用户名: 密码: 验证码:
流域产汇流过程的理论探讨及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域水文模型是洪水预报的主要工具,是减免洪水损失非常重要的非工程措施,也是合理利用水能、水资源的非工程措施。无论是重大问题的决策、水利工程的运行,还是防洪抗旱等均离不开水文模型的支撑。
     在我国半干旱半湿润地区,现有的水文模型难以取得比较满意的结果。本文选择半干旱半湿润典型代表区海河流域为研究对象,通过对流域降雨径流响应的分析,初步确定了流域的产汇流机制以及影响产汇流参数的因素,据此建立了流域产汇流模型,并对模型进行了参数率定和验证。模型在海河流域下垫面变化对洪水径流的影响分析中得到了应用。主要研究成果如下:
     (1)通过分析流域径流对降雨的响应,认为流域的产流机制并非单一,而是与降雨特性和初始土壤含水量有关,如果降雨强度较小、初始土壤含水量高,以蓄满产流方式为主;降雨强度大、初始土壤含水量低,以超渗产流方式为主。结合土壤的大孔隙下渗原理建立了流域大孔隙超渗和大孔隙蓄满产汇流模型,在柳河流域和紫荆关流域得到了验证。
     (2)汇流单位线决定了径流模拟的精度,采用实测降雨径流资料,通过基流分割和净雨计算来推求的单位线,由于暴雨量级和暴雨中心位置不同,单位线的形状也不同。SCS无因次单位线和由概率密度函数推求的单位线在无资料地区是一种有效的汇流计算途径。
     (3)为了提高模型参数率定的效率,对模型中的参数采用RSA和Sobol’两种全局灵敏度分析方法进行了参数灵敏度分析,两种方法在确定性系数、径流总量误差、相关系数和均方差等不同的目标函数控制条件下所得的结果基本一致。这样,对模型中较为敏感的参数进行率定,不敏感的参数采用经验值即可。RSA法率定的参数不是一个最优值,而是对参数值一个较小范围的确定,避免了参数的局部最优解。
     (4)选择下垫面变化较大的海河流域为研究对象,分析了其子流域柳河流域和紫荆关流域的下垫面变化对产汇流因子的影响。在柳河流域和紫荆关流域分别率定了大孔隙蓄满产汇流模型和大孔隙超渗产汇流模型在80年代前和90年代后的两组参数,用这两组参数分别模拟历史洪水。结果表明,由于下垫面的变化,相同降雨情况下90年代后的洪峰流量和洪水总量比80年代前有所减小,在柳河流域分别平均减少4.9%和1.7%,在紫荆关流域分别平均减少4.8%和1.7%。
Hydrological model is an effective tool for flood prediction, a very important non-project measure for flood loss reduction, and for reasonable water resources utilization. So we need the support of hydrological model in decision-making, run of the hydraulic engineering, and flood control and so on.
     The simulated flood results by any hydrological model are not good in semi-arid and semi-humid areas. In this paper, Haihe river basin which is a typical semi-arid and semi-humid watershed in China is selected. Runoff response to rainfall is analyzed to understand the runoff generation mechanisms in the basin and to research the influential parameters on runoff generation. Thereby, two runoff generation models considering macropore flow are established and applied in Haihe river basin to search the effects of land use/land cover change on flood. The main results are as follows.
     (1) Runoff response to rainfall is analyzed, and the results are found that not a single runoff generation mechanism exists in the basin, but relates to the rainfall characteristics and the initial soil moisture. If the rainfall intensity is low and the initial soil moisture is high, saturation-excess runoff is dominant; if the rainfall intensity is high and initial soil moisture is low, infiltration-excess runoff is dominant. Thereby, taking soil macropore into consideration, infiltration-excess runoff generation model and saturation-excess runoff model are established and calibrated in Liuhe and Zijingguan basin.
     (2) The simulation precision depends on unit hydrograph. The unit hydrographs obtained from observed rainfall and runoff data are different if the rainfall is of different amount, intensity and center. SCS dimensionless unit hydrograph and unit hydrographs derived by probability distributions are a feasible way in the areas without data.
     (3) Two global sensitivity analysis methods, RSA(Regional sensitivity analysis) and Sobol’methods, are adopted to improve model calibration efficiency. The results of the study show that model parameter sensitivities are not impacted by the selection of analysis method, as well as objective functions, but a little difference in different basins. So, in the process of parameter calibration, only the sensitive parameters are calibrated, and the values of non-sensitive parameters are made by experience. The results of RSA method are not single values, but a narrow range.
     (4) Land use/land cover change can affect the flood frequency. Two sub-basins of Haihe river basin are selected and the change in trend of runoff generation and flow routing parameters are made analysis to confirm the effect of land use/land cover change on flood. We use the rainfall and runoff data before 1980 and after 1990 to calibrate the models, and obtained two different series of parameters. And then, the two series of parameters are used to simulate all the floods in order to make comparisons. The results show that the peak flow and flood volume all decreased after 1990, and in Liuhe basin, they decreased by 4.9% and 1.7% respectively, and in Zijingguan basin 4.8% and 1.7% respectively.
引文
[1]左其亭,王中根.现代水文学.郑州:黄河水利出版社. 2006
    [2]吴险峰,刘昌明.流域水文模型研究的若干进展.地理科学进展,2002,21(4):341~348
    [3]范世香,裴铁播,牛丽华等.森林对地表径流影响的模拟实验初探.水科学进展,1992,(3):179~182
    [4] Horton R E. The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union, 1933, 14: 446~460
    [5] Hewlett J D, Hibbert A R. Moisture and energy conditions within a sloping soil mass during drainage. Journal of Geophysical Research, 1963, 68(4): 1081~1087
    [6] Zaslausky D, Sinai G. Surface hydrology. Journal of the Hydraulics Division, 1981, 107: 1~93
    [7] Dunne T. Field studies of hillslope flow processes. In: Kirkby M J, Hillslope Processes. New York: A Wiley-Inerscience Publication. 1978
    [8] Kirkby, M J. Hillslope Hydrology. New York: A Wiley-Inerscience Publication. 1978
    [9]赵人俊,庄一鸰.降雨径流关系的区域规律.华东水利学院学报,1963, 1:52~58
    [10] Yair A, Lavee H. Runoff generation in arid and semi-arid zones. In: Anderson M G, Burt T P. Hydrological Forecasting, Chichester: Wiley. 1985
    [11]芮孝芳.关于降雨产流机制的几个问题的讨论.水利学报, 1996, 9:22~26
    [12]于维忠.论流域产流.水利学报, 1985, 2:1~11
    [13] Sherman L K. Stream flow from rainfall by the unit graph method. Engineering News-Record, 1932, 108: 501~505
    [14] Zoch R T. On the relation between rainfall and stream flow part 1. Monthly Weather Review, 1934, 62: 315~322
    [15] Clark C O. Storage and the unit hydrograph. American Society of Civil Engineers, 1945, 110: 1419~1488
    [16] Dooge J C I. A general theory of the unit hydrograph. Journal of Geophysical Research, 1959, 64: 241~256
    [17] Rodriguez-Iturbe I, Valdes J B. The geomorphological structure of hydrologic response. Water Resources Research, 1979, 15(5): 1049~1020
    [18] Gupta V K, Waymire E, Wang C T. A representation of IUH from geomorphology.Water Resources Research, 1980, 16(5): 855~862
    [19] McCarthy G T. The unit hydrograph and flood routing. Conference North Atlantic Division, US Army Corporation of Engineers. 1938
    [20] Dooge J C I. Theory of flood routing. In: Kraijenhoff D A, Moll J R, River flow modeling and Forecasting. Dordrecht, Holland: D. Reidel publishing corporation. 1986
    [21] Crawford N H, Linsley R K. Digital simulation in hydrology, Stanford Watershed model IV. Technical Report, Dept of Civil Engineering, Stanford University, 1966
    [22] Sugawara M, Ozaki E, Watanabe I, et al. Tank Model and its application to Bird Creek, Wollombi Brook, Bihin River, Sanaga River, and Nam Mune. Research Note 11, National Centre for Disaster Prevention, Tokyo, 1976
    [23] Burnash R J C, Ferral R L, McGuire R A. A general streamflow simulation system-conceptual modeling for digital computers. Report by the Joint Federal State River Forecasts Center, Sacramento. 1973
    [24] Boughton W C. A mathematical catchment model for estimating runoff. Journal of Hydrology(New Zealand), 1968, 7: 1
    [25]赵人俊.流域水文模拟.北京:水利电力出版社,1984
    [26]王厥谋,张瑞芳,徐贯午.综合约束线性系统模型,水利学报,1987,7:1~9
    [27] Todini E. The ARNO rainfall-runoff model. Journal of Hydrology, 1996, 175: 339~382.
    [28] Freeze R A, Harlan R L. Blueprint for a physically based digitally simulated hydrologic response model. Journal of Hydrology, 1969, 9: 237~258
    [29] Beven K J, Kirkby M J. A physically based variable contributing area model of basin hydrology. Hydrological Science Bulletin, 1979, 24(1): 43~69
    [30] Abbott M B, Bathurst J C,et al. An introduction to the European Hydrological System-Systeme Hydrologique European‘SHE’2: Structure of a physically based distributed modeling system. Journal of Hydrology, 1986, 87: 61~71
    [31] Arnold J G, Williams J R, Maidment D R. Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering. 1995, 121(2): 171~183
    [32] De Roo A P J, Wesseling C G, Van Deursen W P A. Physically based river basin modelling within a GIS: the LISFLOOD model. Hydrological Process, 2000, 14:1981~1992
    [33]黄平,赵吉国.流域分布型水文模型的研究及应用前景展望.水文,1997,17(5):5~10
    [34]任立良,刘新仁.基于DEM的水文物理过程模拟.地理研究, 2000,19(4):369~376
    [35]郭生练,熊立华.基于DEM的分布式流域水文物理模型.武汉水利电力大学学报,2000,33(6):1~5
    [36] Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegeration change on water yield and evapotranspiration. Journal of Hydrology, 1982, 55: 3~22
    [37] Stednick J D. Monitoring the effects of umber harvest on annual water yield. Journal of Hydrology, 1996, 176: 79~95
    [38] Richey J E, Nobre C, Deser C. Amazon River discharge and climate variability: 1903-1985. Science, 1989, 246: 101~103
    [39] Bari M A, Smettem K R J, Sivapalan M. Understanding changes in annual runoff following land use changes: a systematic data based approach. Hydrological Processes, 2005, 19(13): 2463~2479.
    [40] Kezer K, Matsuyama H. Decrease of river runoff in the Lake Balkhash basin in Central Asia. Hydrological Processes, 2006, 20(6): 1407~1423.
    [41]周红,秦嘉轮,卫江义.人类活动对塔里木河年径流影响量的估算.干旱区地理,2002,25(1):70~74
    [42]燕荷叶.人类活动对沁河流域径流影响研究.水利水电技术,2003,34(6):5~7
    [43]王纲胜,夏军,万东晖等.气候变化及人类活动影响下的潮白河月水量平衡模拟.自然资源学报,2006,21(1):86~91
    [44]何进知,李舒宝,张永江等.森林植被对流域产汇流的影响分析.水力发电学报,2001,(2):69~72
    [45]冯平,李建柱,徐仙.潘家口水库入库水资源变化趋势及影响因素.地理研究,2008,27(1):213~220
    [46] Rutter A J, Kershaw K A. et al. A predictive model of rainfall interception in forests I. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meterology, 1971, 9: 367~384
    [47] Rutter A J, Morton A J, A predictive model of rainfall interception in forests II. Generalisation of the model and comparison with observations in someconiferous and hardwood stands. Journal of Applied Ecology, 1975, 12: 367~380
    [48] Gash J H C. An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society, 1979, 105: 43~45
    [49] Gash J H C, Wright I R, Lioyd C R. Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 1980, 48: 89~105
    [50] Juan B S, MacDonald L H. Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrological Processes, 2001, 15(15): 2931~2952
    [51] Naik P K, Jay D A. Estimation of Columbia River virgin flow: 1879 to 1928. Hydrological Processes, 2005, 19(9):1807~1824
    [52] Bewket W and Sterk G. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrological Processes, 2005, 19(2): 445~458
    [53] Pfister L, Kwadijk, J., Musy A, et al. Climate change, land use change and runoff prediction in the Rhine-Meuse basins. River Research and Applications, 2004, 20(3): 229~241
    [54] Brown R G. Effects of precipitation and land use on storm runoff. Water Resources Bulletin, 1988, 24: 421~425
    [55] Dos Reis Castro N M, Auzet A V, Chevallier P, et al. Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of southern Brazil. Hydrological Processes, 1999, 13: 1621~1628
    [56] Van der Ploeg R R, Schweigert P. Elbe River flood peaks and postwar agricultural land use in East Germany. Natruwissenschaften, 2001, 88: 522~525
    [57] Bronstert A, Bardossy A, Bismuth C, et al. Multi-scale modeling of land-use change and river training effects on floods in the Rhine basin. River Research and Applications, 2007, 23: 1102~1125
    [58] Naef F, Scherrer S, Weiler M. A process based assessment of the potential to reduce flood runoff by land use change. Journal of Hydrology, 2002, 267: 74~79
    [59]夏军,乔云峰,宋宪方等.岔巴沟流域不同下垫面对降雨径流关系影响规律分析. 2007,29(1):70~76
    [60] Campans N A, Tucol C E M. Predicting floods from urban development scenarios: case study of the Diiuvio Basin, Porto Alegre, Brazil. Urban Water, 2001, 3: 113~124
    [61] Kang S, Park J I, Singh V. Effects of urbanization on runoff characteristics of the on-cheon Stream watershed in Pusan, Korea. Hydrological Processes, 1998, 25: 351~363
    [62] Alvarez C, Sanchez J. Effects of urbanization on the hydrology of a suburban basin in Porto Alegre, Brazil. In: Helsinki Symposium, 1980. The influence of man on the hydrological regime with special reference to representative and experimental basins. Dorking: IAHS, 1980, pp: 23~28
    [63] Espey Jr. W H, Winslow D E, Morgan C W. Urban effects on the unit hydrograph. In: Moore W L and Morgan C W. Effects of Watershed Changes on Streamflow, Austin, TX: University of Texas Press, 1969, pp: 215~228.
    [64]吴学鹏,林俊俸,李朝忠.都市化对小流域水文影响的研究.水科学进展,1992,(2):155~160
    [65] Werner P W, Sundquist K J. On the groundwater recession curve for large watersheds. In IAHS General Assembly, Brussels: IAHS Publication, 1951, 33: 202~212
    [66] Ishihara T, Takagi F. A study of the variation of low flow. Disaster Prevention Research.Institute, Kyoto University Bulletin, 1965, 15(2): 75~98
    [67] Singh K P, Stall J B. Derivation of base flow recession curves and parameters. Water Resources Research, 1971, 7(2): 292~303
    [68] Nuthrown D A, Downing R A. Normal-mode analysis of the structure of baseflow-recession curves. Journal of Hydrology, 1976, 30: 327~340
    [69] Brutssert W, Nieber J L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 1977, 13(3): 637~643
    [70] Spolia S K, Chander S. Modelling of surface runoff systems by an ARMA model. Journal of Hydrology, 1974, 22: 317~332
    [71]陈利群,刘昌明,李发东.基流研究综述.地理科学进展,2006,25(1):1~15
    [72] Wittenberg H. Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes, 1995, 13: 715~726
    [73] Tallaksen L M. A review of baseflow recession analysis. Journal of Hydrology, 1995, 165: 349~370
    [74] Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 1979, 24: 43~69
    [75] Zillgens B, Merz B. Kirnbauer R, et al. Analysis of the runoff response of anAlpine catchment at different scales. Hydrology and Earth System Sciences, 2005, 2: 1923~1960
    [76] Bergstrom S, Grabam L P. On the scale problem in hydrological modeling. Journal of Hydrology, 1998, 211: 253~265
    [77] Joel A, Messing I, Seguel O, et al. Measurement of surface water runoff from plots of two different sizes. Hydrological Processes, 2002, 16: 1467~1478.
    [78] Van de Giessen N C, Stomph T J, de Ridder N. Scale effects of hortonian overland flow and rainfall-runoff dynamics in a West African catena landscape. Hydrological Processes, 2000, 14: 165~175
    [79] Stomph T J, de Ridder N, Steenhuis T S, Van de Giessen N C. Scale effects of hortonian overland flow and rainfall-runoff dynamics: Laboratory validation of a process based model. Earth Surface Processes and Landforms, 2002, 27: 847~855.
    [80] Le Bissonnais Y, Benkhadra H, Chaplot V, et al. Crusting, runoff and sheet erosion on silty loamy soils at various scales and upscaling from m2 to small catchments. Soil Tillage Research, 1998, 46: 69~80.
    [81] Parsons A J, Brazier R E, Wainwright J, et al. Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms, 2006, 31(11): 1384~1393
    [82] Castro N M dosR, Auzet AV, Chevallier P, Leprun JC. Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of Southern Brazil. Hydrological Processes, 1999, 13: 1621~1628.
    [83]秦永胜,余新晓,陈丽华.北京密云水库流域水源保护林区径流空间尺度效应的研究.生态学报, 2001,21:910~915.
    [84] Bonell M and Willianms J. 1986. The generation and redistribution of overland flow on a massive oxic soil in a eucalypt woodland within the semi-arid tropics of North Australia. Hydrological Processes, 1: 31~46.
    [85] Julien Y P, Moglen G E. Similarity and length scaIe for spatially varied overland flow. Water Resourses Research, 1990, 26: 1819~1832.
    [86]张雪松,郝芳华,张建永.降雨空间分布不均匀性对流域径流和泥沙模拟影响研究.水土保持研究,2004,11(1):9~12
    [87] Beven K, Germann P F. Macropores and water flow in soils. Water Resources Research, 1982,18(5):1311~1325
    [88] Weiler M, Naef F. An experimental tracer study of the role of macropores ininfiltration in grassland soils. Hydrological Processes, 2003, 17(2):477~493
    [89] Scherrer, S. and Naef F. A decision scheme to indicate dominant hydrological flow processes on temperater grassland. Hydrological Processes, 2003,17(2): 391~401
    [90]关彦斌,孔永健,王世红.考虑城市地表径流的大孔隙沥青路面的目标孔隙率.北京交通大学学报,2005,29(4):62~64
    [91] Haws N W. Simunek J. Single-porosity and dual-porosity modeling of waterflow and solute transport in subsurface-drained fields using effective field-scale parameters. Journal of Hydrology, 2005, 313(3-4): 257~273
    [92] Bronstert A, Plate E J. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments. Journal of Hydrology, 1997, 198: 177~195
    [93] Bronstert A. Capabilities and limitations of detailed hillslope hydrological modelling. Hydrological Processes, 1999, 13(1): 21~48
    [94] Christiansen J S, Thorsen M, Clausen T, et al. Modelling of macropore flow and transport processes at catchment scale. Journal of Hydrology, 2004, 299: 136~158
    [95] Schumacher W. Die physik des Bodens. Berlin, 1864
    [96] Hursh C R. Report of the subcommittee on subsurface flow. Eos Transactions. AGU, 1994, 25: 743~746
    [97] Beven K, Germann P. Macropores and water flow in soils. Water Resources Research, 1982, 5: 1311~1325
    [98] Luxmoore R J. Micro-’, meso- and macroporosity of soil. Soil Science Society of America Journal, 1981, 45: 671
    [99] Bouma J. Comment on Micro-’, meso- and macroporosity of soil. Soil Science Society of America Journal, 1981, 45: 1244~1245
    [100] Beven K J. Micro-, meso macroporosity and channeling flow in soils. Soil Science Society of America Journal, 1981, 45: 1245
    [101] Gaiser R N. Root channels and roots in forest soils. oil Science Society of America Journal, 1952, 16: 62~65
    [102]刘伟,区自清,应佩峰.土壤大孔隙及其研究方法.应用生态学报. 2007,12(3):465~468
    [103] Beven K,Germann P.Macropores and water flows in soils.Water Resources Research.1982,18(5): 13l1~1325
    [104] Bouma J, Wfisten J H M. Characterizing ponded infiltration in a dry cracked clay soil. Journal of Hydrology, 1984, 69: 297~304
    [105] Williams A G, Scholefteld D, Dowd J F, et a1. Investigating preferential flow in a large intact soil block under pasture.Soil Use and Management, 2000, 16: 254~269
    [106]秦耀东,任理,王济.土壤中大孔隙流研究进展与现状.水科学进展,2000,11(2):203~207
    [107]区自清,贾良清,金海燕等.大孔隙和优先水流及其对污染物在土壤中迁移行为的影响.土壤学报,1999,36(3):341~347
    [108] Edwards W M, Shipitalo M J, Dick W A, et a1. Rainfall intensity affects transport of water and chemicals through macropores in no-till soil.Soil Science Society of America Journal,1992, 56: 52~58
    [109] Meyer-Windel S, Lennartz B, Widmoser P. Bromide and herbicide transport under steady-state and transient flow conditions.European Journal of Soil Science, 1999, 50: 23~33
    [110] Langner H W,Gaber H M, Wraith J M, et a1. Preferential flow through intact soil cores:Efect of matric head.Soil Science Society of America Journal, 1999, 63: 1591~1598
    [111] Ghodrati M, Chendorain M, Chang Y J. Characterization of macropore flow mechanisms in soil by means of a split macropore column.Soil Science Society of America Journa1. 1999, 63: 1093~1101
    [112] Weiler M, Naef F. Simulating surface and sub-surface initiation of macropore flow. Journal of Hydrology, 2003, 273(1): 139~154
    [113] Van Ommen H C, Dekker L W, et a1. A new technique for evaluating the presence of preferential flow paths in nonstructured soils. Soil Science Society of America Journa1. 1988, 52: 1192~1193
    [114] Jury W. A simulation of solute transport using a transfer function model. Water Resources Research, 1982, 18: 363~368
    [115] Mallants D, Jacques D, Vanclooster M, et a1. A stochastic approach to simulate water flow in a macroporous soil. Geoderma, 1996, 70: 299~324
    [116]张志诚,袁作新.地下径流的参数分割方法,水文,1990,l:14~19
    [117] Chow V T. Handbook of Applied Hydrology. New York: McGraw-Hill.1964
    [118]赵玉友,耿鸿江,潘辉学.基流分割问题评述,工程勘察. 1994,11(4):11~14
    [119]倪雅茜,张文华,郭生练.流量过程线分割方法的分析探讨.水文,2005,25(3):10~15
    [120] Wittenberg H, Sivapalan M. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of Hydrology, 1999, 219: 20~33
    [121] Nathan R J, McmahonT A. Evaluation of automated techniques for baseflow and recession analysis. Water Resources Research, 1990, 26(7): 1465~1473
    [122] Zhao Bing, Tung Y K. Determination of the optimal unit hydrograph by linear programming. Water Resources Management, 1994, 8:101~119
    [123] Seibert J. Conceptual runoff models– fiction or representation of reality? Ph.D. thesis, Uppsala University. 1999
    [124]黄金良,杜鹏飞,何万谦等.城市降雨径流模型的参数局部灵敏度分析.中国环境科学,2007,27(4):549~553
    [125] Tang Y, Reed P, Wagener T, et al. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences, 2007, 11: 793~817
    [126]张令心,江近仁. Latin超立方采样技术及其在结构可靠性分析中的应用.世界地震工程,1997,13(4):1~6
    [127]李昌峰,高俊峰,曹慧.土地利用变化对水资源影响研究的现状和趋势.土壤,2002, (4):191~205
    [128]邓慧平,李秀彬,陈军锋等.流域土地覆被变化水文效应的模拟—以长江上游源头区梭磨河为例.地理学报, 2003, 25 (1):53~62
    [129]谢平,朱勇,陈广才等.考虑土地利用/覆被变化的集总式流域水文模型及应用.山地学报,2007,25(3):257~264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700