用.北京:北京航空航天大学出版社, 1996.
    [8]张端金,杨成梧.反馈控制系统Delta算子理论的研究与发展[J].控制理论与应用, 1998, 15(2): 153-160.
    [9]张端金,吴捷.基于Delta算子的自适应信号处理[J].系统工程与电子技术, 2001, 23(5): 4-7.
    [10]张端金,王忠勇,吴捷.系统控制和信号处理中的Delta算子方法[J].控制与决策, 2003, 18(4): 385-391.
    [11]李惠光,武波,李国友等. Delta算子控制及其鲁棒控制理论基础[M].北京:国防工业出版社, 2005.
    [12]马克茂,马萍.卫星姿态控制的一种鲁棒控制方法[J].航空学报, 2004, 25(3): 289-292.
    [13] Kosaka R, Sankai Y, Jikuya T, et al. Online parameter identification of systemic circulation model using delta-operator in animal experiment[C]. IEEE Inter. Conf. on Intelligent Robots and Systems, 2002, 1469-1474.
    [14] Hendekli C M, Ertuzun A. Two-dimensional delta domain lattice filter and its application to adaptive image enhancement[J]. IEEE Transactions on Signal Processing, 1999, 47(1): 266-273.
    [15] Reddy H C, Moschytz G S. Unified cellular neural network cell dynamical equation using delta operator[C]. Proceedings - IEEE International Symposium on Circuits and Systems, 1997, V1: 577-580.
    [16] Mirzai B, Reddy H C, Moschytz G S. Robustness of delta operator based cellular neural networks[C]. Proceedings - IEEE International Symposium on Circuits and Systems, 1997, V1: 761-764.
    [17] Yip S K, Au O C, Wong H M,et al. Block-based lossless data hiding in delta domain[C]. IEEE International Conference on Multimedia and Expo(ICME)’2006 - Proceedings, 2006, 857-860.
    [18] Hori N, Nikiforak P N, Kanai K. On a discrete-time system expressed in the Euler operator[C]. Proc. American Contr. Conf., 1988, 873-878.
    [19] Hori N, Ukrainetz P R, Nikiforak P N, et al. Simplified adaptive control of an electrohydraulic servo system[J]. IEE Proc. Part D, 1990,137(2): 107-111.
    [20] Mori T, Nikiforuk P N, Gupta M M, et al. A class of discrete time models for a continuous time system[J]. IEE Proc. Part D, 1989,136(2): 79-83.
    [21] Neuman C P. Properties of the delta operator model of dynamic physical systems[J]. IEEE Trans. Syst. Man. Cybe., 1993, 23(1): 296-301.
    [22] Neuman C P. Transformations between delta and forward shift operator transfer function models[J]. IEEE Trans. Syst. Man. Cybe., 1993, 23(1): 295-296.
    [23] Hersh M A. The zeros and poles of delta operator systems[J]. Int. J Control, 1993,57(3): 557-575.
    [24] Premaratne K, Jury E L. Application of polynomial array method to discrete-time system stability[J]. IEE Proc. Part D, 1993,140(3): 198-204.
    [25] Premaratne K, Jury E L. Tabular method for determining root distribution of delta operator formulated real polynomials[J]. IEEE Transactions on Automatic Control, 1994, 39(2): 352-355.
    [26] Premaratne K, Salvi R, Habib N R, et al. Delta-operator formulated discrete time approximations of continuous time systems[J]. IEEE Transactions on Automatic Control, 1994, 39 (3): 581-585.
    [27] Fan H. Efficient zero location test for delta-operator-based polynomials[J]. IEEE Transactions on Automatic Control, 1997,42(5): 722-727.
    [28] Fan H. On delta-operator Schur-Cohn zero-location tests for fast sampling[J]. IEEE Transactions on Signal Processing, 1998,46(7): 1851-1860.
    [29] Fan H. Singular root distribution problem for delta-operator based real polynomials[J]. Automatica, 1999,35(5): 791-807.
    [30] Mori T, Kokame H. Note on the stability of delta-operator-induced systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1885-1886.
    [31]邹云,杨成梧,翟长连.线性定常系统的δ算子描述——能控性与能稳性[J].控制理论与应用, 1996, 13(4): 527-531.
    [32] Mori T, Troch I. Delta domain Lyapunov matrix equation-a link between continuous and discrete equations[J]. IEICE Trans. Fundamentals of Electronics, Communication and Computer Science, 1992, E75-A(3): 451-454.
    [33] Kwon W H, Moon Y S, Ahn S C. Bounds in algebraic Riccati and Lyapunov equations: a survey and some new results[J]. Int. J. Control, 1996,64(3): 377-389.
    [34] Mrabti M, Hmamed A. Bounds for the solution of the Lyapunov matrix equation-A unified approach[J]. Syst. & Control Lett., 1992,18: 73-81.
    [35] Mrabti M, Benseddik M. Unified type non-stationary Lyapunav matrix equation -Simultaneous eigenvalue bounds. Syst. & Control Lett., 1995,24(l): 53-59.
    [36] Mrabti M, Benseddik M. Bounds for the eigenvalues of the solution of the unified algebraic Riecati matrix equation. Syst. & Control Lett., 1995, 24(5): 345-349.
    [37] Erwin R S, Bernstein D S. Extended matrix pencils for the delta-operator Riccati equation[C]. Proc. American Control Conf. Philadelphia, 1998, 5: 3091-3095.
    [38] Zhang D J, Yang C W, Wu J. Delta domain Riccati equation: A unified approach[J]. Control Theory& Applications, 1999,16(3):430-432.
    [39] Suchomski P. Numerical conditioning of delta-domain Lyapunov and Riccati equations[J]. IEE Proceedings: Control Theory and Applications, 2001, 148(6): 497-501.
    [40] Suchomski P. Numerically robust delta-domain solutions to discrete-time Lyapunov equations[J]. Syst. & Control Lett., 2002, 47(4): 319-326.
    [41] Soh C B. Robust discrete time systems using delta operator[J]. Int. J. Control, 1991,54(2): 453-464.
    [42] Soh C B. Robust stability of discrete-time systems using delta operators[J]. IEEE Trans. Automat. Contr., 1991, 36(3): 377-380.
    [43] Mansour M, Kraus F J, Jury E L. On robust stability of discrete time systems using delta operator[C]. Proc. American Contr. Conf., 1992, 1417-1418.
    [44] Piou J E, Sobel K M, Shapiro E Y. Robustness of delta operator systems using a matrix measure approach[C]. Proc. 32nd IEEE Conf. Deci. Contr., 1993, 1789-1790.
    [45] Piou J E, Sobel K M. Robust sampled data eigenstructure assignment using the delta operator[J]. J. Guid., Control, Dyn., 1993,16(4): 702-711.
    [46] Molchanov A P, Bauer P H. Robust stability of linear time-varying delta-operator formulated discrete-time systems[J]. IEEE Trans. Automat. Contr., 1999, 44(2): 325-327.
    [47] Feuer A, Zeheb E. Robust stability of interval polynomial sets in discrete time[C]. Proc. 36thIEEE Conf. Decision & Control, San Diego, 1997, 902-907.
    [48] Katbab A, Jury E I, Premaratne K. Robust stability of delta-operator discrete-time systems using frequency-domain graphical approach[C]. Proceedings of the IEEE Conference on Decision and Control, 1995, 774-779.
    [49] Erwin R S, Bernstein D S. Fixed-structure discrete-time H2-optimal controller synthesis using the delta operator[C]. Proc. 1997 American Control Conf., Albuquerque, 1997,3185-3189.
    [50] Erwin R S, Bernstein D S. Fixed-structure discrete-time mixed H2/H∞controller synthesis using the delta operator[C]. Proc. American Control Conf., Albuquerque, 1997,3526-3530.
    [51] Shim K H, Loescharataramdee C, Sawan E M, et a1. H∞design for two-time-scale systems by unified approach using delta operators[C]. Proc. IEEE Thirtieth Southeastern Symp. System Theory, Morgantown, 1998, 263-267.
    [52] Shim K H, Sawan M E. Rationalization of singularly perturbed systems with multiple time delay by unified approach using delta operator[C]. Midwest Symposium on Circuits and Systems, 1999, 939-942.
    [53] Collins E G, Song T. A delta operator approach to discrete-time H∞control[J]. Int. J. Control, 1999, 72(4): 315-320.
    [54] Suchomski P. A J-lossless coprime factorisation approach to H-infinity control in delta domain[J]. Automatica, 2002, 38(10): 1807-1814.
    [55] Suchomski P. Robust pole placement in delta domain for SISO plants[J]. Systems Analysis Modelling Simulation, 2003, 43(4): 483-512.
    [56] Lennartson B, Middleton R, Christiansson A K,et al. Low order sampled data H-infinity control using the delta operator and LMIs[C]. Proceedings of the IEEE Conference on Decision and Control, 2004, 4479-4484.
    [57]翟长连,吴智铭.基于δ算子的采样控制系统的鲁棒稳定界[J].上海交通大学学报, 1999, 33(4): 499—500.
    [58]张端金,杨成梧,吴捷. Delta算子系统的鲁棒性能分析[J].自动化学报, 2000, 26(6): 848-852.
    [59]张端金,吴捷,杨成梧. Delta算子系统圆形区域极点配置的鲁棒性[J].控制与决策, 2001, 16(3): 337—340.
    [60]张端金,吴捷,杨成梧. Delta算子系统的状态反馈鲁棒镇定与鲁棒H∞控制[J].控制理论与应用, 2001, 18(5): 732—736.
    [61]张端金,王忠勇,吴捷. Delta算子不确定系统的多目标鲁棒H∞控制[J].控制与决策, 2003, 18(3): 164-168.
    [62]向峥嵘,陈庆伟,胡维礼.具有执行器故障的不确定Delta算子系统鲁棒H∞控制[J].控制与决策, 2001, 16(4): 491-493.
    [63]向峥嵘,陈庆伟,胡维礼.不确定Delta算子系统的鲁棒H∞重构控制[J].控制理论与应用, 2003, 20(4): 641-643.
    [64]向峥嵘,陈庆伟,胡维礼.区间Delta算子系统的鲁棒性分析与控制[J].控制与决策, 2002, 17(6): 937-939.
    [65]胡刚,任俊超,谢湘生. Delta算子不确定系统的最优保性能控制[J].电机与控制学报, 2003, 7(2): 139-142.
    [66]刘满,井元伟,张嗣瀛. Delta算子系统D稳定鲁棒容错控制[J].东北大学学报(自然科学版), 2004, 25(8): 715-718.
    [67]刘满,井元伟,张嗣瀛. Delta算子系统D稳定鲁棒状态观测器的设计方法[J].东北大学学报(自然科学版), 2005, 26(4): 205-208.
    [68]张瑞,姚郁,陈松林.一类高速采样不确定系统的稳定条件及控制器设计[J].电机与控制学报, 2005, 9(6): 607-609.
    [69] Chotai A, Young P, Tych W, et al. Multivariable proportional-integral-plus (PIP) decoupling design for delta operator systems[C]. IEE Conference Publication, 1994, 89-94.
    [70] Chotai A, Young P, Mckenna P,et a1. Proportional-integral-plus (PIP) design for delta(δ) operator systems. Part 2. MIMO systems[J]. Int. J. Control, 1998, 70(1): 149-168.
    [71] Mckenna P G, Chotai A, Young P C, et a1. Two applications of multivariable delta operator PIP control[C]. UKACC Int. Conf. Control, Swansea, 1998, 1546-1551.
    [72] Taylor C J, Chotai A, Young P C. State space control system design based on non-minimal state-variable feedback: Further generalization and unification results[J]. Int. J. Control, 2000, 73(14): 1329-1345.
    [73] Janecki D. Model reference adaptive control using delta operator[J]. IEEE Trans. Automat. Contr., 1988,33(8): 771-774.
    [74] Miklovicova E, Hejda I, Cervenka V. Optimal adaptive control using the delta operator: a case study[C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1993, 223-228.
    [75] Latifi M A, Miklovicova E, Corriou J P, et al. Adaptive linear quadratic control of batch and semi-batch chemical reactors within the delta operator formulation[J]. Chemical Engineering Communications, 1997, 162: 223-237.
    [76] Koh E K. Generalized pole placement for systems requiring fast sampling[C]. Proc.American Contr. Conf., 1992, 713-714.
    [77] Suzuki T, Tanaka K. Expression of generalized adaptive law using delta operator[C]. Proc. 3rd IFAC Adaptive Syst. in Contr. Signal Processing, 1989, 83-87.
    [78]吴捷,邓志.一种基于δ算子的自校正滑动极点配置跟踪控制器[J].仪器仪表学报, 1998, 19(5): 454-459.
    [79] Hori N, Bitner D V, Nikiforuk P N, et al. Robust adaptive control of electrohydraulic servo systems using the Euler operator[C]. Proc. Int. Conf. Control, 1991, 671-676.
    [80] Oh P Y. Improved model reference adaptive control using the Euler operator[C]. Proc. IEEE Int. Conf. on Robotics and Automation,1997, 1626-1631.
    [81] Tanaka K, Kurigami M, Zhao G, et al. Multi-rate MRAC using delta-operator for electro-pneumatic servo system[C]. Proc. 35th IEEE Conf Deci. Contr., 1996, 39-44.
    [82] Latifi M A, Miklovicova E, Corriou J P, et al. Adaptive linear quadratic control of batch and semi-batch chemical reactors within the delta operator formulation[J]. Chemical Engineering Communications, 1997, 162: 223-237.
    [83] Piou J E, Sobel K M, Shapiro E Y. Robust Lyapunov constrained sampled data eigenstructure assignment using the delta operator with application to flight control design[C]. Proc. 1st IEEE Conf. Contr. Appli., 1992, Vo1.2,1000-1005.
    [84] Belkharraz A, Sobel K. Simple adaptive control in the delta domain for aircraft control surface failures[C]. AIAA Guidance, Navigation, and Control Conference, 2005, 3814-3844.
    [85] Neumann R. Delta-operator generalized predictive control[C]. Proc. 31st IEEE Conf. Deci. Contr., 1992, 2224-2225.
    [86] Neumann R, Dumur D, Boucher P. Application of delta-operator generalized predictive control[C]. Proc. 32nd IEEE Conf. Deci. Contr., 1993, 2499-250.
    [87] Rostgaard M, Lauritsen M B, Poulsen N K. A state-space approach to the emulator-based GPC design[J]. Systems & Control Letters, 1996, 28(5): 291-301.
    [88] Lauritsen M B, Rostgaard M, Poulsen N K. Generalized predictive control in the delta domain[C]. Proc. American Contr. Conf., 1995,3709-3713.
    [89] Lauritsen M B, Rostgaard M, Poulsen N K. GPC using a delta-domain emulator-based approach[J]. Int. J. Control, 1997, 68(1): 219-232.
    [90] Ebert W. Optimal filtered predictive control: A delta operator approach[J]. Systems & Control Letters, 2001, 42(1): 69-80.
    [91]向峥嵘,陈庆伟,胡维礼等.模糊Delta算子系统的鲁棒性分析与控制[J].控制与决策, 2003, 18(6): 720-723.
    [92]向峥嵘,张端金,陈庆伟等.不确定模糊Delta算子系统的鲁棒H∞控制[J].控制理论与应用, 2004, 21(2): 299-301.
    [93]李德权,费树岷.模糊Delta算子系统的鲁棒镇定[J].模糊系统与数学, 2005, 19(2): 140-145.
    [94]李德权,费树岷.基于观测器的模糊Delta算子系统的控制器设计[J].模糊系统与数学, 2006, 20(1): 112-122.
    [95]常玲芳,李惠光.随机最优非线性网络控制系统设计[J].电机与控制学报, 2006, 10(4): 435-439.
    [96]杨德东,张化光.连续时间T-S模糊系统的离散化: Delta算子方法[J].东北大学学报(自然科学版), 2007, 28(8): 1065-1068.
    [97] Chan C Y. Discrete adaptive quasi-sliding mode control[J]. Int. J. Control, 1999, 72(4): 365-373.
    [98]徐勇,陈增强,袁著祉. Delta算子系统的全程滑模变结构控制[J].控制与决策, 2005, 20(6): 686-688.
    [99]钱龙军,郭治.基于δ算子离散化模型的连续时间系统满意控制[J].控制与决策, 2005, 20(12): 1401-1403.
    [100] Shor M H, Perkins W R. Reliable control in the presence of sensor/actuator failures: A unified discrete/continious approach[C]. Proc. 30th conf. Decision and Control, (Brighton, England), 1991, 1601-1606.
    [101] Suchomski P. Robust PI and PID controller design in delta domain[J]. IEE Proceedings: Control Theory and Applications, 2001, 148(5): 350-354.
    [102] Suchomski P. Robust design in delta domain for SISO plants: PI and PID controllers[J]. Systems Analysis Modelling Simulation, 2002, 42(1): 49-69.
    [103] Vijayan R, Poor H V, Moore J B, Goodwin G C. A Levinson-type algorithm for modeling fast sampled data[J]. IEEE Trans. Automatic Control, 1991 ,36(3) :314-321.
    [104] De P, Fan H. A delta least squares lattice algorithms for fast sampling[J]. IEEE Trans. Signal Processing , 1999 ,47 (9): 2396-2406.
    [105] Terrett P, Downing C J. Parameter estimation on a fixed - point processor using theδoperator[J]. Trans. Inst . Meas. Control , 1994 , 16 (3) :163-172.
    [106] Stericker D L , Sinha N K. Identification of continuous-time systems from samples of input-output data using theδoperator[J]. Control Theory and Advanced Technology , 1993 ,9 (1):113-125.
    [107] Kuznetsov A G, Bowyer R O, Clark D W. Estimation of multiple order models in theδ-domain. Int . J . Control , 1999 ,72(7/ 8) :629-642.
    [108] Sarkar P, Pal J. A unified approach for model order reduction in delta domain[J]. Advances in Modelling and Analysis C, 2006,6: 43-61.
    [109] Shim K, Sawan M E. Singularly perturbed unified time systems with low sensitivity to model reduction using delta operators[J]. International Journal of Systems Science, 2006,37(4),243-251.
    [110] Chadwick M A, Kadirkamanathan V, Billings S A. Analysis of fast-sampled non-linear systems: Generalised frequency response functions forδ-operator models[J]. Signal Processing, 2006, 86: 3246-3257.
    [111] Anderson S R, Kadirkamanathan V. Modelling and identification of on-linear deterministic systems in the delta-domain[J]. Automatica, 2007,43: 1859-1868.
    [112] Salgado M, Middleton R H , Goodwin GC. Connection between continuous and discrete Riccati equations with applications to Kalman filtering[J]. IEE Proc. Part D , 1988 ,135 (1):28-34.
    [113] Jabbari F. Lattice filter for RLS estimation of a delta operator based model . IEEE Trans. Automatic Control , 1991 ,36 (7): 869-875.
    [114] Goodall R M, Donoghue B J. Very high sample rate digital filters using theδ-operator. IEE Proc. Part G, 1993 ,140 (3): 199-206.
    [115]李渭华,萧德云. Sliding Window Delta Operator - Based Adaptive Lattice Filters[J].控制理论与应用, 1998, 15(4): 610-614.
    [116]邵锡军,杨成梧.具有方差约束的不确定Delta算子系统的鲁棒滤波器设计[J].兵工学报, 2001, 22(3): 312-316.
    [117] Zhang D J, Wu J. Robust H∞filtering for delta operator formulated uncertain systems with error variance constraints[J]. Control Theory& Applications, 2003,20(2): 307-311.
    [118]张端金,吴捷.具有区域极点和方差约束的Delta算子系统鲁棒H∞滤波[J].控制与决策, 2004, 19(1): 12-16.
    [119]张瑞,姚郁,陈松林.一类高速采样不确定系统的鲁棒H∞滤波器设计[J].控制与决策, 2006, 21(7): 739-744.
    [120]刘晓华,刘浩.一类Delta算子不确定时滞系统保性能滤波[J].控制与决策, 2007, 22(3): 322-325.
    [121] Furuta K, Kim S B. Pole assignment in a specified disk[J]. IEEE Trans. on Automatic Control, 1987, 32(5): 423-427.
    [122] Garcia G, Bernussou J. Pole assignement of uncertain systems in a specified disk by state feedback[J]. IEEE Trans. Automatic Control, 1995, 40: 184-190.
    [123]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社, 2002.
    [124] Gahinet P, Apkarian P. A linear matrix inequality approach to H∞Control[J]. International Journal of Robust and Nonlinear Control, 1994, 4: 421- 448.
    [125] Skelton R E, Delorenzo M L. Space structure control design by variance assignment[J]. J. Guidance. Contr. Dynam., 1985, 8(6): 454-462.
    [126] Kim S, Meerkov S M, Runolfsson T. Aiming control: design of residence probability controllers[J]. Automatica, 1992, 28(3): 557-584.
    [127]王子栋,单甘霖,郭治.航天器拦截的输出协方差配置控制[J].宇航学报, 1996, 17(3): 9-14.
    [128]徐刚,陈学敏,郭治.一类工程系统的q马尔柯夫输出协方差配置控制[J].自动化学报, 1991, 17(6): 669-675.
    [129]毛剑琴,卜庆忠,张杰,范国滨.结构振动控制的新进展[J].控制理论与应用, 2001, 18(5): 647-652.
    [130] Hotz A F, Skelton R E. Covariance control theory[J]. Int. J. Control, 1987, 46(1): 13-32.
    [131] Skelton R E, Ikeda M. Covariance controllers for linear continuous-time systems. Int. J. Control, 1989, 49(5): 1773-1785.
    [132] Wang Z D, Tang G Q. Studies on multiobjective state-feedback control for linear continuous systems with variance constraints[J].控制理论与应用, 1998, 15(1): 39-47.
    [133]王子栋,郭治.线性离散系统的鲁棒约束方差控制——含结构参数扰动的情形[J].自动化学报, 1995, 21(6): 668-673
    [134]俞立.具有区域极点和方差约束的不确定连续系统鲁棒控制[J].自动化学报, 2000, 26(4): 509-514.
    [135]俞立,陈国定.具有闭环区域极点和方差约束的鲁棒输出反馈控制[J].自动化学报, 2002, 28(5): 848-850.
    [136] Saljak D D. Reliable control using multiple control systems[J]. Int. J. Control, 1980, 31: 303-329.
    [137] Vidyasagar M, Viswanadham N. Reliable stabilization using a multi-controller configuration[J]. Automatica, 1985, 21: 599-602.
    [138] Veillette R J, Medanic J V, Perkins W R. Design of reliable control systems[J]. IEEE Trans. Automat. Contr., 1992, 37(3): 290-304.
    [139] Veillette R J. Reliable linear-quadratic state feedback control[J]. Automatica, 1995, 31: 137-143.
    [140] Seo C J, Kim B K. Robust and reliable H∞control for linear systems with parameter uncertainty and actuator failure[J]. Automatica, 1996, 32: 465-467.
    [141] Zhao Q, Jiang J. Reliable state feedback control system design against actuator failures[J]. Automatica, 1998, 34(10): 1267-1272.
    [142] Wang Z. Robust H∞reliable control for linear state delayed systems with parameter uncertainty[C]. Proc. American Control Conf., 1998, 2405-2409.
    [143] Seong W K, Chang J S, Byung K K. Robust and reliable H∞controllers for discrete- timesystems with parameter uncertainty and actuator failure[J]. International Journal of Systems Science, 1999, 39(12): 1249-1258
    [144] Yang G H, Lam J, Wang J L. Reliable control using redundant controller[J]. IEEE Trans. Automat. Contr., 1998, 43(11): 1588-1593.
    [145] Yang G H, Wang J L, Soh Y C. Reliable H∞controller design for linear systems[J]. Automatica, 2001, 37(3): 717-725.
    [146] Yang G H, Yee J S, Wang J L. An iterative LMI method to discrete-time reliable state-feedback controller design with mixed H2/H∞performance[J]. European Journal of Control, 2002, 8: 126-135.
    [147]王福忠,姚波,张嗣瀛.具有执行器故障的保成本可靠控制[J].东北大学学报(自然科学版), 2003, 24(7): 616-619.
    [148]王福忠,姚波,张嗣瀛.线性系统区域稳定的可靠控制[J].控制理论与应用, 2004,21(5): 835-839.
    [149]姚波,张庆灵,王福忠等.具有传感器故障的可靠圆盘极点配置[J].控制与决策, 2004,19(3): 346-348.
    [150] Yu L. An LMI approach to reliable guaranteed cost control of discrete-time systems with actuator failure[J]. Applied Mathematics and Computation, 2005, 162: 1325-1331.
    [151] Keel L, Bhattacharyya S. Robust, fragile, or optimal?[J]. IEEE Transactions on Automatic Control, 1997, 42(8): 1098-1105.
    [152] Dorato P. Non-fragile controller design: an overview[C]. Proceedings of American Control Conference, Philadelphia, USA, 1998: 2829-2831.
    [153] Jadbabaie A, Abdallah C T, Famularo D, Dorato P. Robust, non-fragile and optimal controller design via linear matrix inequalities[C], Proceedings of the American Control Conference, Philadelphia, USA, 1998, 2842-2846.
    [154] Yang G H, Wang J L, Lin C. H∞control for linear systems with additive controller gain variations[J], Int. J. Control, 2000, 73: 1500-1506.
    [155] Yang G H, Wang J L. Non-fragile H∞control for linear systems with multiplicative controller gain variations[J]. Automatica, 2001, 37: 727-737.
    [156] Yee J S, Yang G H,Wang J L. Non-fragile guaranteed cost control for discrete-time uncertain linear systems[J]. Internat. J. Systems Sci., 2001, 32: 845-853.
    [157] Cho S H, Kim K T, Park H B. Robust and non-fragile H∞state feedback controller design for time delay systems[J]. Int. J. Control Automat. Systems, 2003, 1: 503-510.
    [158] Park J H. Robust non-fragile guaranteed cost control of uncertain large-scale systems with time-delays in subsystem interconnections[J]. Int. J. Systems Sci., 2004, 35: 233-241.
    [159] Park J H. Robust non-fragile control for uncertain discrete-delay large-scale systems with a class of controller gain variations[J]. Applied Mathematics and Computation, 2004, 149(1): 147-164.
    [160] Xu S Y, Lam J, Wang J L, Yang G H. Non-fragile positive real control for uncertain linear neutral delay systems[J]. Systems & Control Letters, 2004, 52: 59-74.
    [161] Du H P, Lam J, Sze K Y. Non-fragile H∞vibration control for uncertain structural systems[J]. J. Sound & Vibration, 2004, 273: 1031-1045.
    [162] Yue D, Lam J. Non-fragile guaranteed cost control for uncertain descriptor systems with time-varying state and input delays[J]. Opt. Control Appl. Methods, 2005, 26: 85-105.
    [163] Xie N, Tang G Y. Delay-dependent nonfragile guaranteed cost control for nonlinear time-delay systems[J]. Nonlinear Analysis, 2006, 64: 2084-2097.
    [164] Lien C H. Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input[J]. Chaos, Solitons and Fractals, 2007, 31: 889-899.
    [165] Lien C H, Cheng W C, Tsai C H, Yu K W. Non-fragile observer-based controls of linear system via LMI approach[J]. Chaos, Solitons and Fractals, 2007, 32: 1530-1537.
    [166] Fallside F. Control System Design by Pole-Zero Assignment[M]. New York: Academic, 1977.
    [167]郑大钟.线性系统理论(第2版)[M].北京:清华大学出版社, 2002.
    [168] Bhattacharyya S P, De Souza E. Pole assignment via sylvester’s equations[J]. Systems Cont Lett, 1982, 1(4): 261-263.
    [169] Kimura H. Pole assignment by output feedback: a longstanding open problem[C]. Proceedings of the 33rd Conference on Decision and Control, FinLand, 1994, 2101-2105.
    [170] Fu M Y. Pole placement via static output feedback is NP-hard[J]. IEEE Trans. on Automatic Control, 2004, 49(5): 855-857.
    [171] Kautsky J. Robust ploe assignment in linear state feedback[J]. Int. J Control, 1985, 41(5): 1129 -1155.
    [172] Duan G R. Simple algorithm for robust pole assignment in linear feedback[J]. IEE Proc. Part D, 1992, 139(5): 465-469.
    [173] Sun J G. Perturbation analysis of the pole assignment problem [J]. SIAM J Matrix Anal. Appl., 1996, 17: 313-331.
    [174] Mehrmann V, Xu H. Numerical methods in control [J]. J. Comp. & Appl. Math., 2000,123: 371-394.
    [175] Nurges U. Robust pole assignment via reflection coefficients of Polynomials[J]. Automatica, 2006, 42:1223-1230.
    [176]张霖,吴麒,高黛陵.设计多变量鲁棒控制系统的正规矩阵方法[J].自动化学报, 1994, 20(2): 138-145.
    [177] Wilkinson J H. The Algebraic Eigenvalue Problem [M]. London: Clarendon Press, 1965.
    [178]王品超.高等代数新方法[M].济南:山东教育出版社, 1989.
    [179] Ben-Israel A, Grevile T. Generalized Inverse: Theory and Applications [M]. New York: Wiley, 1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700