用户名: 密码: 验证码:
深水条件下围堰拆除爆破技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论分析、模型试验、数值模拟等多种手段相结合的研究方法,系统研究了深水条件下围堰拆除爆破理论,分析了水深对爆破效果的影响,建立了水下爆破设计装药量与陆地爆破设计装药量之间的关系式;解决了深水条件下围堰拆除爆破诸多关键技术问题,提出了适合水下爆破的块度预测模型,建立了水下爆破炸药单耗与爆破块度的关系;通过模型试验和数值模拟,进一步研究了水深对爆破破碎效果的影响、围堰倾倒爆破拆除中有关倾倒可靠性、运动规律及其效应等问题;推导出了即时过流的最大允许爆破块度尺寸计算公式;结合三峡三期RCC围堰拆除的实际需要,研究了有关围堰倾倒爆破拆除技术。研究的主要工作内容包括:
     1.在围堰拆除爆破理论研究方面,基于陆地爆破作用机理、水中爆炸物理现象,探讨了水下钻孔爆破的作用机理,分析认为,围堰拆除爆破同时具有陆地爆破和水下爆破作用机理综合特性,比单一的陆地爆破和水下爆破更为复杂。通过水深对围堰拆除爆破效果的影响研究,得出了水体对爆炸腔的影响作用可以忽略不计,水体对破裂半径的影响呈现水深越大破裂区半径越小,水体对破碎效果、抛掷距离的影响较大等重要结论,并建立了水下爆破欲取得与陆地爆破相同的爆破破碎效果,水下爆破设计装药量与陆地爆破设计装药量之间的关系式,为水下爆破装药量的设计奠定了理论基础。在分析围堰拆除爆破可能产生各种有害效应的基础上,根据围堰拆除爆破的特点,认为应重点关注:爆破振动、水中冲击波、涌浪、飞石等爆破有害效应,为围堰拆除爆破安全防护提供了科学依据。
     2.在深水条件下围堰拆除爆破关键技术研究方面,通过水深、浸泡时间对炸药性能—爆速影响的试验研究,得出了乳化炸药爆速随水深的增加而下降,水压的作用使炸药的密度发生了改变,从而影响了炸药爆速,其下降规律与乳化炸药密度对爆速影响规律相一致的结论。随着炸药浸泡时间增加爆速呈下降趋势,由于水压力的作用加速了水的渗透,使炸药的水含量增加,从而影响了炸药的爆速。这对深水条件下围堰拆除爆破的炸药选型具有指导性的作用,并对用于深水条件下的炸药生产、炸药外壳的选择等具有重要意义。通过水深、浸泡时间对雷管性能影响的试验研究,得出了水深、浸泡时间对防水型高精度塑料导爆管雷管和数码雷管的延期时间精度、起爆网路水下传爆的可靠性等影响不大的重要结论,为深水条件下围堰拆除以及水下爆破使用该类起爆器材提供了科学依据。在分析陆地爆破块度预测模型的基础上,结合深水条件下炸药性能的变化规律,对预报模型进行修正,提出了适合水下爆破的块度预测模型。在分析目前常用的水下爆破炸药单耗计算公式的基础上,提出了水下爆破基本炸药单耗的修正计算公式,建立了水下爆破的炸药单耗与爆破块度的关系,从而可以根据不同的爆破块度要求计算必须采用的炸药单耗,使水下爆破炸药单耗计算更科学、更具可操作性。在围堰拆除爆破安全控制标准研究方面,着重研究了爆破近区、帷幕灌浆的爆破破坏作用机理,并探讨了其爆破振动安全控制标准。
     3.在深水条件下围堰拆除爆破模型试验与数值模拟研究方面,通过深水条件下爆破破碎效果模型试验,进一步验证了本文有关水深对爆破破碎效果影响的理论研究成果。采用以重力相似为准则的物理模型试验和数值仿真计算方法,模拟和分析了爆破后堰块的倾倒运动过程及其效应;三峡三期RCC围堰拆除爆破后的效果证明,所采用物理模型试验和数值仿真技术是行之有效的,具有科学性、先进性和实用性。
     4.在即时过流围堰爆破技术研究方面,利用水力学截流模型试验中启动流速与颗粒粒度的关系,推导了在一定流速条件下的爆渣能被水流冲动的最大允许爆破块度尺寸计算公式,并分析了不同流量情况下,导流洞内水流速度与爆渣块度的关系,为实现围堰爆后即时过流,提供了确定允许爆破块度的计算依据。在允许爆破块度尺寸确定后,利用水下块度分布预测模型,计算炸药单耗,并据此确定相应的爆破参数。从而解决了即时过流围堰拆除爆破技术中两大关键技术问题:即满足一定流速条件下水下爆破块度的确定和实现这一爆渣块度的水下爆破炸药单耗计算问题。小湾导流洞进出口围堰拆除爆破的工程实践证明,利用研究的即时过流围堰爆破技术,能成功实现围堰爆破后即时过流。
     5.在围堰定向倾倒拆除爆破技术研究方面,以三峡三期RCC围堰拆除为例,研究了定向倾倒法拆除围堰的关键技术问题,如倾倒空间、倾倒支点、药室布置、倾倒可靠性、装药量计算、起爆网路等,开创了定向倾倒爆破拆除围堰的先河。把围堰爆破拆除施工方案溶入到围堰的施工建设中,提出的“预置集中药室—倾倒爆破”这一围堰拆除创新理念,被成功地应用到三峡三期RCC围堰施工和围堰拆除爆破工程中。在国内首次将世界上最先进的数码雷管应用到三峡三期RCC围堰拆除爆破中,精确控制炸药的起爆时间,实现干涉降震,减小了爆破振动有害效应,确保了周围建筑物的安全。安全监测结果表明,这是一次非常成功的爆破。采用倾倒爆破拆除技术实施的三峡三期RCC围堰拆除,创造了围堰爆破拆除工程量、拆除难度、一次起爆分段数、起爆时间等多项纪录,推动了我国围堰拆除技术的发展。
Through a combination of research methods, such as theoretical analysis, model test, numerical simulation, study the theory of demolition blasting technology in deep water conditions systematically, analyze the influence that the water depth to the blasting effect, deduce the relationship between underwater demolition design weight and the land demolition design weight; solve the key technical problem of the cofferdam demolition blasting in deep water conditions, present the blasting block forecast model suit underwater environment, Established the relationship between specific charge and blasting block, through model test and numerical simulation, Further confirmed the water depth to blasting broken effect influence、falls reliability、law of movement and effect and so on was further confirmed; deduced the Immediate streaming over the maximum allowable size of blast fragmentation formula; According to the actual need of Three Gorges third stage RCC cofferdam blasting demolition. Studied on the related technology about cofferdam fall blasting demolition. The main work in this research includes:
     1. In fundamental research aspect of cofferdam blasting demolition, Based on land blasting effect mechanism, underwater blasting physical phenomenon, discuss the submarine drill hole blasting action mechanism, according to the analysis we can get that: Cofferdam demolition blasting has the action mechanism comprehensive characteristic with land blasting and underwater blasting, but more difficult than sole land blasting and underwater blasting. Through the cofferdam demolition blasting effect influence research from water depth we can get that the influence function from water can be ignored. The influence from water to radius of rupture presents that the water depth more bigger, the radius of rupture zone more smaller, The influence of broken effect and thrown distance from water is big, deduced that if we want to get the same blasting broken effect between underwater blasting and land blasting. The relationship between underwater blasting design charge and land blasting design charge, laid the theoretical foundation of underwater blasting charge. On the basis of analyze cofferdam demolition blasting may have harmful effects, According to the characteristic of cofferdam demolition blasting, we should pay more attention to some blasting harmful effect such as: blasting vibration,shock wave in water,swell and flyrock.Provide the basis for cofferdam demolition blasting safety protection.
     2. In the key technology research aspect of cofferdam demolition blasting in deep water condition, obtain that when the water depth is increase, the detonation velocity will drop, because the hydraulic pressure function make the density of emulsion explosive change, thus the detonation velocity was influenced, its drop rule is same with the rule that the influence rule of density of emulsion explosive to detonation velocity. Along with increase of emulsion explosive immersion time, the detonation velocity presents the declining trend, Because the hydraulic pressure function has accelerated the water seepage, makes the water content of emulsion explosive to increase, thus affects the detonation velocity. The result has important meaning to the explosive shaping of cofferdam demolition blasting in deep water as well as the explosive production in deep water condition and the explosive outer covering choice and so on, obtain that the influence of water depth、immersion time to high-precision plastic waterproof detonator and digital detonator is not big through the influence test research of water depth、immersion time to the detonators performance, provide the experimental material for use this kind of detonation equipment in deep water condition cofferdam detonation and underwater blasting. Based on analyze the blasting block forecast model combination with the change rule of explosive performance in deep water condition. Present the block forecast model suitable for underwater blasting. Based on analyze the formula of underwater blasting specific charge at present, put forward the amendment formula of underwater blasting basic specific charge, establish the relationship between underwater blasting basic specific charge and blasting block, calculate the must be used specific charge according to different blasting block requirements. Cause the calculation of underwater blasting specific charge to be more scientific and to be more feasible. Study the near zone blasting、the grout curtain blasting destructive effect mechanism emphatically in the safety control standard research aspect of cofferdam demolition blasting. Discuss its blasting vibration safety control standard.
     3. In the aspect of cofferdam demolition blasting model test and numerical simulation research in deep water conditions, further confirm the theory research achievement of water depth to blasting shattered effect through the aspect of cofferdam demolition blasting model test and numerical simulation in deep water conditions. Using the physical model testing and numerical simulation calculation that use the criteria which is similar to gravity, Simulate and analyze the process of cofferdam block dumping and its effect after blasting; the effect of Three Gorges third stage RCC demolition blasting proved that the used physical model testing and numerical simulation technology is effective, has the scientific nature, the sophistication and the usability.
     4. In the aspect of immediate overflow cofferdam blasting technology research, derived the formula of the maximum permission blasting block size that can be swept by the flow under a certain speed of flow condition, and analyzed the relationship between inner diversion tunnel and blasting block when the traffic flow in different circumstances, provide the computation basis of blasting block which is allowed for immediate overflow after cofferdam blasting. After the blasting block that is allowed is determined, determine corresponding blasting parameters according to use the forecast model of underwater block distribution to calculate specific charge. Thus solve the two main technology questions of cofferdam demolition blasting technology that is immediate overflow: the first, satisfy the request of determine underwater blasting block under a certain speed of flow condition; the second, the calculation of underwater blasting specific charge when we want to get this blasting residue. The project practice that import and export of diversion tunnel cofferdam demolition blasting in Xiaowan proved that we can succeed realizes the immediate overflow after cofferdam blasting when use the immediate overflow cofferdam blasting technology which is we have studied.
     5. In the aspect of cofferdam directional fall demolition blasting technology research, take Three Gorges third stage RCC cofferdam demolition as a example, study on the main technical problems of directional fall cofferdam demolition, such as falling space、falling pivot、the barrel chamber arrangement、falling reliability、charge calculation、the detonation network, to create the technology of directional fall blasting demolition. Merges the cofferdam blasting demolition construction plan to the cofferdam construction. This cofferdam demolition innovation idea is successfully applied to the Three Gorges third stage RCC construction and cofferdam demolition blasting project. The most advanced digital detonation was first time used to Three Gorges third stage RCC demolition blasting in domestic. The explosive ignite time is precise control to achieve reduced interference in shock and reduce the harmful effects of blasting vibration, make sure the safety of surrounding buildings, the safety monitoring achievement indicated that it was a very successful blasting. Three Gorges third stage RCC cofferdam demolition which was implemented by fall blasting demolition technology, created many records such as the total quantity of cofferdam blasting demolition,demolition difficulty,a detonation partition number, the burst time and so on, promote the development of cofferdam demolition technology in our country.
引文
[1]蒋键,黄锐杰,杨桂鹏.云南田坝电站尾水闸前水下混凝土围堰拆除爆破(J).云南水力发电,1997,(3):46-49.
    [2]柳鹤云,胡德明.孟洲坝水电站上游混凝土纵向围堰拆除施工爆破设计(J).葛洲坝水电,1997,(1):30-35.
    [3]向永忠.孟洲坝水电站一期工程施工导流方案的选择及实施(J).葛洲坝水电,1997,(1):36-43.
    [4]吴广忠,张武华.谟武水电站砼围堰控制爆破拆除(J).工程爆破,1997,3(4):54-58.
    [5]徐署华.高滩水电站混凝土围堰爆破拆除施工(J).中国农村水利水电,2001,(5):49-50.
    [6]周奇才,雷玲.湘江大源渡河中纵向围堰拆除爆破(J).工程爆破,2001,7(1):43-48.
    [7]李明德.湘江大源渡枢纽二期纵向围堰爆破与清除方法(J).湖南交通科技,2000,26(4):64-65.
    [8]郑长江.大源渡工程河中混凝土纵向围堰拆除爆破设计(J).四川水力发电,2001,20(1):46-48.
    [9]李志江,程康,闫琛,等.水布垭水利枢纽导流洞围堰爆破拆除(J).爆破,2003,20(2):54-55.
    [10]过云.某水利枢纽工程导流洞进出口围堰拆除爆破设计(J).西部探矿工程,2004,(1):111-113.
    [11]吴清平.潮州供水枢纽工程西溪厂房混凝土围堰爆破拆除设计(J).中国西部科技,2006,(10):18-20.
    [12]孙向阳,傅新贵.凤滩电站导流洞出口围堰德爆破拆除(J).采矿技术,2007,7(3):127-129.
    [13]黄承贤.波力电站岩坎爆破及其振动效应(J).爆破器材,1990,(6):1-6.
    [14]杨建兵.南港铁路栈桥0~#墩沉井围堰爆破拆除技术(J).西部探矿工程,2006,(6):103-106.
    [15]杨帆.水下控制爆破在主桥墩钢围堰施工中的应用(J).桥梁,2007,(9):35-37.
    [16]刘永刚.二滩水电站导流隧洞洞口围堰拆除(J).水电站设计,1994,10(1):38-41.
    [17]邓立锋.潮州供水枢纽工程(西溪)上、下围堰拆除设计(J).甘肃水利水电技术,2005,41(1):84-85.
    [18]李维吉,龚秀云.抽水蓄能电站下池进出水口临时围堰拆除施工技术与质量控制(J).北京水利,2000,(5):24-25.
    [19]张永哲.鸭河口火电厂取水口围堰拆除爆破与振动观测(J).长江科学院院报,2003,20(增刊):124-130.
    [20]王惠民,吴立.控制爆破技术在工程枢纽围堰拆除中的应用(J).海河水利,2005,(1):39-40.
    [21]农好瑾.控制爆破在上游围堰拆除中的应用(J).广西水利水电,2005,(3):32-35.
    [22]刘明江,张军.耒中水电站混凝土上游纵向围堰拆除爆破方案(J).甘肃水利水电技术, 2004,40(2):174-175,180.
    [23]罗德胜,谢爽,于照和,等.金安桥水电站导流隧洞进口围堰拆除施工(J).云南水力发电,2007,23(4):69-72.
    [24]冉龙华.水下爆破技术在嵌岩钢围堰施工中的应用(J).铁道建筑,2004(12):15-16.
    [25]夏仲平.万安工程围堰拆除与截流施工(J).施工设计研究,1991,(2):21-31.
    [26]张正宇、张文煊、吴新霞、李长生.现代水利水电工程爆破.中国水利水电出版社,2003年5月第一版
    [27]张文煊,周先平,黄加木,等.沙溪口水电站二期上游混凝土围堰拆除爆破(J).爆破器材,1993,(2):21-26,33.
    [28]王进军,潘树田.水电站中导墙碾压混凝土围堰控制爆破拆除(J).采矿技术,2007,7(3):130-131.
    [29]刘晓军,杨树明,曾祥虎,等.葛洲坝电站碾压混凝土纵向围堰拆除爆破设计与实践(J).长江科学院院报,2003,20(增刊):76-79.
    [30]何武志.乐滩水电站RCC围堰拆除爆破技术(J).红水河,2006,25(2):97-100.
    [31]邓有富,张羽,吴晓光.构皮滩水电站碾压混凝土围堰可利用性爆破拆除施工(J).水利水电技术,2007,38(7):38-41.
    [32]唐春满,王金汉.缅甸邦朗电站导流洞出口围堰岩埂拆除爆破(J).云南水力发电,2000,16(2):89-91.
    [33]胡耀武,乐砾.福建某船厂注水式干船坞工程坞口前沿大方量岩坎爆破施工技术(J).中国港湾建设,2001,(5):45-47,53.
    [34]刘美山,李永池,张正宇,等.洪家渡水电站2号导流洞进水口岩埂爆破拆除(J).工程爆破,2004,10(1):22-25.
    [35]周达康.加强松动控制爆破在乌江渡扩建工程进水口挡水岩坎拆除中的应用(J).贵州水力发电,2004,18(1):26-29.
    [36]罗盛发.尾水出口预留岩坎拆除施工(J).贵州水力发电,2004,18(1):22-25.
    [37]刘美山,王来所,吴新霞,张正宇.彭水电站导流洞出口岩坎爆破拆除设计与施工(J).云南水力发电,2005,21(2):66-69.
    [38]郭定明,张艳,徐力生,等.洪家渡水电站~#2导流洞进口岩石围堰拆除爆破施工(J)水利技术监督,2004,(4):42-44.
    [39]曾垒,徐元亭,李四金,等.瑞丽江水电站导流洞进出口围堰拆除爆破设计(J).云南水力发电,2007,23(4):65-68.
    [40]吴朝月,周庆科.琅琊山抽水蓄能电站下水库出口明渠水下开挖及围堰拆除设计及施工(J).电力标准化与技术经济,2007,(6):29-30,44.
    [41]王水兵.李家峡水电站导流隧洞岩坎爆破设计与施工(J).青海水力发电,1993,(1):72-78.
    [42]刘万忠.大峡导流明渠进口处挡水岩坎爆破拆除设计与施工(J).工程爆破,1996,2(4):65-69.
    [43]姜振春.万吨级船坞岩坎及砌石围堰爆破拆除(J).海军工程技术,2001,(2):42-44,52.
    [44]应海剑,王晓斌,王军海,等.特殊环境条件下船坞围堰爆破拆除(J).爆破,2007,24(3):33-38.
    [45]张中雷,管志强,蒋昭镳,等.舟山马峙岛(30+10)万吨级船坞围堰拆除爆破技术(J). 工程爆破,2006,12(1):29-34,44.
    [46]吕庭刚,黄志强.倾斜深孔爆破拆除船坞围堰(J).工程爆破,2007,13(1):62-65.
    [47]王宗国.舟山中远船坞围堰成功爆破拆除(J).工程爆破,2007,13(1):90.
    [48]赵根,李世洪.缓倾超深孔水下爆破技术在船坞岩坎爆破中的应用(J).长江科学院院报,1998,15(4):42-45.
    [49]刘美山,张正宇,李永池,等.乌江构皮滩水电站导流隧洞进口围堰爆破拆除(J).工程爆破,2005,11(1):25-29.
    [50]赵根,张正宇,吴新霞.大朝山尾水洞出口1号、2号岩埂拆除爆破方案设计(J).云南水力发电,2001,17(4):81-84.
    [5]]C·A·达维多夫.水电站施工围堰拆除方法(J).水工建设,1989,(2):12-14,4.
    [52]卢绮玲.汾河水库泄洪排沙洞岩坎爆破水力冲渣模型试验(J).山西水利科技,1996,(4):72-73.
    [53]尹俊宏.大朝山水电站导流洞进水口围堰及岩埂拆除爆破施工(J).云南水力发电,2002,18(4):50-53,80.
    [54]张正宇 赵根.三峡三期碾压混凝土围堰拆除爆破研究,工程爆破,2003,9(1):1-8.
    [55]赵根,吴新霞,陈敦科,张正宇.三峡三期碾压混凝土围堰拆除爆破设计方案研究,工程爆破,2007,13(2):42-46.
    [56]赵根,吴新霞,陈敦科,周桂松.数码雷管起爆系统在三峡三期碾压混凝土围堰拆除爆破中的应用,工程爆破,2007,13(4):72-75.
    [57]刘殿中,杨仕春.工程爆破实用手册[M].北京:冶金工业出版社,2003.
    [58]杨光煦.水下工程爆破[M].北京:海洋出版社,1992.
    [59]日本工业火药协会.新爆破手册[M].武汉:湖北科学技术出版社.1998.
    [60]吴新霞,张文煊,刘美山.三峡三期RCC围堰拆除深水爆破药量计算研究.工程爆破,2006(4):1-3,37
    [61]杨善元.岩石爆破动力学基础.煤炭工业出版社,1991.
    [62]陈宝心、杨勤荣编著.爆破动力学基础.武汉湖北科学技术出版社,2005.2.
    [63]佟锦岳,石教往.水下工程爆破对环境影响规律研究.爆破,2000(3)、(4)
    [64]戴长冰,水丽,宋守志.水下爆破沖击波的特点分析与计算(J).水文地质工程地质,2002(4):24-25.
    [65]Jianzhou Wang,Yalun Yu,and Zhiping Li.Vibration velocity and frequency ofunderwater short-hole blasting(J).Journal of University and Technology Beijing,2002,9(4):245-2480
    [66]S.Y.Feng,Z.Y.Zhang,H.C.Ge,A study on the piling size Of directed demolition,[in]Proceedings of the International Conference on Engineering Blasting Technique[C],Peiking University Press,Beijing,1991,p.470.
    [67]Q.Z.Zhang,Selection of Blasting Safety Regulation[M],Chinese Standard Press,Beijing,1993,P.101.
    [68]Y.J.Huo,Study of seismic effects caused by blasting and estimation methods,[in]Symposium of Soil and Rock Blasting(in Chinese)[C],Metallurgy Industrial Press,Beijing,1985,P.260.
    [69]X.G.Wang and Y.L.Yu,On several problems of safety criterion for blasting vibration[J],Engineering Blasting,7(2001),No.2,P.88.
    [70]J.W.Sun,X.P Huang,and J.Bi,Numerical simulation for demolishing of reinforced concret frame structures with controlled blasting,[in]Proceedings of the Second International Conference on Engineering Blasting Technique,Peking University Press,Kunming,1995,P.57.
    [71]赵根,刘美山.水中爆炸冲击波及其多次脉动观测与分析.长江科学院院刊,2003,20(增刊):56-57.
    [72]蒋玫,沈新强,杨红.水下爆破对渔业生物影响的研究(J).海洋渔业,2005,27(2):150-153.
    [73]李文涛,张秀梅.水下爆破施工对鱼类影响的估算及预防措施(J).海洋科学,2003,27(11):20-23.
    [74]张可玉,詹发民.水下爆破的危害与防范(J).潜艇学术研究,]999(4):29-31.
    [75]孙志禹,董方勇.“赶鱼”--三峡三期上游围堰爆破拆除中的生态保护(J).自然杂志.2007.29(2).R3-86.
    [76]Y.B.Jiao,Elementary study to blasting seismic safety criterion[J]Blasting,3(1995),P.45.
    [77]C.H.Tang,Y.L.Yu,J.Z.Wang,Elementary study of safety criterion for blasting vibration[J],Nonferrous Metals,53(2001),No.1,p.3.
    [78]KeevinTM.Hempen GL.A tiered approach to mitigating the environmental effects of underwater blasting.Journal of Explosives Engineering,1995.13:20-25
    [79]Linton TL,Landry AM.Buckner J E,et al.Effects upon selected marine organisms of explosives used for sound production in geophysical exploration.Texas Journal of Science 1985,37:341-353
    [80]Mouritz AP.The effect of underwater explosion shock loading on the flexural properties of GRP laminates.Intemational Journal of Impact Engineering,1996,18(2):129-139
    [81]Wiley ML.Gaspin J B,Goertner JF.Effects of underwater explosions on fish with a dynamical model to predict fishkill.Ocean Science and Engineering,1981(6):223-284
    [82]Dunning D J,Ross QE,Geoghegan P,et al.Alewives avoid high-frequency sound.North American Journal of Fisheries Management,1992,12:407-416
    [83]刘运通,高文学,刘宏刚.现代公路工程爆破.人民交通出版社,2005.
    [84]张可玉,王兴雁,詹发民,等.深水爆破中的难题与对策(J).工程爆破,2006,12(4):57-59.
    [85]汪旭光.乳化炸药(第2版).冶金工业出版社,2008.
    [86]宋锦泉,熊代余,汪扬.乳化炸药密度对其冲击感度的影响,工程爆破,2003,9(3)62-65.
    [87]张吉康.乳化炸水溶值与稳定性的关系,爆破器材,1989,1 8(3):5-7.
    [88]汪旭光.工程爆破需求的爆破器材品种与标准考虑(J).国防技术基础,2008,(1):9-16.
    [89]吴新霞,赵根,王文辉,周桂松,刘小均.数码雷管起爆系统及雷管性能测试,爆破,2006,23(4):93-98.
    [90]杨军.岩石爆破理论模型及数值计算,科学出版社,1999.
    [91]吴新霞.Kuz-Ram模型在堆石坝级配料开采爆破中的应用,长江科学院院报,1998(4):39-41.45
    [92]陈敦科,苏利军,刘立新.三峡三期围堰深水硐室爆破药量计算方法探讨(J).爆破,2006,23(1):82-84.
    [93]陈晓强,周方毅,张可玉,等.水下爆破工程中炸药药量的修正计算(J).海洋工程,2004.22(1):107-110.
    [94]陶潇鹭.深孔水压爆破技术的探讨(J).山西建筑,2005,31(15):99-100.
    [95]张强.水耦合爆破机理及参数计算(J).新疆有色金属,1997,(4):21-23.
    [96]谷建国.岩坎爆破拆除应注意的问题(J).西北水利,1996,(1):52-54.
    [97]刘美山,李丹,彭翠玲,等.大型水电站导流洞围堰拆除爆破关键问题分析(J).爆破,2006,23(2):80-84.
    [98]肖兴恒,曹芡.三峡工程二期围堰拆除施工难点及对策(J).中国三峡建设,2002,(1):10-11.
    [99]赵根,李学海,吴新霞,杨伟.三峡三期RCC围堰倾倒法拆除涌浪测试模型试验,爆破,Vol.23,No.3,2006,P:1-4.
    [100]赵根,王秀杰,吴新霞.三峡三期RCC围堰拆除爆破倾倒效果DDA模拟,固体力学学报,Vol.27,2006,P:148-154.
    [101]徐正凡.水力学(下).武汉水利电力大学水力学教研室.
    [102]胡志根,杨磊,刘中刚,等.澜沧江小湾水电站施工截流模型试验研究(J).云南水力发电,2004,20(5):23-25.
    [103]张超.小湾水电站导流洞进水口混凝土围堰爆破拆除(J).云南水力发电,2005,21(6):54-56,72.
    [104]赵根,张正宇,吴新霞,陈敦科.三峡工程三期上游RCC围堰拆除爆破设计与施工,湖北水力发电,TotalNo.65,2006,P:21-25.
    [105]ZHAO Gen,WU Xinxia,CHEN Dunke,ZHANGZhenyuo Study on Demolition Blasting OF TGP's Ⅲ-Phase Upstream RCC Cofferdam,NEW DEVELOPMENT ON ENGINEERING BLASTING(M).METALLURGICAL INDUSTRY PRESS,2007,P:263-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700