用户名: 密码: 验证码:
编队卫星的星间基线确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星编队飞行是目前国内外航天领域研究的热点问题之一。它利用编队卫星上装载的各种传感器,通过星间和传感器间的协同工作,可以实现单颗大卫星无法完成的多种高精度测量任务,从而使传统卫星系统的总体性能和应用领域得到了极大地拓展。卫星编队飞行需要解决的关键技术之一是星间基线的高精度确定。高精度的星间基线信息不仅是分布式合成孔径雷达(SAR)实现地面高程测量及地面运动目标指示(GMTI)的关键所在,而且对于编队卫星的控制也起着至关重要的作用。
     本文以双星编队为背景,开展星间基线确定方法的研究,主要工作包括三部分:
     研究基于自主式测量手段的高精度星间基线确定方法。通过对常用相对状态测量手段的特性分析并结合编队需求,提出了星间基线确定的组合测量方法。该方法不仅能提高编队的自主性,而且从理论上也能有效实现基线确定的高精度。考虑到基线测量量与编队所需基线矢量之间往往存在差异,论文以分布式SAR干涉测高为例,给出了测量基线与测高基线之间的转换关系,建立了相应的误差传播模型,并以仿真的形式分析了影响测高基线确定精度的各种因素。
     研究基于全球定位系统(GPS)测量的事后星间相对定位方法。基于相对位置参数的连续特性及函数逼近理论,建立了GPS相对定位的样条模型,并针对传统随机模型与实际GPS差分观测数据统计特性不符的情况,提出了基于样条迭代随机建模的相对定位方法,且分别针对单、双频GPS给出了具体算法流程及实施步骤。另外,为进一步提高相对定位精度并增强系统的鲁棒性,论文提出了基于增强型GPS的相对定位新思路,建立了相应的样条融合观测模型,给出了具体的参数估计算法。
     研究基于增强型GPS的实时星间相对定位方法。针对有、无卫星轨道动力学模型的情况,提出了动态序贯点估计方法、基于三差相对位置时间传播的自适应不敏卡尔曼滤波(UKF)相对定位方法以及基于高精度动力学模型的自适应UKF相对定位方法等三种方法,其中,第一种方法由于在参数估计的过程中只利用了当前历元的观测信息,因此相对定位精度只能达到分米级;第二种方法根据GPS三差观测方程,巧妙地利用最小二乘法得到相对位置的时间传播关系,并进而采用自适应UKF实时估计星间相对位置。实验仿真表明,当星间距离较小时,该方法能有效提高相对定位精度。与前面两种方法相比,第三种方法在对当前历元的未知参数进行估计的过程中,不仅利用了利用了当前历元以前所有的观测信息,而且还将系统的状态信息(即卫星轨道动力学模型)融入其中,因此使相对定位精度进一步得到改善。
Satellite formation flying is currently one of the focuses being studied in the domain of domestic and overseas spaceflight. Satellite formation flying uses all kinds of sensors loaded on the satellite to realize many high-precision measurement missions which cannot be achieved by a single large satellite by the cooperation of inter-satellite and inter-sensor, so it will greatly improve the general performance and expand the application fields of the custom satellite system. One of the key technologies of satellite formation flying which need to be resolved is the determination of high-precision inter-satellite baseline. High-precision inter-satellite baseline is not only the key of the digital elevation measurement and ground moving target indication(GMTI) of the distributed synthetic aperture radar(SAR), but also very important to the control of formation satellite.
     Aiming at dual-satellite formation, this thesis studies the methods of inter-satellite baseline determination, and its main achievements will include three parts mostly:
     High-precision baseline determination methods based on autonomous measurement means are studied. By analyzing the characteristic of the common state measure methods combined with the formation requirement, this thesis puts forward a combined measurement method, which can not only improve the autonomy of formation, but also realize the high-precision of the determination of inter-satellite baseline. Because of the difference between the directly measured baseline and that actually used one by the formation, taking the distribute InSAR for example, this paper gives the transform flow between them and constructs the corresponding error propagation model, and analyses all sorts of factors influencing the altimeter baseline determination precision by simulation.
     The post-facto inter-satellite relative positioning method based on global positioning system(GPS) measurement is studied. Based on the continuity of relative position and the theory of function approximation, spline model of GPS relative positioning is constructed. Because the traditional random model is not identical with that of real GPS double-difference measurements, an iterative random modeling method based on spline function model is put forward, and the concrete algorithm flow and its implementation steps of single-frequency and dual-frequency GPS are given. In addition, in order to improve the precision of relative positioning and to increase the robustness of system, an relative positioning method based on augmented GPS is proposed, and its corresponding spline function model is constructed, and the concrete algorithm of state estimation is given.
     The real-time inter-satellite relative positioning based on augmented GPS is studied. Based on with and without the dynamic model of formation satellites, three methods are proposed, naming dynamic sequential point estimation method, adaptive unscented kalman filtering(UKF) relative positioning method based on triple-differenced measurement time propagation and adaptive UKF relative positioning method based on high-precision dynamic model of satellites . Because the measurements of current epoch are only used during the parameter estimation of the first method, the level of decimeter of relative positioning precision can be attained. The second method uses the least square method to achieve the time propagation relationship based on GPS tripe-differenced measurements, and uses adaptive UKF to estimate the inter-satellite relative positioning. Simulations show that this method can effectively improve the precision when the inter-satellite distance is short. Compared to the former two methods, the third method not only uses all measurements before the current epoch, but also includes the state information of the system (naming satellite orbit dynamic model) during the estimation of state, so its precision of relative positioning is further improved.
引文
[1]闻新,马文弟,周露.小卫星编队飞行的应用模型分析及展望[J].中国航天,2005,(8):40-43.
    [2]中须贺真一.航天器的编队飞行[J].控制工程,2006,3:38-46.
    [3]闻新,张伟.卫星编队飞行技术的进展与建议[J].国际太空,2005,9-14.
    [4]胡松杰,王歆,刘林.卫星星座与编队飞行问题综述[J].天文学进展,2003,21(3):231-240.
    [5]Jesse Leitner.FORMATION FLYING-THE FUTURE OF REMOTE SENSING FROM SPACE[C].Proceedings of the 18~(th) International Symposium on Space Flight Dynamic(ESA SP-548).Germany:Munich,2004:621.
    [6]Flechtner F.Relative baseline determination for a tandem SAR mission using GPS code and phase measurements[R].GFZ(GeoForschungs-Zentrum Potsdam),Technical Note,Potsdam,2003.
    [7]A.Moreira,G.Krieger,I.Hainsek,D.Hounam,M.Werner.TanDEM-X:A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry[C].Proceedings of IGARSS 2004,USA:AK,2004,2:1000-1003.
    [8]Eberhard Gill.A Formation Flying Concept for an Along-track Interferometry SAR Mission[R].DLR/GSOC TN 03-01,2003.
    [9]E.Gill,M.Steckling,P.Butz.Gemini:A Milestone towards Autonomous Formation Flying[C].ESA Workshop on On-Board Autonomy,Noordwijk:ESTEC,2001:415-419.
    [10]A.Das,R.Cobb TechSat21-Space Missions Using Collaborating Constellations of Satellites[C].Proceedings of the 12th Annual AIAA/USU Conference on Small Satellites,UT:Logan,1998:125-129.
    [11]Http://web.fie.com/htdoc/fed/afr/afo/any/text/any/afrba986.htm.
    [12]M.Martin,M.J.Stallard.Distributed Satellite Missions and Technologies—The Techsat 21 Program[C].Proceedings of the AIAA Defense and Civil Space Programs Conference and Exhibit,USA:AIAA,A9942052,1999:28-30.
    [13]周萌清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展[J].电子学 报,2003,31(12A):1939-1944.
    [14]Cobb R,Das A,Denoyer K.TechSat21:developing low-cost,highly functional micro-satellite clusters for 21st century air force missions[C].International Astronautical Federation,1999.
    [15]Kim Luu,et al.University Nanosatellite Distributed Satellite Capabilities to Support TechSat21[C].In Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites(SSC99-Ⅲ-3),UT:Logan,1999:1-9.
    [16]C.W.Park Precise Relative Navigation Using Augmented CDGPS[D].USA:Stanford University,2001.
    [17]AFRL SV Directorate,TechSat-21 homepage,http://www.vs.afrl.af.mil/factsheets/TechSat21.html.
    [18]G.Purcell,D.Kuang,S.Lichten,et al.Autonomous Formation Flyer(AFF)Sensor Technology Development[R].TMO Progress Report 42-134,1998.
    [19]K.Lau,S.Lichten,L.Young,et al.AN INNOVATION DEEP SPACE APPLICATION OF GPS TECHNOLOGY FOR FORMATION FLYING SPACECRAFT[C].AIAA Guidance,Navigation and Control Conference,SanDiego:AIAA,AIAA96-3819,1996:1-9.
    [20]P.W.Gorham,W.M.Folkner,G.H.Blackwood.Enabling Concepts for a Dual Spacecraft Formation-Flying Optical Interferometer for NASA's ST3Mission[C].PASP conf.series,1999,194:359-364.
    [21]W.Deininger,M.Noecker,D.Weimer,J.Eterno,C.Cleven,K.Patel,G.Blackwood,L.Livesay.Space Technology Three:Mission Overview and Spacecraft Concept Description[J].Acta Astronautica,2003,52:455-465.
    [22]W.D.Deininger,J.Bladt,B.Carpenter,W.Davis,K.Epstein,et al.Formation Flying Activities and Capabilities at Ball Aerospace[J].IEEE,2003,(6):2599-2614.
    [23]Jonathan P.How,Robert Twiggs,David Weidow,et al.ORLON:A LOWCOST DEMONSTRATION OF FROMATION FLYING IN SPACE USING GPS[C].In Proceedings of the Astrodynamics Specialists Conference.Boston:AIAA,1998:276-286.
    [24]Zsolt Kiraly,.Brian Engberg,Franz Busse,et al.THE ORION MICROSATELLITE:A DEMONSTRATION OF FORMATION FLYING IN ORBIT[C].13th AIAA/USU Conference on Small Satellites,SSC99-Ⅵ-8,1998:1-12.
    [25]Robert J.Twiggs,Jonathan P.How.ORLON:A Microsatellite Testbed for Formation Flying[C]. 12th AIAA/USU Conference on Small Satellites,SSC98-XII-6, 1998: 1-7.
    [26] P.Ferguson , F.Busse , B.Engberg , J.How , M.Tillerson , N.Pohhnan ,A.Richards, R.Twiggs. FORMATION FLYING EXPERIMENTS ON THE ORION-EMERALD MISSION[C]. AIAA Space 2001 Conf.and.Exp., New Mexico, 2001: 1-12.
    [27] Mark Campbell, T.schetter. UM DAWGSTAR:ONE THIRD OF ION-F[C]. 1999 USU/AIAA Small Satellite Conference, 1999, SSC9-III-4.
    [28] A Hammesfahr. LISA mission study overview[J]. Classical and Quantum Gravity, 2001, 18: 4045-4051.
    [29] S.W.Bertiger , et al . GRACE : Millimeters and Microns in Orbit[C]. Proceedings of ION GPS 2002, Porland, 2002: 24-27.
    [30] GRACE Payload. http://op.gfz-Potsdam.de/grace/pavload/pavload.html.
    [31] Remco Kroes, Oliver Montenbruck, William Bertiger, et al. Precise GRACE baseline determination using GPS[J]. GPS Solut, 2005, 9: 21-31.
    [32] Flechtner F. Relative baseline determination for a tandem SAR mission using GPS code and phase measurements[R] . GFZ(Geo Forschungs-Zentrum Potsdam), Technical Note, 2003.
    [33] J.Bristow, D.Folta, K.Hartman. A FORMATION FLYING TECHNOLOGY VISION[C]. AIAA Space 2000 Conference and Exposition, California: Long Beach, 2000, AIAA-2000-5194.
    [34] T.Jwata , T.Adachi , H.Murakami , et al . COMMUNICATION EXPERIMENTS FOR AUTONOMOUS SMALL SATELLITE FORMATION FLYING OPERATION APPLICATION FOR RELEASE AND CAPTURE[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Canada: Montreal, 2001, AIAA-2001-4109.
    [35] P.A.Stadter, W.S.Devereux, R.A.Denissen, et al. INTERSPACECRAFT COMMUNICATIONS ARCHITECTURES FOR FORMATION FLYING[C]. AIAA Space Technology Conference and Exposition, UM:Albuquerque, 1999, AIAA-1999-4490.
    [36] Kim Luu, Maurice Martin, et al. Microsatellite and Formation Flying Technologies on University Nanosatellites[C] . AIAA Space Technology Conference and Exposition, UM: Albuquerque, 1999: 1-11.
    [37] Zetocha P. Satellite cluster command and control[C]. IEEE Aerospace conference proceedings, Big Sky, MT: IEEE, 2000: 49-54.
    [38] Zetocha P A, Brito M. Development of a testbed for distributed satellite command and control[C]. IEEE Aerospace Conference Proceedings, Big Sky, MT: IEEE, 2001: 2-609-2-614.
    [39] Martin M, Stallard M J. Distributed satellite missions and technologies - the TechSat21 program[C] . Proceedings of the AIAA Space Technology Conference and Exposition, New Mexico: AIAA, 1999, AIAA-1999-4479.
    [40] C-W Park, J P How, L Capots. Sensing Technologies for formation flying spacecraft in LEO using CDGPS and an Inter-Spacecraft communications System[C]. In Proc. ION GPS-2000 Conf., UT: Salk Lake City, 2000:1595-1607.
    [41] Sunny Leung. High Precision Real-Time Navigation for Spacecraft Formation Flying[C]. ION GPS 2003 , Portland: ION Publications department,2003: 2182-2193.
    [42] Kiran K.Gunnam, Declan C.Hughes, John L.Junkins, et al. A Vision-Based DSP Embedded Navigation Sensor[J]. IEEE SENSOR JOURNAL, 2002,2(5): 428-442.
    [43] Jeffrey Y.Tien, Jeffrey M.Srinivasan, Jarry E.Young, et al. Formation Acquisition Sensor for the Terrestrial Planet Finder(TPF) Mission[C]. 2004 IEEE Aerospace Conference Proceedings, 2004: 2680-2690.
    [44] M.Aung, GH.Purcell, J.Y.Tien, et al. Autonomous Formation Flying Sensor for the StarLight Mission[R]. The Interplanetary Network Progress Report, IPNPR42-152, 2002: 1-15.
    [45] Ray Zenick, et al. GPS Micro Navigation and Communication System for Clusters of Micro and Nanosatellites[C]. 2001 IEEE Aerospace Conference,Big Sky, 2001: 2515-2522.
    [46] Gotsmann M., Steckling M., Gill E. Miniflex satellite concept for precursor and commercial Missions[C]. Proceedings of the 3rd IAA Symposium on Small Satellites for Earth Observation. IAA-B3-1501, Germany: Berlin,2001: 423-427.
    [47] Peter Schwintzer, Christoph. The Contribution of GPS Flight Receivers to Global Gravity Field Recovery[J]. Journal of Global Positioning System,2003, 1(1): 61-63.
    [48]H.Saito,T.Hashimoto,K.Kasamura.Micro-scanning Laser Range Finders and Position-Attitude Determination for Formation Flight[C].13th Annual AIAA/USU Conference on Small Satellites.Utah:AIAA,1999,SSC99-Ⅵ-1.
    [49]马宏,王元钦,陈谷仓.编队飞行小卫星空间状态测量方法研究[J].飞行器测控学报,2004,23(21:1-4.
    [50]陈谷仓,王元钦,马宏,王天祥.小卫星分布式雷达空间状态测量方法[J].装备指挥技术学院学报,2005,16(8):77-80.
    [51]陈谷仓,王元钦,王天祥,陈宏.高精度星间基线测量方法探讨[J].飞行器测控学报,2005,24(4):60-65.
    [52]马涛,郝云彩,马骏,周胜利.编队飞行卫星的星间跟踪与测量技术综述[J].航天控制,2005,23(3):91-96.
    [53]杜小平,赵继广,崔占忠,张彗星.基于计算机视觉的航天器间相对状态测量系统[J].光学技术,2003,29(6):664-666.
    [54]P.Schwintzer,C.Reigber.The Contribution of GPS Flight Receivers to Global Gravity Field Recovery[J].Journal of Global Positioning Systems,2002,1(1):61-63.
    [55]Frank H.Bauer,Kate Hartman,Jonathan P.How,John Bristow,David Weidow,Franz Busse.Enabling Spacecraft Formation Flying through Spaceborne GPS and Enhanced Autonomy Technologies[J].In Space Technology,2001,20(4):175-185.
    [56]J.Adams,A.Robertson,K.Zimmerman,J.How.Technologies for Spacecraft Formation Flying[C].In Proceedings of the ION GPS'96 Conference,MO:Kansas City,1996:1321-1330.
    [57]Guinn,J.R.,Boain,R.J.Spacecraft Autonomous Navigation for Formation Flying Earth Orbiters Using GPS[C].AIAA/AAS Astrodynamics Specialists Conference,SanDiego:AIAA,1996,AIAA96-3655.
    [58]Philip FERGUSON,Franz BUSSE,Jonathan P.HOW.Navigation Performance Predictions for the ORION Formation Flying Mission[C].Presented at the International Symposium on Formation Flying:Mission and Technologies,October,2002.
    [59]C.W.Park,E.Olsen,J.P.How.Sensing Technologies for Spacecraft Formation Flying[C].ION NTM2000,Anaheim,Jan 26-28,2000:398-407.
    [60]D.Gruenbacher,K.Strohbehn,L.Linstrom,B.Heins,G.T.Moore, W.Devereux.Design of a GPS Tracking ASIC for Space Applications[C].In Proc.Of the ION GPS 99 Conference,1999:895-900.
    [61]罗建军,袁建平.GPS在多航天器相对导航和姿态确定中的应用[J].飞行力学,2000,18(3):5-9.
    [62]罗建军.空间站伴随卫星控制及GPS应用研究[D].西安:西北工业大学,1999.
    [63]张志.航天飞行器GPS定位技术研究[D].西安:西北工业大学,1995.
    [64]Michael Frezet,Herve Marcille,et al.Relative GPS navigation for ATV rendezvous[C].Proceedings of ION GPS-95.California:Palm Spring,1995,269-278.
    [65]Penina Aexirad,Ward L M.Spacecraft attitude estimation using GPS:methodology and results for RADCAL[J].Journal of Guidance,Control,and Dynamics,1996,19(6):1201-1209.
    [66]David Kelbel,Taesul Lee,Anne Long.Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites[C].Proceedings of the 2001 Flight Mechanics Symposium,NASA Goddard Space Flight Center,Maryland:Greenbelt,2001,NASA/CP-2001-209986.
    [67]D'Souza,C.,et al.An Evaluation of the GPS Relative Navigation System for ETS-Ⅶ and HTV[C].22th Annual AAS Guidance and Control Conference,CO:Breckenridge,AAS99-023,1999:239-258.
    [68]Schiesser.E.,Brazzel,J.P.,Carpenter,J.R.,Hinkel,H.D.Results of STS80Relative GPS Navigation Flight Experiment[C].Proceedings of AAS/AIAA Space Flight Mechanics Meeting,AAS98-194,1998:1317-1334.
    [69]周静,向开恒.GPS技术的发展及在航天器导航定位编队飞行中的应用[J].航天器工程,2005,14(4):53-57.
    [70]Sunny Leung,Oliver Montenbruck.Real-Time Navigation of Formation-Flying Spacecraft using Single-Frequency GPS[J].AIAA Journal of Guidance,Control and Dynamics,2005,28(2):226-235.
    [71]Sunny Leung,Oliver Montenbruck.Real-Time Navigation of Formation-Flying Spacecraft Using Global-Positioning-System Measurements[J].JOURNAL OF GUIDANCE,CONTROL,AND DYNAMICS.2005,28(2):226-235.
    [72]T.ebinuma,O.Montenbruck,E.G.Lightsey.Precise Spacecraft Relative Navigation Using Kinematic Inter-Spacecraft State Estimations[C].ION GPS 2002,Porland,2002:2038-2046.
    [73]Dolan Highsmith,Penina Axelrad.Relative State Estimation Using GPS Flight Data from Co-Orbiting Spacecraft[C].ION GPS'99,14-17 September 1999,TN:Nashville,1999:401-409.
    [74]王威,郗晓宁.GPS用于编队星座的姿态与相对位置确定[J].空间科学学报.2002,22(2):163-168.
    [75]Megan Leigh Mitchell.CDGPS-Based Relative Navigation for Multiple Spacecraft[D].USA:Massachusetts Institute of Technology,2004.
    [76]Franz D.Busse,Jonathan P.How,James Simpson.Demonstration of Adaptive Extended Kalman Filter for Low Earth Orbit Formation Estimation Using CDGPS[J].Navigation(Summer),2003,50(2):79-93.
    [77]P.Binning,I.Galysh.Satellite to Satellite Relative Navigation Using GPS Pseudoranges[C].Proceedings of the 1997 ION National Technical Meeting,CA:SantaMonica,1997:407-415.
    [78]周凤歧,孙东,周军.基于非线性滤波技术的多航天器编队飞行相对导航[J].宇航学报,2005,26(2):212-216.
    [79]Sun Dong,Zhou Fengqi,Zhou Jun.Relative Navigation Based on UKF for Multiple Spacecraft Formation Flying[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,Rhode Island:AIAA,2004,AIAA-2004-5137.
    [80]Franz D.Busse,Jonathan P.How REAL-TIME EXPERIMENTAL DEMONSTRATION OF PRECISE DECETRALIZED RELATIVE NAVIGATION FOR FORMATION FLYING SPACECRAFT[C].AIAA Guidance,Navigation and Control Conf.,2002,AIAA-2002-5003.
    [81]C.C.Goad.Optimal Filtering of Pseudoranges and Phases from Single-Frequency GPS Receivers[J].Navigation(Fall),1990,37(3):249-262.
    [82]Guinn,J.R,Boain,R.J.Spacecraft Autonomous Navigation for Formation Flying Earth Orbiters Using GPS[C].AIAA/AAS Astrodynamics Specialists Conference,San Diego:AIAA,1996,AIAA96-3655.
    [83]Ning Luo.Precise Relative Positioning of Multiple Moving Platforms Using GPS Carrier Phase Observables[D].University of Calgary,2001.
    [84]Jonathan D.Wolfe,Jason L.Speyer.Effective Estimation of Relative Positions in Orbit Using Differential Carrier-Phase GPS[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,Rhode Island:AIAA, 2004,AIAA-2004-4777.
    [85]Eric A.Olsen,Patrick A.Stadter,Mark S.Asher.Long-Baseline Differential GPS based Ralative Navigation for Spacecraft with Crosslink Ranging Measurements[C].ION GPS 2000,19-22 September 2000,UT:Salt Lake City,2000:1612-1621.
    [86]Egemen Imre,Dr.Phil Palmer.Yoshi Hashida.Precise Relative Orbit Determination of Low Earth Orbit Formation Flights Using GPS Pseudorange and Carrier-Phase Measurements[C].16th Annual/USU Conference on Small Satellites,SSC02-Ⅳ-1,2002:1-9.
    [87]Oliver Montenbruck,Remco Kroes.Relative Positioning Using Dual-Frequency Cartier Phase[J].GPS World,2004,15(1):37-42.
    [88]Remco Kroes,Oliver Montenbruck.High Accuracy Kinematic Spacecraft Relative Positioning Using Dual-Frequency GPS Carder Phase Data[C].ION National Technical Meeting,California:San Diego,2004:607-613.
    [89]Sien-Chong Wu,Yoaz E.Bar-Sever.Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters with GPS Bias Fixing[C].Institute of Navigation GNSS 2006,CA:Jet Propulation Laboratory,2006.
    [90]韩保民.基于双频P码的星载GPS低轨卫星相对定轨研究[J].测绘通报,2005,(9):6-9.
    [91]Philip Ferguson,Jonathan How.DECENTRALIZED ESTIMATION ALGORITHMS FOR FORMATION FLYING SPACECRAFT[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,Texas:AIAA,2003,AIAA2003-5442.
    [92]Tobe Corazzini,Jonathan P.How.Onboard GPS Signal Augmentation for Spacecraft Formation Flying[C].Proceedings of ION-GPS-98,Nashville,1998:1937-1946.
    [93]Chris Paige,Xiao-Wen Chang.GPS DIFFERENTIAL POSITIONING USING LEAST SQUARES.http://www.cs.cas.cz/~milovy/abstracts02/Paige.Chris.pdf
    [94]Chan-Woo Park,Jonathan P.How,Larry Capots.Sensing Technologies for Formation Flying Spacecraft in LEO using CDGPS and an Inter-Spacecraft Communications System[C].ION GPS 2000,19-22,UT:Salt Lake City,2000:1595-1607.
    [95]范国清,王威,郗晓宁.联合CDGPS技术和星间相对测量进行编队星座状态确定[J].空间科学学报,2005,5(3):218:223.
    [96]胡利民,王威,郗晓宁.GPS和类GPS测距技术在双星编队星座状态确定中的联合应用[J].空间科学学报,2006,26(3):197-202.
    [97]Xiao-Wen Chang,Christopher C.Paige,Liang Qiu.a recursive least squares approach for cartier phase based positioning[C].Proceedings of ION GPS-2001,Utah:Salt Lake City,2001:1039-1047.
    [98]XIAO-WEN CHANG,CHRISTOPHER C.PAIGE.AN ALGORITHM FOR COMBINED CODE AND CARRIER PHASE BASED GPS POSITIONING[J].BIT Numerical Mathematics.2003,43:915-927.
    [99]Remco Kroes,Olier Montenbruck,William Bertiger,Pieter Visser.Precise GRACE baseline determination using GPS[J].GPS Solut,2005,9:21-31.
    [100]袁建平,罗建军,岳晓奎,方群等.卫星导航原理与应用[M].北京:中国宇航出版社,2003.
    [101]Remco Kroes.Precise Relative Positioning of Formation Flying Spacecraft using GPS[D].Nederland:the Delft University of Technology,2006.
    [102]DAI Liwen,HAN Shaowei,Chris Rizos.Performance Analysis of Integrated GPS/GLONASS Carrier Phase-based Positioning[J].Geo-spatial Information Science,2001,4(4):9-18.
    [103]施少范.国外对地观测卫星高精度姿态控制系统研究[J].上海航天,2000,(6):49-53.
    [104]孙才红.轻小型星敏感器研制方法和研制技术[D].中国科学院博士论文,2002.
    [105]海涛,徐嫣,高翔.飞行器三轴姿态测量方法[J].广西大学学报(自然科学版).2004,29(增刊):60-62.
    [106]Dalla Torre A,Caporali A,Praticelli N,Facchinetti C.Interferometric Attitude and Direction Sensor Using GPS Carrier Phase Data[C].Proceedings of the 18~(th) International Symposium on Space Flight Dynamic(ESA SP-548),October 11-15,German:Munich,2004:291.
    [107]屠善澄.卫星姿态动力学与控制(3)[M].北京:宇航出版社,2003.
    [108]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005.
    [109]梁开莉,贾鑫,吴冲华.倒GPS技术在小卫星星座定轨中的应用研究[J].指挥技术学院学报,2000,11(4):38-42.
    [110]岳晓奎,袁建平,吴琼.伪卫星技术发展和应用综述[J].全球定位系统,2005,47-51.
    [111]中国人民解放军总装备部军事训练教材编辑工作委员会.无线电跟踪测量[M],北京:国防工业出版社,2003.
    [112]戴永江.激光雷达原理[M].北京:国防工业出版社,2002.
    [113]金国藩、李景镇.激光测量学[M].北京:科学出版社,1998.
    [114]中国人民解放军总装备部军事训练教材编辑工作委员会.光电测量[M].北京:国防工业出版社,2002.
    [115]刘齐军.InSAR高程测量机理和高程数据与遥感图像的匹配技术研究.国防科技大学研究生院硕士学位论文,2004.
    [116]Yuan Jian-ping,Luo Jian-jun,et al.Relative navigation for multi-spacecraft system with GPS[J].IEEE Aerospace and Electronic Systems Magazine,1998,13(12):25-28.
    [117]张传定,吴晓平,郝金明等.GPS多差相位观测量数学相关性的分析表示[J].测绘学报,2004,33(3):221-227.
    [118]李学逊.GPS载波相位观测值的线性组合及其相关性分析[J].测绘通报,1994,(3):10-15.
    [119]Kai Borre,Christian Tiberius Time Series Analysis of GPS Observables[C].Proc 13~(th) Int Tech Meeting of the Satellite Division of the Institute of Navigation,ION GPS-2000,UT:Salt Lake City,2000:1885-1894.
    [120]Donghyun Kim,Richard B.Langley.Estimation of the Stochastic Model for Long-Baseline Kinematic GPS Applications[A].Proceedings of the Institute of Navigation 2001 National Technical Meeting,Long Beach,USA:CA,2001:586-595.
    [121]Jinling Wang.Stochastic Assessment of GPS Cartier Phase Measurements for Precise Static Relative Positioning[D].Australia:University of New South Wales Sydney,2002.
    [122]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [123]王正明等.弹道跟踪数据的校准与评估[M].长沙:国防科技大学出版社,1999.
    [124]王正明,易东云.测量数据建模与参数估计[M].长沙:国防科技大学出版社,1996.
    [125]王志忠,朱建军.方差分量的MINQUE通用公式[J].中南工业大学学报,2001,32(4):433-436.
    [126]Chalermchon Satirapod,Jinling Wang,Chris Rizos.A SIMPLIFIED MINQUE PROCEDURE FOR THE ESTIMATION OF VARIANCECOVARIANCE COMPONENTS OF GPS OBSERVABLES[J].Surv.Rev.2001,36(286):582-590.
    [127]Teunissen,P.J.G,P.J.de Jonge,et al.The least-squares ambiguity decorrelation adjustment:its performance on short GPS baselines and short observations spans[J].Journal of Geodesy,1997,71(10):589-602.
    [128]Verhagen,S.Integer ambiguity validation:an open problem?[J].GPS Solutions,2004,8(1):36-46,DOI:10.1007/s10291-004-0087-5.
    [129]Remco Kroes.Precise Relative Positioning of Formation Flying Spacecraft using GPS[D].NCG,Nederlandse Commissie voor Geodesic Netherlands Geodetic Commission,2006.
    [130]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究[J].中国科学E辑,信息科学,2004,34(6):654-662.
    [131]TU Xianqin,YAO Jing,GU Defeng,YI Dongyun.Simulation of Satelliteto-Satellite Tracking Data of Interferometric SAR Based on GPS[A].Proc.Of SPIE[C],Wuhan,2006,648100-1-64810O-9.
    [132]袁运斌,霍星亮,欧吉坤.精确求定GPS信号的电离层延迟的模型与方法研究[J].自然科学进展,2006,16(1):40-48.
    [133]王小亚,朱文耀.GPS监测电离层活动的方法和最新进展[J].天文学进展,Mar.2003,21(1):33-40.
    [134]李征航,赵晓峰,蔡昌盛.全球定位系统(GPS)技术的最新进展一第五讲 利用双频GPS观测值建立电离层延迟模型[J].测绘信息与工程,2003,28(1):41-44.
    [135]张东和,萧佐.利用GPS计算TEC的方法及其对电离层扰动的观测[J].地球物理学报(Chinese Journal of Geophysics),2000.7,43(4):451-458.
    [136]霍星亮,袁运斌,欧吉坤等.基于GPS资料研究中国区域电离层TEC的周日变化、半年度及冬季异常现象[J].自然科学进展,2005.5,15(5):626-630.
    [137]Oliver,Eberhard.Ionospheric error removal in the positioning of LEO satellites based on low cost GPS receivers[C].16th International Symposium on Spaceflight Dynamics,Pasadena,2001:1-3.
    [138]D.Bilitza.35 years of International Reference Ionosphere—Karl Rawer's legacy[J].Advances in Radio Science,2004,2:283-287.
    [139]帅平,陈定昌,江涌.GPS广播星历误差及其对导航定位精度的影响[J].数据采集与处理,2004,19(1):107-110.
    [140]黄声享,李沛鸿,杨保岑,向东.GPS动态监测中多路径效应的规律性研究[J].武汉大学学报.信息科学版,2005,30(1):877-880.
    [141]刘俊,张思东,张宏科.GPS系统建模与仿真技术研究[J].系统仿真学报,2001,13(3):329-330.
    [142]韩保民,欧吉坤,曲国庆等.星载GPS观测数据的模型研究[J].空间科学学报,2005,25(1):63-69.
    [143]韩保民,欧吉坤,曲国庆等.GPS观测数据的模型研究[J].武汉大学学报(信息科学版),2005,30(3):246-250.
    [144]赵春梅,欧吉坤.星载GPS低轨卫星跟踪数据的建模与仿真[J].系统仿真学报,2004,16(6):1132-1134.
    [145]刘基余.GPS卫星导航定位原理与方法[M].北京:科学出版社,2003.
    [146]HAN B M et al.A simulation study of onboard GPS observations of LEOs[J].chin.J.Space Sci.,2005,25(1):63-69.
    [147]Ning Luo.Precise Relative Positioning of Multiple Moving Platforms Using GPS Carrier Phase Observables[D].Canada:the University of Calgary,2001.
    [148]ZHAO Jun-xiang,CHANG Qing,ZHANG Qi-shan,ZHANG Jun.Research of Ionospheric Time-Delay Error Simulation in High Dynamic GPS Signal Simulator[J].CHINESE JOURNAL OF AERONAUTICS,2003,16(3):169-176.
    [149]YUAN Yun-Bin,OU Ji-Kun.Study on the New Methods of Correcting Ionospheric Delay and Ionospheric Model Using GPS Data[J].Journal of the Graduate School of the Chinese Academy of Sciences,2002,19(2):209-214.
    [150]K.Lau,S.Lichten,L.Young.An Innovative Deep Space Application of GPS Technology for Formation Flying Spacecraft[C].Proceedings of AIAA GN&C.Conference,CA:San Diego,1996:1-9.
    [151]M.Tillerson.Coordination and Control of Multiple Spacecraft using Convex Optimization Techniques[D].USA:Massachusetts Institute of Technology,2002.
    [152]Franz D.Busse.PRECISE FORMATION-STATE ESTIMATION IN LOW EARTH ORBIT USING CARRIER DIFFERENTIAL GPS[D].USA:Stanford University,2003.
    [153]R.W.Beard,T.W.Mclain,F.Y.Hadaegh.Fuel optimization for constrained rotation spacecraft formations[J].AIAA Joumal of Guidance,Control,and Dynamics,2000,23:1-8.
    [154]C.A.Bailey.Fuel saving schemes for separated spacecraft flying in formation[D].Brigham Young Unversity,Department of Mechanical Engineering,December,1999.
    [155]陈树新.GPS整周模糊度动态确定的算法及性能分析[D].西安:西北工业大学,2002.
    [156]李淑慧,刘经南.整周模糊度搜索方法的效率比较和分析[J].测绘通报,2003,(10):1-3.
    [157]Chan-Woo Park,Philip Ferguson,Nick Pohlman,Jonathan P.How.Decentralized Relative Navigation for Formation Flying Spacecraft using Augmented CDGPS[C].ION GPS 2001,UT:Salt Lake City,2001:2304-2315.
    [158]周非,杨铁军,黄顺吉.基线约束辅助整周模糊度求解研究[J].电子学报,2004,32(9):1549-1552.
    [159]Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[C].Proc of the American Control Corf,Washington:Seattle,1995:1628-1632.
    [160]潘泉,杨峰,叶亮等.一类非线形滤波器—UKF综述[J].控制与决策,2005,20(5):481-489.
    [161]Van der Merwe R,Wan E A.The square-root unscented Kalman filter for state and parameter-estimation[C].Int Corf on Acoustics,Speech,and Signal Proc,UT:Salt Lake City,2001:3461-3466.
    [162]邓自立.自校正滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700