用户名: 密码: 验证码:
建筑火灾环境下人员安全疏散不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾发生和发展的双重性规律决定了建筑防火安全设计过程中存在多种类型的不确定性。人员安全疏散作为建筑防火设计中的重要目标之一,在计算ASET与RSET过程中涉及到很多不确定性的参数,同样也存在不确定性问题。当前,在利用消防设计工具计算可用安全疏散时间(ASET)和必需安全疏散时间(RSET)过程中,经常忽略不确定性或者采用保守取值、安全系数等方法来处理不确定性,而缺乏直接量化其不确定性的有效方法。正确处理这些参数不确定性是建筑防火设计与评估中值得认真思考和深入研究的关键技术问题,是人员安全疏散设计与评估结果是否可信、能否被人们接受的基础。本文针对单一空间建筑,提出系统的人员安全疏散不确定性分析方法,主要研究工作如下:
     基于MomeCarlo模拟的人员安全疏散不确定性分析方法。依据火灾动力学理论,建立了ASET和RSET有关的时间预测模型:烟气层高度到达临界高度时间预测模型(即ASET)、探测时间预测模型。阐述了ASET和RSET计算有关的参数不确定性,采用概率手段描述不确定参数,通过MonteCarlo抽样模拟技术分别对ASET和RSET的不确定性进行研究。示例分析结果表明该方法可以应用于人员安全疏散不确定性分析。
     提出人员安全疏散参数敏感性分析方法。本文采用单因素敏感性分析方法,在基本取值处对单参数进行敏感性分析,根据敏感性分析结果,将敏感性较小的参数视为常数(取其基准值),然后进行不确定性分析,该方法可以保证不确定性分析精度的同时减少不确定性分析的参数个数,降低不确定性分析的工作量。文中给出示例,先考虑全部不确定参数,对ASET和RSET不确定性进行了研究,然后采用本文提出的参数敏感性方法分别对ASET和RSET不确定参数进行分析,找出主要不确定参数,并通过逐一增加主要不确定参数,研究多个不确定参数对结果的影响。结果表明:在考虑所有主要不确定参数情况下的计算结果与考虑全部不确定参数计算的结果几乎一致,证明了本文提出的人员安全疏散参数敏感性分析方法是正确有效的。
     建立了人员安全疏散可靠性分析模型。主要包括:(1)以可靠概率(可靠指数)为安全指标描述建筑火灾人员疏散安全水平,介绍了有关人员安全疏散可靠分析的基本原理,推导了可靠概率的表达式。针对FOSM算法存在的精度和效率问题,提出基于PSO智能优化算法的可靠指数计算方法。示例分析表明:基于PSO智能优化近似算法比FOSM算法更接近MonteCarlo模拟结果,是适用于人员安全疏散可靠概率计算的方法。(2)由于现有算法将参数取为理论分布,有可能造成与参数实际有效取值范围不相符,并导致人员安全疏散可靠概率计算值总是小于1。针对这一问题,考虑参数的实际取值范围,采用概率截尾分布描述不确定参数,推导出截尾分布的PDF表达式,给出了根据截尾分布PDF的随机数产生程序,提出了参数服从截尾分布时人员安全疏散可靠概率计算的MonteCarlo方法。(3)发展了可靠指数对不确定参数的敏感性分析方法,该方法在进行可靠概率计算之前,可以遴选出对结果影响较大的参数。通过分析和比较各参数的敏感性,在参数给定的取值范围内,将敏感性较小的参数视为常数(取其基准值),从而有效减少不确定参数个数,降低可靠概率计算的工作量。示例结果表明本文给出的参数敏感性分析方法是行之有效的。
There are many uncertainties in the building fire protection design process due to the duality of fire occurrence and development. As one of important aims of building fire protection design, the occupant egress safety also contains uncertainty. Many uncertain parameters are involved in the calculation of ASET (Available Safety Egress Time) and RSET (Required Safety Egress Time). Currently, uncertainties often are always ignored or handled with conservative values or safety factors in the calculation of ASET and RSET. These uncertainties can not be quantified by an effective method. To properly deal with these uncertain parameters is a key technique deserved studying, also is the basis for credibility and acceptability of the design and assessment results by people. The systematical method for uncertainty analysis of occupant safety egress in single-room building is discussed in this dissertation. The primary studies are demonstrated as following:
     Occupant safety egress uncertainty analysis method based-on MonteCarlo simulation is established. Based on fire dynamics, the time prediction models associated with ASET and RSET are constructed: prediction model of the time at which hot smoke layer reach critical height (i.e. ASET) and prediction model of detection time. The uncertain parameters associated ASET and RSET are discussed. These uncertain parameters are described by probability distributions. The uncertainties of ASET and RSET were also investigated by MonteCarlo simulation technique. The results of the case study demonstrate that it works well in analyzing the uncertainty of occupant safety egress.
     We developed the parameter sensitivity analysis method of occupant safety egress. To reduce the amount of uncertain parameters and decrease uncertainty analysis workload, and guarantee the precision of uncertainty analysis at the same time, we utilized the single-factor sensitivity analysis method to investigate sensitivity of individual parameter at the specific benchmark value. Based on the results of sensitivity analysis, the parameters with lower sensitivity were treated as constants. Then, the uncertainty analysis was carried out. A case study is presented, firstly, the uncertainty of ASET and RSET are studied respectively with all uncertain parameters considered. Then, the parameter sensitivities were analyzed by the sensitivity method reported by us. Thus the primary uncertain parameters with higher sensitivity can be found out. We investigated how they affected ASET/RSET through increasing the number of them. When all the primary uncertain parameters are considered, the calculated results were consistent with that when all the uncertain parameters were considered. It suggested that the method of occupant safety egress parameter sensitivity is correct and efficient.
     The reliability analysis model was established, which mainly includes: (1) using reliable probability (reliability index) as a measure to describe the safety level of occupant egress under building fire. The principle of occupant safety egress reliability analysis is introduced here, and the reliability is consequently deduced. Aiming at the defects of FOSM calculation method in accuracy and efficiency, this dissertation presents a reliability index calculation method based on PSO optimization method. (2) For present researches, the distributions of parameters are assumed as theoretical distribution, which might be inconsistent with the actual range of parameter in reality. Moreover, the reliability of egress is always less than 1. Aiming at this problem, this dissertation adopts truncated probabilistic distribution to describe the uncertain parameters with considering actual ranges of parameters, and the probability density function (PDF) of truncated probabilistic distribution was thus deduced. We present the random numbers generation method based on the PDF of truncated probabilistic distribution and establish occupant egress reliability Monte- Carlo calculation method for the case that the parameters follow truncated probabilistic distributions. (3) The sensitivity analysis method of reliability index to uncertain parameter was established, which can be used to find the parameters with more significance before calculation of reliability index by comparing the sensitivities of parameters. The parameters with smaller sensitivities can be treated as constants (benchmark value), which can effectively reduce the number of uncertain parameters and decrease calculation load during the uncertainty analysis. A case study was presented. The results demonstrate that the parameter sensitivity analysis method is effective and practicable.
引文
[1]公安消防局编.2006年中国消防统计年鉴[M].北京:中国人事出版社.2006
    [2]金磊.城市建设:高度重视人防与备灾规划,城市开发,11,2000
    [3]李引擎.建筑防火性能化设计[M].北京:化学工业出版社.2005
    [4]范维澄等.火灾学简明教程[M].合肥:中国科学技术大学出版社.1995
    [5]范维澄,陈莉.卧室火灾危险度的双重性模型.中国科学技术大学学报,1994,24:220-224
    [6]范维澄,孙金华,陆守香.火灾风险评估方法学[M1.北京:科学技术出版社.2004
    [7]刘芳,廖曙江.建筑防火性能化设计[M].重庆:重庆大学出版社.2007
    [8]霍然,袁宏永.性能化建筑防火分析与设计[M].安徽:安徽科学技术出版社,2003
    [9]王福亮.基于蒙特卡罗模拟的人员疏散时间不确定性分析[D].中国科学技术大学硕士论文.2007,3-4
    [10]John M.Watts.Dealing with uncertainty:some application in fire protection engineering.fire safety journal,11(1986) 127-137
    [11]Kathy A.Notarianni.P.E.Dealing with uncertainty to improve regulation[C].Proceeding of fire safety design in the 21st century,WPI,1999
    [12]Kathy A.Notarianni.P.E.The Role of Uncertainty in Improving Fire Protection Regulation[D].Camegie Mellon University.Carnegie Institute of Technology.Pittsburgh,Pennsylvania,2000
    [13]Kathy A.Notarianni.Uncertainty.SFPE Handbook of Fire Protection Engineering,National Fire Protection Association,Quincy,Massachusetts,Third edition 2002,Section Five,Chapter 4,pp.5-40-5-63
    [14]Johan Lundin.Quantifying Error and Uncertainty in CFAST 2.0 Temperature Predictions,Journal of Fire Sciences,Vol.23,No.5,365-388(2005)
    [15]Johan Lundin.On Quantification of Error and Uncertainty in Two-zone Models used in Fire Safety Design,Journal of Fire Sciences,Vol.23,No.4,329-354(2005)
    [16]AU SK,Wang ZH and LO SM.Compartment fire risk analysis by advanced Monte Carlo simulation,Engineering Structures,29(9):2381-2390.
    [17]Rochan R.Upadhyay,Ofodike A.Ezekoye.Treatment of design fire uncertainty using quadrature method of moments,Fire Safety Journal 43(2008) 127-139.
    [18]陈涛.火灾情况下人员疏散模型及应用研究.中国科学技术大学博士论文.2004
    [19]Robert,P.S.et al.Design of Detection Systems.SFPE Handbook of Fire Protection Engineering,National Fire Protection Association,Quincy,Massachusetts,Third edition 2002,Section Four,Chapter 1,pp.4-1-4-43
    [20]Francisco,J.et al.A probabilistie model for fire detection with applications[J].Fire Technology.2005(41).pp.151-172
    [21]Walter W.Yuen,W.K.Chow.A Monte Carlo Approach for the Layout Design of Thermal Fire Detection System," Fire Technology,vol.41,2005,93-104
    [22]Schifiliti,R.P.,and Pucci,W.E.,"Fire Detection Modeling:State of the Art",Fire Detection Institute,Bloomfield,CT,1996
    [23]Justin A.Geiman,Daniel T.Gottuk,James A.Milke.Evaluation of Smoke Detector Response Estimation Methods:Optical Density,Temperature Rise,and Velocity at Alarm,Journal of Fire Protection Engineering,Vol.16,No.4,251-268(2006)
    [24]Justin A.Geiman.Evaluation of smoke detector response estimation methods,Master of Science Thesis,University of Maryland,College Park,MD,December 2003
    [25]Gwynne S,Galea ER,Owen M,Lawrence PJ,Filippidis L.A review of the methodologies used in the computer simulation of evacuation from the built environment.Build Environ 1999;23:742-9
    [26]Gwynne S,Galea ER,Owen M,Lawrence PJ,Filippidis L.Modellingoccupant interaction with reconditions using the buildingEXODUS evacuation model.Fire Safety Journal,2001,36:327-57
    [27]Proulx G,Sime JD.To prevent 'panic' in an underground emergency:why not tell people the truth?In:Cox G.,Langford,B.,editors.Fire safety science,proceedings of the third international symposium,IAFSS.Amsterdam:Elsevier;1991.pp:843-52
    [28]Thompson PA,Marchant EW.A computer model for the evacuation of large building populations.Fire Safety Journal 1995;24:131-48
    [29]褚冠全等.疏散准备时间及出口宽度对人员疏散影响的模拟[J].科学通报,2006,51(6):738-744
    [30]Michael Spearpoint.The Effect of Pre-evacuation Distributions on Evacuation Times in the Simulex Model,Journal of fire protection engineering,Vol.14-February 2004
    [31]John L Bryan.Human behaviour in fire:The development and maturity of a scholarly study area,Fire Materials,1999,pp:249-253
    [32]Purser D A,Bensilum M.Quantification of behavior for engineering design standards and escape time calculations.Safety Sci,2001,38(2):157-182
    [33]Maclennan H A,Regan M A,Ware R.An engineering model for the estimation of occupant premovement and or response times and the probability of their occurrence.Fire and materials,1999,23(6):255-263
    [34]Thiago tinoco pires.An approach for modeling human cognitive behavior in evacuation models.Fire Safety Journal 40(2005) 177-189
    [35]Jamie vistnes,Stephen J Grubits,Ya Ping He.A Stochastic Approach to Occupant Pre-movement in Fires.Proceedings of the Eighth International Symposium on Fire Safety Science,Ed.D T Gottuk and B Y Lattimer,Hughes Associates,Inc.,USA,2005,pp:531-542
    [36]LO S M.Modeling and simulation of way find process under fire emergencies in complex buildings using system dynamics approach[A].Proceeding Interflam' 96-7~(th)Conference[c].Cambridge,721-730
    [37]肖国清,王鹏飞,陈宝智.建筑物火灾疏散中人的行为的动力学模型,2004,24(5):134-139
    [38]贾彩清,刘朝,向延海等.火灾时人员疏散开始时间范围的研究[J],火灾科学,2002,11(3):176-179
    [39]张培红.建筑物火灾时人员疏散行为的研究[D].沈阳:东北大学[博士论文],2002
    [40]Mahmut B.N.Horasan.Design occupant groups concept applied to fire safety engineering human behaviour studies.In:Evans D,ed.7th International Symposium on Fire Safety Science.Worcester:International Association for Fire Safety Science,2002.953-962
    [41]邱培芳,倪照鹏,马玉河.建筑物性能化防火设计中不确定性问题浅析[J].消防科学与技术,2003(6):34-37
    [42]Custer L P,Meacham B J.Introduction to Performance-based Fire Safety[M].Society of Fire Protection Engineers and National Fire Protection Association,Quincy.M A.1997
    [43]Magnusson,Sven Erik,Frantzich,Hakan,Harada,Kazunori.Fire Safety Design Based on Calculations:Uncertainty Analysis and Safety Verification.Fire,Volume 27,Issue 4,1996,9:305-334
    [44]Magnusson,S.E,Frantzich,H,Karlsson,B.,Sardqvist,S.Determination of safety Factors in Design Based on Performance.Fire Safety Science-Proceedings of the 4th International Symp.IAFSS,pp 937-948,Gaithersburg,1994
    [45]Fire Safety Engineering in Building[M].DD240,British Standard Institute,London,1997
    [46]Hakan Frantzich(李引擎译).宾馆建筑的火灾危险性分析[J].消防技术与产品信息,1998,8
    [47]Magnusson,S.E.,Frantzich,H,Harada,K.Fire safety design based on calculations.Uncertainty analysis and safety verification,LUTVDG/TVBB 3078 SE.Department of Fire Safety Engineering,Lund University,Lund,1995
    [48]James L.et al.Uncertainty in Egress Models and Data:Investigation of Dominant Parameters and Extent of Their Impact on Predicted Outcomes-Initial Findings.Proceedings of 5th International Conference on Performance-Based Codes and Fire Safety Design Methods,SFPE,Bethesda,MD,October 2004
    [49]ISO/CD 16730:Fire Safety Engineering—Assessment,verification and validation of calculation methods,2007
    [50]吴旭,张礼勇.根据已知概率分布产生相应数据的程序设计[J].哈尔滨理工大学学报,12(4),2007:37-40
    [1]霍然,袁宏永.性能化建筑防火分析与设计[M].安徽:安徽科学技术出版社,2003
    [2]Buchanan,A.H.Fire Engineering Design Guide,2nd Ed,,Centre for Advanced Engineering,Christchurch,University of Canterbury,New Zealand,2001
    [3]ISO/TR 13387-8 Fire safety engineering-Part 8:Life safety-Occupant behaviour,location and condition,1999
    [4]范维澄,孙金华,陆守香.火灾风险评估方法学.北京:科学出版社.2004
    [5]Magnusson,Sven Erik,Frantzich,Hakan,Harada,Kazunori.Fire Safety Design Based on Calculations:Uncertainty Analysis and Safety Verification.Fire Safety Journal,Volume 27,Issue 4,1996,305-334
    [6]Robert,P.S.et al.Design of Detection Systems.SFPE Handbook of Fire Protection Engineering,National Fire Protection Association,Quincy,Massachusetts,Third edition 2002,Section Four,Chapter 1,pp.4-1-4-43
    [7]G.Heskestad.Generalized characteristics of smoke entry and response for products of combustion detectors.Proceedings of 7~(th) International Conference on Problems of Automatic Fire Detection.Rheinish-Westfalishchen Technischen Hochschule,Aachen,Germany,1975
    [8]Bjorkman,J.,Kokkala,M.A.,and Ahola,H.Measurements of the Characteristic Lengths of Smoke Detectors," Fire Technology,Vol.28,No.2,1992,pp.99-106
    [9]Elman Brozovsky,Vahid Motevalli,Richard L.P.Custer.A First Approximation Method for Smoke Detector Placement Based on Design Fire Size,Critical Velocity,and Detector Aerosol Entry Lag Time.Fire Technology,31(4),1995,336-354
    [10]Cleary,T.,Chemovsky,A.,Grosshandler,W.,and M.Anderson.Particulate Entry Lag in Spot-Type Smoke Detectors,Fire Safety Science-Proceedings of the 6th International Symposium,July 5-9,1999,Poitiers,France,International Association for Fire Safety Science,Boston,MA,Curtat,M.,Editor,2000,pp.779-790
    [11]British Standards Institution,Draft British Standard BS DD240 fire safety engineering in buildings,Part 1:guide to the application of fire safety engineering principles[S].British Standards Institution,1997
    [12]Charters D.,Holbom P.,Townsend N.Analysis of the number of occupants,detection times and pre-movement times,2~(nd) International Symposium on Human Behaviour in Fire,2001,197-208
    [13]Shields T.J,,Boyce K.E.A study of evacuation from large retail stores,Fire Safety Journal,2000,35:25-49
    [14]李引擎.建筑防火性能化设计[M].北京:化学工业出版社,2005
    [15]Marc L.Janssens.An Introduction to Mathematical Fire Modeling,Technomic Publishing Company,Inc.Pennsylvania,2000
    [16]D.D.Evans.Suppression Research Capabilities.Proceeding of the First International Conference on Fire Suppression Research[C].Sweden,Stockholm:NISTIR,1992
    [17]Tamanini.The Application of Water Spray to the Extinguishment of Crib Fires[J].Combustion Science and Technology,1976,14:17-23
    [18]Nelson,H.E.Engineering Analysis of the Early Stages of Fire Development—The Fire at the Dupont Plaza Hotel and Casino-December 31,CIB W14/88/14(USA);NBSIR 87-3560;113 p.May 1987
    [19]P.G.Hoiboma,P.F.Nolana,J.Goltb.An analysis of fire sizes,fire growth rates and times between events using data from fire investigations[J].Fire safety journal.2004(39),pp.481-524
    [20]Tewarson Archibald.2004.Combustion Efficiency and Its Radiative Component[J].Fire Safety Journal,39(2),2004:131-141
    [21]DiNenno,P.J.,ed.The SFPE Handbook of Fire Protection Engineering.Second Edition.Boston,MA:Society of Fire Protection Engmeers,1995
    [22]R.L.Vettori.Effect of an Obstructed Ceiling on the Activation Time of a Residential Sprinkler,NISTIR 6253,National Institute of Standards and Technology,Gaithersburg,MD,November 1998
    [23]Francisco,J.et al.A probabilistic model for fire detection with applications[J].Fire Technology.2005(41).pp.151-172
    [24]自动灭火系统用玻璃球(GB18428-2001),中华人民共和国国家标准
    [25]C.E.Marrion.Lag time modeling and effects of ceiling jet velocity on the placement of optical smoke detectors,Master thesis,Worchester Polytechnic Institute,Centre for fire safety studies,Woreeter,MA,1989
    [26]Oldweiler,AJ,Investigation of the Smoke Detector L-Number in the UL Smoke Box,MS Thesis,Worchester Polytechnic Institute,Worchester MA,May 1995
    [27]Schifiliti,R.P.,and Pucci,W.E.Fire Detection Modeling:State of the Art,Fire Detection Institute,Bloomfield,CT,1996
    [28]胡君健.感烟火灾探测器迟滞时间模型的理论和实验研究[D].中国科学技术大学硕士论文,2005
    [29]陈涛.火灾情况下人员疏散模型及应用研究[D].中国科学技术大学博士论文,2004
    [30]贾彩清等.火灾时人员疏散开始时间范围的研究[J].火灾科学,2002,11(3):176-179
    [31]Fahy,R.E,Proulx,G.Human Behavior in the World Trade Center Evacuation.International Association for Fire Safety Science.Fire Safety Science.Proceedings.5~(th)International Symposium.March 3-7,1997,Melbourne,Australia,Intl.Assoc.for Fire Safety Science,Boston,MA,Hasemi,Y.,Editor(s),1997,pp,713-724
    [32]Abraham M.Hasofer.A Stochastic Model for the Time to Awaken in Response to a Fire Alarm.Journal of Fire Protection Engineering,2001,11:151-163
    [33]张树平,景亚杰.大型商场建筑营业厅疏散人数的调查研究[J].消防科学与技术,2004,23(2):133-136
    [34]游宇航.大型超市人员密度的初步调查.消防科学与技术,26(4),2007,360-362
    [35]Predtechenskii V.M.,Milinskii A.I.,Planning for foot traffic flow in buildings,Amerind Publishing Co.Pvt.Ltd.,New Delhi,1971
    [36]Fruin,J.J.Designing for pedestrians:a Level of Service,In:Highway Research Board.Highway Research Record,Number 355:Pedestrians,Washington,D.C.USA,1971
    [37]倪照鹏,王志刚,沈奕辉.性能化消防设计中人员安全疏散的确证[J].消防科学与技术,2003,22(5):375-378
    [38]B.D.Hankin and R.A.Wright,Passenger flow in subways.Operational Research Quarterly,1985(9),pp.81-88
    [39]Polus A,Schofer J L,Ushpiz A,Pedestrian flow and level of service,Journal of Transportation Engineering,PROC ASCE,109,1983,pp.46-47
    [40]J.J.Fruin.Pedestrian planning and design,Metropolitan Association of Urban Designers and Environmental Planners,New York,1971
    [41]Cooper,L.Y.Estimating Safe Available Egress Time from Fires,NBSIR 80-2172,National Bureau of Standards,Washington,DC,1980
    [42]Johan Lundin.On Quantification of Error and Uncertainty in Two-zone Models used in Fire Safety Design,Journal of Fire Sciences,Vol.23,No.4,2005:329-354
    [43]《民用建筑防排烟技术规程》,DGJ08-88-2000
    [44]Rochan R.Upadhyay,Ofodike A.Ezekoye.Treatment of design fire uncertainty using quadrature method of moments,Fire Safety Journal,Vol.43,No.2,2008:127-139
    [1]陈太聪.结构工程自适应控制的参数分析新方法研究及其在大跨度斜拉桥施工中的应用[D].华南理工大学博士论文.2003,34-35
    [2]王福亮.基于蒙特卡罗模拟的人员疏散时间不确定性分析[D].中国科学技术大学硕士论文.2007,8-9
    [1]Magnusson,S.E,Frantzich,H,Karlsson,B.and Sardqvist,S.,Determination of Safety Factors in Design Based on Performance,Proceedings of the 6th International Symposium on Fire Safety Science,1994,Gaithersburg,pp.937-948
    [2]British Standards Institution,Draft British Standard BS DD240 fire safety engineering in buildings,Part 1:guide to the application of fire safety engineering principles[S].British Standards Institution,1997
    [3]H.Frantzich.Fire Safety Risk Analysis of a Hotel,Report 3091,Lund,Sweden:Department of Fire Safety Engineering,Lund University,1997
    [4]Cornell C A,Structural Safety Specification Based on Second-Moment Reliability,Proceedings of Symposium on Concepts of Safety and Methods of Design,International Association of Bridge and Structural.Engineering,1969,Zurich,pp.235-245
    [5]陈祖煜.土质边坡稳定分析-原理、方法、程序[M].北京:中国水利水电出版社,2003
    [6]Hasofer A M,Lind N C,Exact and Invariant Second-Moment Code Format,Journal of Engineering Mechanics,ASCE,100,NO.1,1974,pp.111-121
    [7]Rackwitz R,Fiessler B.Structural Reliability under Combined Random Load Sequences.Computers and Structures.1978(9):489-494
    [8]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000:29-41
    [9]Wang Jinhui,Lu Shouxiang,Zhang Xuelin.Probabilistic Risk Assessment for Evacuation under Building Fire Based on Particle Swarm Optimization Method.Progress in Safety Science and Technology,Changsha,China,Oct.24-27,2006,390-393
    [10]Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc.IEEE International Conference Neural Networks[C].Piscataway,NJ:IEEE Press,1995,1942-1948
    [11]Kennedy J,Eberhart R C,Shi Y.Swarm intelligence[M].San Francisco:Morgan Kaufmarm Publishers,2001
    [12]Shi Y,Eberhart R.Parameter selection in particle swarm optimization.Proceedings of 7th Annual Conference on Evolutionary Programming,1998:591-600
    [13]Shi Y,Eberhart R C.Comparing Inertia weight and constriction factors in particle swarm optimization.Proceedings of the IEEE Congress on Evolutionary Computation,SanDiego,CA,2000:84-88
    [14]王惠刚.计算机仿真原理及应用[M].长沙:国防科技大学出版社,2000,115-117
    [15]Magnusson,S.E.,Frantzich,H,Harada,K.Fire safety design based on calculations.Uncertainty analysis and safety verification,LUTVDG/TVBB 3078 SE.Department of Fire Safety Engineering,Lund University,Lund,1995
    [16]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995
    [17]谭晓慧.平面滑动边坡的可靠度计算及敏感性分析[J].安徽地质,2001,11(1):49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700