用户名: 密码: 验证码:
聚苯胺纳米纤维复合超滤膜制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
把纳米材料应用于分离膜制备,得到高性能纳米复合膜近年来已成为膜技术领域内的一个前沿研究方向。本文首次将聚苯胺(PANI)纳米纤维用于分离膜制备,对PANI纳米纤维/聚砜(PS)复合超滤膜的制备方法和性能进行了较深入的研究。
     利用PS膜过滤PANI纳米纤维分散液制备出PANI/PS复合膜。复合膜具有亲水的PANI纳米纤维多孔层。在相同条件下,复合膜的纯水通量比PS膜提高了60%。PS膜对BSA和PEG-20000的截留率分别为98.8%和27.2%,复合膜对BSA和PEG-20000的截留率分别为99.2%和27%。当进水pH值小于7时,复合膜表面的氨基和亚氨基会被质子化,膜表面带正电荷。复合膜表现出较低的BSA平衡吸附量,大约是PS膜平衡吸附量的六分之一。在过滤BSA溶液过程中,复合膜比PS膜表现出较高的渗透通量和较慢的通量下降速率。
     利用浸没相转化法制备出PANI/PS共混膜。与PS膜相比,共混膜具有更好的亲水性和较高的孔隙率。PANI纳米纤维在成膜过程中的迁移行为提高了共混膜的孔连通性。共混膜的纯水通量明显高于PS膜,PANI纳米纤维与PS质量比为1%的共混膜的纯水通量比PS膜提高了60%,而PANI纳米纤维与PS质量比为15%的共混膜的纯水通量比PS膜提高了140%。PS膜对BSA和AE的截留率分别是96%和93%,共混膜对BSA和AE的截留率范围分别在96%~99%和93%~98%。在过滤BSA溶液过程中,所有的PANI/PS共混膜与PS膜相比都具有较高的渗透通量,而且共混膜的渗透通量随着PANI纳米纤维含量的增加而升高。PANI纳米纤维与PS质量比为1%和15%的共混膜的稳态渗透通量分别是PS膜的2倍和2.5倍。此外,PANI/PS共混膜具有较慢的通量下降速率和较高的通量恢复率。共混膜的拉伸强度随着PANI纳米纤维含量的增加而增大,而膜的断裂伸长率随着PANI纳米纤维含量的增加而减小。当PANI纳米纤维与PS质量比为1%时,共混膜与PS膜相比机械性能没有明显改变。PANI/PS共混膜的热稳定性与PS膜相近。
     初步探索了PANI纳米纤维在PS膜表面的原位生长过程。通过控制苯胺聚合体系中的掺杂酸和十二烷基苯磺酸钠浓度,在低温和较短的搅拌时间下能够使PANI纳米纤维在PS膜表面均匀生长,得到PANI/PS复合膜。随着反应时间延长,聚苯胺/聚砜复合膜的亲水性能不断提高。随着反应时间延长,复合膜的纯水通量不断下降,而PEG-35K截留率呈上升趋势。复合膜的导电性随反应时间的延长而提高,反应24小时所得复合膜的电导率为0.04 S/cm。
In recent years, to prepare nanocomposite membrane with high performance through the incorporation of nanomaterials has been a new research direction of membrane technology. This paper initially investigated the preparation and characterization of polyaniline (PANI) nanofibers/polysulfone (PS) nanocomposite UF membrane.
     PANI/PS nanocomposite membrane was prepared through the filtration of PANI aqueous dispersion with PS membrane. PANI/PS membrane had a hydrophilic and porous layer of PANI nanofibers. Pure water flux of PANI/PS membrane was 1.6 times that of PS membrane. For PS membrane, rejections of BSA and PEG-20000 were 98.8% and 27.2%, respectively. For PANI/PS membrane, rejections of BSA and PEG-20000 were 99.2% and 27%, respectively. When feed pH was less than 7, the amines and imines of PANI were protonated and PANI/PS membrane surface had positive charge. The BSA adsorption quantity of PS membrane was 6 times than that of PANI/PS membrane. During the filtration of BSA solution, PANI/PS membrane showed higher permeate flux and lower flux decline rate than PS membrane.
     PANI/PS blend membrane was prepared with the immersion phase inversion method. Compared with PS membrane, PANI/PS blend membrane had better hydrophilic property and higher porosity. The connectivity of blend membrane pores was improved by the migration of PANI nanofibers. Pure water flux of the blend membrane was higher than that of PS membrane. Pure water flux of the blend membrane with PANI– PS mass ratio of 1 wt. % was 1.6 times that of PS membrane, and pure water flux of the blend membrane with PANI– PS mass ratio of 15 wt. % was 2.4 times that of PS membrane. For PS membrane, rejections of BSA and AE were 96% and 93%, respectively. For the blend membrane, rejections of BSA and AE were in the range of 96%~99% and 93%~98%, respectively. During the filtration of BSA solution, all the blend membranes showed higher permeate fluxes than PS membrane and their fluxes increased with the rise of PANI nanofibers content. Stable permeate fluxes of the blend membranes with PANI– PS mass ratio of 1 wt. % and 15 wt. % were 2.0 and 2.5 times that of pure PS membrane, respectively. In addition, PANI/PS blend membrane showed lower flux decline rate and higher flux recovery ratio. With the rise of PANI nanofibers content, the breaking strength of the blend membrane increased and the elongation at break decreased. Mechanical property of the blend membrane with PANI– PS mass ratio of 1 wt. % had no obvious change. The blend membranes presented similar thermal behavior to PS membrane.
     The in-situ growth of PANI nanofibers on PS membrane surface was explored. PANI nanofibers could grow homogeneously on PS membrane under lower temperature, shorter stir time, and suitable doping acid and SDBS concentration to form PANI/PS composite membrane. With the extension of polymerization time, the composite membrane had better hydrophilic property, lower pure water flux, higher PEG-35K rejection, and higher conductivity. After 24 h polymerization, the conductivity of the composite membrane was 0.04 S/cm.
引文
[1]郑领英,膜分离与分离膜,高分子通报,1999,3:134-137,144
    [2]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001
    [3] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Netherlands, 1996
    [4]汪锰,王湛,李政雄,膜材料及其制备,北京:化学工业出版社,2003
    [5]凌绳,王秀芬,吴友平,聚合物材料,北京:中国轻工业出版社,2000
    [6]徐又一,徐志康,高分子膜材料,北京:化学工业出版社,2005
    [7] M. Cheryan, Ultrafiltration and Microfiltration Handbook, Technomic Publishing Company, Inc., U.S.A., 1998
    [8]华耀祖,超滤膜技术与应用,北京:化学工业出版社,2004
    [9] S. Cowan, S. Ritchie, Modified polyethersulfone (PES) ultrafiltration membranes for enhanced filtration of whey proteins, Separation Science and Technology, 2007, 42 (11): 2405-2418
    [10] W. Ma, Y. Zhao, L. Wang, The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis, Desalination, 2007, 203 (1-3): 256-259
    [11] DA Krstic, W. Hoflinger, A.K. Koris, G.N. Vatai, Energy-saving potential of cross-flow ultrafiltration with inserted static mixer: Application to an oil-in-water emulsion, Separation Science and Technology, 2007, 57(1): 134-139
    [12] T. Nandy, P. Manekar, R. Dhodapkar, G. Pophali, S. Devotta, Water conservation through implementation of ultrafiltration and reverse osmosis system with recourse to recycling of effluent in textile industry - A case study, Resources Conservation and Recycling, 2007, 51(1): 64-77
    [13]刘忠洲,续曙光,李锁定,微滤、超滤过程中的膜污染与清洗,水处理技术,1997,23(4):187-248
    [14]吕晓龙,刘惠玉,多孔膜的污染及其控制方法,天津工业大学学报,2004,23(1):18-22
    [15]王志,甄寒菲,王世昌,伍登熙,膜过程中防治膜污染强化渗透通量技术进展(I)操作策略,膜科学与技术,1999,19(1):1-5,11
    [16]环国兰,张宇峰,杜启云,膜污染分析及防治,水处理技术,2003,29(1):1-4
    [17]郑成,膜的污染及其防治,膜科学与技术,1997,17(2):5-14
    [18]贺立中,药液超滤中的膜污染及其防治,膜科学与技术,2000,20(5):49-54
    [19]张国俊,刘忠洲,膜过程中超滤膜污染机制的研究及其防治技术进展,膜科学与技术,2001,21(4):39-45
    [20] A.D. Marshall, P.A. Munro, G. Tr?g?rdh, The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review, Desalination, 1993, 91: 65-108
    [21] G.F. Grozes, J.G. Jacangelo, C. Anselme, Impact of ultrafiltration operating conditions on membrane irreversible fouling, J. Membr. Sci., 1997, 124: 63-72
    [22] R. Bian, K. Yamamoto, Y. Watanabe, The effect of shear rate on controlling the concentration polarization and membrane fouling, Desalination, 2001, 131: 225-236
    [23]伍艳辉,王志,伍登熙,王世昌,膜过程中防治膜污染强化渗透通量技术进展(II)膜组件及膜系统的结构设计,膜科学与技术,1999,19(4):12-16,22
    [24]陆晓峰,陈仕意,李存珍,等.表面活性剂对超滤膜表面改性的研究,膜科学与技术,1997,17(4):6~41
    [25]陆晓峰,卞晓锴,超滤膜的改性研究及应用,膜科学与技术,2003,23(4):97-102,115
    [26] G. Morel,N. QIlazzanj,A. Graciaa,et a1., Surfactant modified ultrafiltration for nitrate ion removal, J. Membr. Sci., 1997, 134: 47-57
    [27] K. Araki, R. Kon-No, M. SenImage, Gas permeability of phosphatidylcholine impregnated in a porous cellulose nitrate membrane, J. Membr. Sci., 1984, 17(1): 89-95
    [28] Z.-P. Zhao, Z. Wang?, S.-C. Wang, Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane, J. Membr. Sci., 2003, 217: 151–158
    [29] D.S. Wavhal, E.R. Fisher, Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization, J. Membr. Sci.,2002, 209: 255–269
    [30]杨万泰,尹梅贞,邓建元,杜久明,表面光接枝原理、方法及应用前景,高分子通报,1993,3:60-65
    [31] J. Pieracci, J.V. Crivello, G. Belfort, Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling, J. Membr. Sci., 1999, 156: 223-240
    [32] D.S. Kim, J.S. Kang, K.Y. Kim, Y.M. Lee, Surface modification of a poly (vinyl chloride) membrane by UV irradiation for reduction in sludge adsorption, Desalination, 2002, 146: 301-305
    [33] M. Ulbricht, H. Matuschewski, A. Oechel, H.-G. Hicke, Photo-induced graft polymerization surface modifications for the preparation of hydrophilic andlow-potein-adsorbing ultrafiltration membranes, J. Membr. Sci., 1996, 115: 31-47
    [34] B. Kaeselev, J. Pieracci, G. Belfort, Photoinduced grafting of ultrafiltration membranes: comparison of poly (ether sulfone) and poly (sulfone), J. Membr. Sci., 2001, 194: 245-261
    [35] M. Taniguchi, J.E. Killduff, G. Belfort, Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter, J. Membr. Sci., 2003, 222: 59–70
    [36] M. Taniguchi, G. Belfort, Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type, J. Membr. Sci., 2004, 231: 147-157
    [37] H. Susanto, M. Balakrishnan, M. Ulbricht, Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes, J. Membr. Sci., 2007, 288: 157-167
    [38] J.K. Shim, H.S. Na, Y.M. Lee, H. Huh, Y.C. Nho, Surface modification of polypropylene membranes byγ-ray induced graft copolymerization and their solute permeation characteristics, J. Membr. Sci., 2001, 190: 215-226
    [39] W.R. Bowen, T.A. Doneva, H.B. Y, Polysulfone—sulfonated poly (ether ether) ketone blend membranes: systematic synthesis and characterization, J. Membr. Sci., 2001, 181: 253–263
    [40] G. Arthanareeswaran, D. Mohan, M. Raajenthiren, Preparation and performance of polysulfone-sulfonated poly (ether ether ketone) blend ultrafiltration membranes. Part I, Applied Surface Science, 2007, 253: 8705–8712
    [41] R. Mahendran, R. Malaisamy, G. Arthanareeswaran, D. Mohan, Cellulose Acetate–Poly (ether sulfone) Blend Ultrafiltration Membranes. II. Application Studies, Journal of Applied Polymer Science, 2004, 92: 3659-3665
    [42] R. Malaisamy, R. Mahendran, D. Mohan, M. Rajendran, V. Mohan, Cellulose acetate and sulfonated polysulfone blend ultrafiltration membranes. I. Preparation and characterization, Journal of Applied Polymer Science, 2002, 86: 1749-1761
    [43] M.-C. Yang, T.-Y. Liu, The permeation performance of polyacrylonitrile/ polyvinylidine fluoride blend membranes, J. Membr. Sci., 2003, 226: 119–130
    [44] L.-Q. Shen, Z.-K. Xu, Z.-M. Liu, Y.-Y. Xu, Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/ polyetherimide blends: preparation, morphologies and anti-fouling properties, J. Membr. Sci., 2003, 218: 279–293
    [45] J.A. Raguime, G. Arthanareeswaran, P. Thanikaivelan, D. Mohan, M. Raajenthiren, Performance characterization of cellulose acetate and poly(vinylpyrrolidone) blend membranes, Journal of Applied Polymer Science, 2007, 104: 3042-3049
    [46] J.J. Qin, Y.M. Cao, Y.Q. Li, Y. Li, M.H.Oo, H.W. Lee, Hollow fiber ultrafiltration membranes made from blends of PAN and PVP, Separation and Purification Technology, 2004, 36: 149-155
    [47] H. Matsuyama, T. Maki, M. Teramoto, K. Kobayashi, Effect of PVP additive on porous polysulfone membrane formation by immersion precipitation method, Sep. Sci. Technol., 2003, 38: 3449-3458
    [48] Q.-Z. Zheng, P. Wang, Y.-N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, J. Membr. Sci., 2006, 279: 230–237
    [49] Y. Liu, G.H. Koops, H. Strathmann, Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution, J. Membr. Sci., 2003, 223: 187–199
    [50] Z.-L. Xu, F.A. Qusay, Effect of polyethylene glycol molecular weights and concentrations on polyethersulfone hollow fiber Ultrafiltration membranes, Journal of Applied Polymer Science, 2004, 91: 3398–3407
    [51] J.E. Yoo, J.H. Kim, Y. Kim, C.K. Kim, Novel ultrafiltration membranes prepared from the new miscible blends of polysulfone with poly (1-vinylpyrrolidone–co -styrene) copolymers, J. Membr. Sci., 2003, 216: 95–106
    [52] L.-P. Zhu, X.-X. Zhang, L. Xu, C.-H. Du, B.-K. Zhu, Y.-Y. Xu, Improved protein-adsorption resistance of polyethersulfone membranes via surface segregation of ultrahigh molecular weight poly (styrene-alt-maleic anhydride), Colloids and Surfaces B: Biointerfaces, 2007, 57: 189–197
    [53] Y. Q. Wang, Y. L. Su, Q. Sun, X. O. Ma, X. C. Ma, Z.Y. Jiang, Improved permeation performance of Pluronic F127-polyethersulfone blend ultrafiltration membranes, J. Membr. Sci., 2006, 282: 44–51
    [54] Y. Q. Wang, T. Wang, Y. L. Su, F. B. Peng, H. Wu, Z.Y. Jiang, Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly (ether sulfone) ultrafiltration membranes by blending with pluronic F127, Langmuir, 2005, 21: 11856-11862
    [55] Y. Q. Wang, Y. L. Su, X. L. Ma, Q. Sun, Z.Y. Jiang, Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance, J. Membr. Sci., 2006, 282: 44–51
    [56] L.-P. Zhu, L. Xu, B.-K. Zhu, Y.-X. Feng, Y.-Y. Xu, Preparation and characterization of improved fouling-resistant PPESK ultrafiltrationmembranes with amphiphilic PPESK-graft-PEG copolymers as additives, J. Membr. Sci., 2007, 294: 196–206
    [57] Y. H. Zhao, B. K. Zhu, L. Kong, Y.Y. Xu, Improving hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer, Langmuir, 2007, 23: 5779-5786
    [58] A. Asatekin, S. Kang, M. Elimelech, M.A. Mayes, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft–poly (ethylene oxide) comb copolymer additives, J. Membr. Sci., 2007, 298: 136-146
    [59] J.H. Kim, M.S. Kang, C.K. Kim, Fabrication of membranes for the liquid separation Part 1. Ultrafiltration membranes prepared from novel miscible blends of polysulfone and poly (1-vinylpyrrolidone-co-acrylonitrile) copolymers, J. Membr. Sci., 265 (2005) 167–175
    [60]徐南平,高从堦,时钧,我国膜领域的重大需求与关键问题,中国有色金属学报, 2004,14(1):327-331
    [61]徐国财,张立德,纳米复合材料,北京:化学工业出版社,2002
    [62]徐并社,纳米材料及应用技术,北京:化学工业出版社,2004
    [63]李玉宝,刘东,纳米材料研究与应用,成都:电子科技大学出版社,2005
    [64] P. Gibson, H. Schreuder-Gibson, D. Rivin, Transport properties of porous membranes based on electrospun nanofibers, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2001, 188: 469–481
    [65]刘赞,王新忠,陈爱民,分子筛膜分离技术的研究进展,工业水处理,2006,26(11):12-18
    [66]宋艳,李永红,介孔分子筛的应用研究新进展,化学进展,2007,19(5):659-664
    [67]肖通虎,王丽娜,曹义鸣,等,分子筛一聚合物共混气体分离膜研究进展,膜科学与技术,2005,25 (5):85-91
    [68] T.H. Bae, T.M. Tak, Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, J. Membr. Sci., 2005, 249: 1-8
    [69] M.-L. Luo, J.-Q. Zhao, W. Tang, C.-S. Pu, Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles, Applied Surface Science, 2005, 249: 76–84
    [70] S.H. Kim, S.Y. Kwak, B.H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-conposite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci., 2003, 211: 157–165
    [71] T.H. Bae, T.M. Tak, Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system, J. Membr. Sci., 2005, 266: 1-5
    [72] T.-H. Bae, I.-C. Kim, T.-M. Tak, Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes, J. Membr. Sci., 2006, 275: 1-5
    [73] D. Gomes, S.P. Nunes, and K.V. Peinemann, Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)-silica nanocomposites, J. Membr. Sci., 2005, 246(1): 13-25
    [74] N.P. Patel, A.C. Miller, and R.J.Spontak, Highly CO2-permeable and -selective membranes derived from crossfinked poly (ethylene glycol) and its nanocomposites, Advanced Functional Materials, 2004, 14(7): 699-707
    [75] Q.L. Liu, T.H. Wang, C.H. Liang, et al. Zeolite married to carbon: A new family of membrane materials with excellent gas separation performance, Chemistry of Materials, 2006, 18(26): 6283-6288
    [76] R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, Electrospun nanofibrous filtration membrane, J. Membr. Sci., 2006, 281: 581–586
    [77] R.S. Barhate, C. K. Loong, S. Ramakrishna, Preparation and characterization of nanofibrous filtering media, J. Membr. Sci., 2006, 283: 209–218
    [78] R. Gopal, S. Kaur, C.Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, T. Matsuura, Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal, J. Membr. Sci., 2007, 289: 210–219
    [79] K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao, B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer, 2006, 47: 2434–2441
    [80] X. Wang, D. Fang, K. Yoon, B.S. Hsiao, B. Chu, High performance ultrafiltration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly (vinyl alcohol) scaffold, J. Membr. Sci., 2006, 278: 261-268
    [81] X. Wang, X. Chen, K. Yoon, D. Fang, B.Hsiao and B.Chu, High Flux Filtration Medium Based on Nanofibrous Substrate with Hydrophilic Nanocomposite Coating, Environ. Sci. Technol., 2005, 39, 7684-7691
    [82] J.K. Holt, H.G. Park, Y.M. Wang, M. Stadermann, etc., Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 2006, 312: 1034-1037
    [83] S.Y. Lu, H.Y. Huang, K.H. Wu, Silicalite/poly (dimethylsiloxane) nanocomposite pervaporation membranes for acetic acid/water separation, Journal of Materials Research, 2001, 16(11): 3053-3059
    [84] L. Liu, Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions, Biomacromolecules, 2005, 6(1): 368-373
    [85] J.M. Yeh, M.Y. Yu, S.J. Liou, Dehydration of water-alcohol mixtures by vaporpermeation through PVA/clay nanocomposite membrane, Journal of Applied Polymer Science, 2003, 89(13): 3632-3638
    [86] S.D. Bhat, T.M. Aminabhavi, Novel sodium alginate-Na+MMT hybrid composite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and tetrahydrofuran, Separation and Purification Technology, 2006, 51(1): 85-94
    [87] Sairam, M., et al., Poly (vinyl alcohol)-iron oxide nanocomposite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and tetrahydrofuran, J. Membr. Sci., 2006, 283(1-2): 65-73
    [88] Sairam, M., et al., Novel dense poly (vinyl alcohol)-TiO2 mixed matrix membranes for pervaporation separation of water-isopropanol mixtures at 30 degrees C, J. Membr. Sci., 2006, 281(1-2): 95-102
    [89] R. Molinari, M. Mungari, E. Drioli, et al. Study on a photocatalytic membrane reactor for water purification, Catalysis Today, 2000, 55: 71-78
    [90] R. Molinari, C. Grande, E. Drioli, et al. Photocatalytic membrane reactors for degradation of organic pollutants in water, Catalysis Today, 2001, 67: 273-279
    [91] R. Molinari, L. Palmisano, E. Drioli, et al. Studies on various reactor configurations for coulping photocatalysis and membrane processes in water purification, J. Membr. Sci., 2002, 206: 399-415
    [92] S.-H. Son, J. Jegal, K.-H. Lee, Prparation and characterization of composite NF membranes containing TiO2 particles on their surfaces, International Congress on Membranes and Membane processes 2005 (ICOM 2005), Korea, 2005
    [93] M.L. Luo, J.Q. Zhao, Wu Tang, C.S. Pu, Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles, Applied surface science, 2005, 249: 76-84
    [94] T.H. Bae, T.M. Tak, Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, J. Membr. Sci., 2005, 249: 1-8
    [95] L. Yan, Y.S. Li, C. B. Xiang, Preparation of poly (vinylidene fluoride) (pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research, Polymer, 2005, 46: 7701-7706
    [96] Y.C. Wang, Polyamide/SDS-clay hybrid nanocomposite membrane application to water-ethanol mixture pervaporation separation, J. Membr. Sci., 2004, 239(2): 219-226
    [97]姜云鹏,王榕树,纳米SiO2—聚乙烯醇复合超滤膜的制备有应用,高分子材料科学与工程,2002,22 (5):12-14
    [98] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J.Hill,Ultrapermeable, reverse-selective nanocomposite membranes, Science, 2002, 396: 519-522
    [99] T.C. Merkel, Z. He, I. Pinnau, B.D. Freeman, P. Meakin, A.J. Hill, Effect of nanoparticles on gas sorption and transport in poly (1-trimethylsilyl- 1-propyne), Macromolecules, 2003, 36(18): 6844-6855
    [100] T.C.Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Sorption, transport, and structural evidence for enhanced free volume in poly (4-methyl- 2-pentyne) / fumed silica nanocomposite membranes, Chemistry of materials, 2003, 15 (1): 109-123
    [101] Y. Kong, H.W. Du, J.R. Yang, et al., Study on polyimide/TiO2 nanocomposite membranes for gas separation, Desalination, 2002, 146: 49-55
    [102] D.M. Sterescu, D.F. Stamatialis, E. Mendes, M. Wubbenhorst, M. Wessling, Fullerene-modified poly (2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: Why binding is better than dispersing, Macromolecules, 2006, 39(26): 9234-9242
    [103] Q. Liu, T.Wang, C. Liang, B. Zhang, S. Liu, Y. Cao, J. Qiu, Zeolite married to carbon: A new family of membrane materials with excellent gas separation performance, Chemistry of Materials, 2006, 18 (26): 6283-6288
    [104] S. Kim, T.W.P., E. Marand, Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation, Desalination, 2006, 192(1-3): 330-339
    [105] Y.K. Vijay, V. Kulshrestha, K. Awasthi, et al., Characterization of nanocomposite polymeric membrane, Journal of Polymer Research, 2006, 13(5): 357-360
    [106] H.K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand, M. Tsapatsis, Fabrication of polymer/selective-flake nanocomposite membranes and their use in gas separation, Chemistry of Material, 2004, 16(20): 3838-3845
    [107] V. Abetz, T. Brinkmann, M. Dijkstra, et al., Developments in membrane research: from material via process design to industrial application, Advanced Engineering Materials, 2006, 8(5): 328-358
    [108] N.P. Patel, C. M. Aberg, A.M. Sanchez, M.D. Capracotta, J.D. Martin, R.J. Spontak, Morphological, mechanical and gas-transport characteristics of crosslinked poly (propylene glycol): homopolymers, nanocomposites and blends, Polymer, 2004, 45(17): 5941-5950
    [109] N.P. Patel, A.C. Miller, R.J. Spontak, Highly CO2-permeable and -selective membranes derived from crossfinked poly (ethylene glycol) and its nanocomposites, Advanced Functional Materials, 2004, 14(7): 699-707
    [110] A.G. MacDiarmid, J.C. Chiang, A.F. Richter, et al. Polyaniline: a new concept in conducting polymers, Synthetic Metals, 1987, 18: 285-290
    [111] H.S. Kolla, S.P. Surwade, X. Zhang, A.G. MacDiarmid, S.K. Manohar,Absolute Molecular Weight of Polyaniline, J. Am. Chem. Soc., 2005, 127: 16770-16771
    [112]赵文元,赵文明,王亦军,聚合物材料的电学性能及其应用,北京:化学工业出版社,2006
    [113] L.X. Wang, X.B. Jin, F.S. Wang. Polytoluidines with different degrees of oxidation and their doping with HCl, Synthetic Metals, 1989, 29: 363
    [114] S. Kuwabata, C.R. Martin, Investigation of the gas-transport properties of polyaniline, J. Membr. Sci., 1994, 91: 1-12
    [115] L. Rebattet, M. Escoubes, E. Genies, M. Pineri, Effect of doping treatment on gas transport properties and on separation factors of polyaniline membranes, Journal of applied polymer science, 1995, 57: 1595-1604
    [116] M.-J. Chan, Y.-H. Liao, A.S. Myerson, 1.K. Kwei, Gas Transport Properties of Polyaniline Membranes, Journal of Applied Polymer Science, 1996, 62: 1427-1436
    [117] G. Illing, K. Hellgardt, R.J. Wakeman, A. Jungbauer, Preparation and characterisation of polyaniline based membranes for gas separation, J. Membr. Sci., 2001, 184: 69–78
    [118]苏小明,王景平,邓祥,井新利,聚苯胺气体分离膜研究进展,膜科学与技术,2006,4:66-70
    [119] M.R. Anderson, B.R. Mattes, H. Reiss, R.B. Kaner, Conjugated polymer films for gas separations, Science, 1991, 252: 1412-1415
    [120] S.-C. Huang, I.J. Ball, R.B. Kaner, Polyaniline membranes for pervaporation of carboxylic acids and water, Macromolecules, 1998, 31: 5456-5464
    [121] Y.M. Lee, S.Y. Nam, S.Y. Ha, Pervaporation of water/isopropanol mixtures through polyaniline membranes doped with poly (acrylic acid), J. Membr. Sci., 1999, 159: 41-46
    [122] I.J. Ball, S.-C. Huang, R.A. Wolf, J.Y. Shimano, R.B. Kaner, Pervaporation studies with polyaniline membranes and blends, J. Membr. Sci., 2000, 174: 161-176
    [123] R.B Kaner, Gas, liquid and enantiomeric separations using polyaniline, Synthetic Metals, 2002, 125: 65-71
    [124] M.G. Han, S.K. Cho, S.G. Oh, S.S. Im, Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synth. Met., 2002, 126: 53-60
    [125] J. Huang, R.B. Kaner, A general chemical route to polyaniline nanofibers, J. Am. Chem. Soc., 2004, 126: 851-855
    [126] L. Zhang, Y. Long, Z. Chen, M. Wan, The effect of hydrogen bonding onself-assembled polyaniline nanostructures, Adv. Fuct. Mater., 2004, 14: 693-698
    [127] Z. Wei, M. Wan, Hollow microspheres of polyaniline synthesized with an aniline emulsion template, Adv. Mater., 2002, 14: 1314-1317
    [128] J. Huang, Syntheses and applications of conducting polymer polyaniline nanofibers, Pure Appl. Chem., 2006, 78: 15–27
    [129] D. Zhang, Y. Wang, Synthesis and applications of one-dimensional nano-structured polyaniline: An overview, Materials Science and Engineering B, 2006, 134: 9–19
    [130] J. Huang, R.B. Kaner, Flash welding of conducting polmer nanofibers, Nature materials, 2004, 3:783-786
    [131]朱步瑶,赵振国,界面化学基础,北京:化学工业出版社,1996
    [132] W. Zhong, X. Chen, S. Liu, Y. Wang, W. Yang, Synthesis of highly hydrophilic polyaniline nanowires and sub-micro/nanostructured dendrites on poly (propylene) film surfaces, Macromol. Rapid Commun., 2006, 27: 563–569
    [133] N. Gospodinova, L. Terlemezyan, Conducting polymers prepared by oxidative polymerization: Polyaniline, Prog. Polym. Sci., 1998, 23: 1443–1484
    [134]廖川平,聚苯胺的合成与性能研究:[博士后学位论文],上海:上海交通大学,2002
    [135] C. Wang, Z. Wang, M. Li, H. Li, well-aligned polyaniline nano-fibril array membrane and its field emission property, Chem. Phys. Lett., 2001, 341: 431-434
    [136] C.R. Martin, Nanomaterials: A membrane-based synthetic approach, Science, 1994, 266: 1961-1965
    [137] C.G. Wu, T. Bein, Conducting polyaniline filaments in a mesoporous channel host, Science, 1994, 264: 1757-1758
    [138] Z. Wei, M. Wan, T. Lin, L. Dai, Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process, Advanced Materials, 2003, 15:136-139
    [139] X.Y. Zhang, W.J. Goux, S.K. Manohar, Synthesis of polyaniline nanofibers by“nanofiber seeding”, J. Am. Chem. Soc., 2004, 126: 4502-4503
    [140] L. Yu, J. Lee, K.W. Shin, C.E Park, R. Holze, Preparation of Aqueous Polyaniline Dispersions by Micellar-Aided Polymerization, Journal of Applied Polymer Science, 2003, 88: 1550–1555
    [141] Z. Zhang, Z. Wei, M. Wan, Nanostructures of polyaniline doped with inorganic acids, Macromolecules, 2002, 35: 5937-5942
    [142] A.D.W. Carswell, E.A. Orear, B.P. Grady, Absorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and nanostructureson flat surfaces: from spheres to wires to flat films, J. Am. Chem. Soc., 2003, 125: 14793-14800
    [143] G.C. Li, Z.K. Zhang, Synthesis of dendritic polyaniline nanofibers in a surfactant gel, Macromolecules, 2004, 37: 2683-2685
    [144] R. Madathil, R. Parkesh, S. Ponrathnam, M.C.J. Large, Partterning of conductive polyaniline films from a polymerization-induced self-assembled gel, Macromolecules, 2004, 37: 2002-2003
    [145] H.J. Qiu, M.X. Wan, Conducting polyaniline nanotubes by template-free polymerization, Macromolecules, 2001, 34: 675-677
    [146] Z.X. Wei, Z.M. Zhang, M.X. Wan, Formation Mechanism of self-assembled polyaniline micro/nanotubes, Langmuir, 2002, 18, 917-921
    [147] X.Y. Zhang, R.C. King, A. Jose, S.K. Manohara, Nanofibers of polyaniline synthesized by interfacial polymerization, Synthetic Metals, 2004, 145: 23–29
    [148] J.X. Huang, R.B. Kaner, Nanofiber formation in the chemical polymerization of aniline: a mechanistic study, Angew. Chem. Int. Ed., 2004, 43: 5817–5821
    [149] J.X. Huang, S. Virji, B.H. Weiller, R.B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors, J. Am. Chem. Soc., 2003, 125: 314-315
    [150] J.X. Huang, R.B. Kaner, A general chemical route to polyaniline nanofibers, J. Am. Chem. Soc., 2004, 126: 851-855
    [151] J. Michaelson, A.J. McEvoy, Interfacial polymerization of aniline, Chem. Commun., 1994, 79-80.
    [152] D. Li, R. B. Kaner, Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred, J. Am. Chem. Soc., 2006, 128: 968-975
    [153] X.Y. Zhang, H.S. Kolla, X.H Wang, K. Raja, S.K. Manohar, Fibrillar growth in polyaniline, Adv. Funct. Mater., 2006, 16: 1145–1152
    [154] N.R. Chiou, A.J. Epstein, A simple approach to control the growth of polyaniline nanofibers, Synthetic Metals, 2005, 153: 69-72
    [155] N.R. Chiou, A.J. Epstein, Ployaniline nanofibers prepared by dilute polymerization, Adv. Mater., 2005, 117: 1679-1683
    [156] I.D. Norris, M.M. Shaker, F.K. Ko, A.G. MacDiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends, Synth. Met., 2000, 114: 109-114
    [157] L. Liang, J. Liu, C.F. Windisch, G.J. Exarhos, Y. Lin, Direct assembly of large arrays conducting polymer nanowires, Angew. Chem. Int. Ed., 2002, 41: 3665-3668
    [158]温靖邦,周海晖,李松林,等,纳米纤维聚苯胺膜在不锈钢电极表面的生长过程,物理化学学报,2006,22 (1):106-109
    [159] H. Ding, M. Wan, Y. Wei, Controlling the diameter of polyaniline nanofibersby adjusting the oxidant redox potential, Adv. Mater., 2007, 19: 465–469
    [160]武小鹰,郑平,徐红亮,动态膜技术及其在环境工程中的应用,膜科学与技术,2003,23(3):49-53
    [161] T.V. Knyazkova, A.A. Kavitskaya, Improved performance of reverse osmosis with dynamic layers onto membranes in separation of concentrated salt solutions, Desalination, 2000, 131: 129-136
    [162] G.K. Elyashevich, E.Y. Rosova, I.S. Kuryndin, Properties of multi-layer composite membranes on the base of polyethylene porous films, Desalination, 2002, 144: 21-26
    [163] B. Cai, H. Ye,L. Yu, Preparation and separation performance of a dynamically formed MnO2 membrane, Desalination, 2000, 128: 247-256
    [164] J. Wang, M. Liu, C. Lee,et al., Formation of dextran-Zr dynamic membrane and study on concentration of protein hemoglobin solution, J. Membr. Sci., 1999, 162: 45-55
    [165] M.J.M.M. Noor, F.R. Ahmadun,T.A.Mohamed, et a1., Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater, Desalination, 2002, 147: 263-268
    [166]宋晓岚,王海波,吴雪兰,等,纳米颗粒分散技术的研究与发展,化工进展,2005,24(1):47-52
    [167]王广阔,马建伟,超声波对纳米材料分散性能影响的研究,材料导报,2005,19(4):160-162
    [168]盘荣俊,何宝林,刘光荣,王然,紫外——可见光谱分析在纳米颗粒超声分散中的应用,中南民族大学学报,2006,25(1):5-7
    [169]刑卫红,童金忠,徐南平,等,微滤和超滤过程中浓差极化和膜污染控制方法研究,化工进展,2000,1:44-60
    [170]顾惕人,朱步瑶,李外郎,等,表面化学,北京:科学出版社,1994
    [171]朱步瑶,赵振国,界面化学基础,北京:化学工业出版社,1996
    [172] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 1936, 28: 988-994
    [173]赵之平,羧甲基壳聚糖复合微孔膜及其荷电特性与过滤性能的研究:[博士学位论文],天津:天津大学,2002
    [174] D. Moèckel, E. Staude, M. Dal-Cin, K. Darcovich, M. Guiver, Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes, J. Membr. Sci., 1998, 145: 211-222
    [175] K. Kim, A. Fane, M. Nystroèm, A. Pihlajamaki, W. Bowen, H. Mukhtar, Evaluation of electroosmosis and streaming potential for measurement of electric charges of polymeric membranes, J. Membr. Sci., 1996, 116: 149-159
    [176]武少华,何宏,袁淑琴,等,氯化钡法及其在聚砜超滤膜性能测定中的应用,水处理技术,1995,21(4):193-197
    [177] P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A.P. Rao, P.K. Ghosh. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, Journal of Membrane Science, 2006, 278: 19–25
    [178]杨春明,导电聚苯胺的合成、掺杂、表征及其若干相关性质的研究:[博士学位论文],长沙:中南工业大学,1999
    [179]邢丹敏,改性聚氯乙烯超滤膜的研究(I)——等离子体改性膜结构和性能的研究,膜科学与技术,1996,16(1):49-55
    [180]许晓鹏,郑领英,聚砜超滤膜的表面改性,水处理技术,1993,19(6):330-335
    [181] J.K. Holt, H.G. Park, Y.M. Wang, M. Stadermann, et al., Fast mass transport through sub-2-nanometer carbon nanotubes, Science 2006, 312: 1034-1037
    [182] L.P. Zhu, L. Xu, B.K. Zhu, Y.-X. Feng, Y.Y. Xu, Preparation and characterization of improved fouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEG copolymers as additives, J. Membr. Sci. 2007, 294: 196–206.
    [183] J.W. Cahn, Critical point wetting, J. Chem. Phy. 1977, 66: 3667-3672
    [184]肖玲,欧阳星星,朱宝库,徐又一,含氟嵌段聚醚对聚偏氟乙烯微孔膜的共混改性研究,第三届中国膜科学与技术报告会,北京,2007.10
    [185]远双杰,分离CO2固定载体复合膜制备装置及制备工艺研究:[硕士学位论文],天津,天津大学,2007
    [186]王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:国防工业出版社,1992
    [187]姜云鹏,耐污染的纳米SiO2/PVA复合超滤膜的研制及应用:[博士学位论文],天津,天津大学,2002
    [188] J. Xu, Z.-L. Xu, Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent, J. Membr. Sci. 2002, 208: 203–212
    [189]罗菊芬,莫剑雄,液液界面法测超滤膜孔径及孔径分布,水处理技术,1996,22(5):254-260
    [190]丁马太,余乃梅,何旭新等,超滤膜平均孔径测算的新探讨,膜科学与技术,1992,12(4):59-61
    [191]吕晓龙,超滤膜孔径及其分布的测定方法I.常用测定方法讨论,水处理技术,1995,21(3):137-141
    [192]吕晓龙,超滤膜孔径及其分布的测定方法Ⅱ.两种测定方法设计,水处理技术,1995,21(5):253-256
    [193]冯健,陈平,利用小角X射线散射仪(SAXS)测定超滤膜孔径大小及分布,膜科学与技术,1994,14(1):54-59
    [194] J. Chen, J. Li, Z.-P. Zhao, D. Wang, C.-X. Chen, Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 5. Grafting of styrene in vapor phase and its application, Surface & Coatings Technology 2007, 201: 6789–6792
    [195] M. Iza, S. Woerly, C. Danumah, S. Kaliaguine, M. Bousmina, Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurement: thermoporometry, Polymer, 2005, 41: 5885-5893
    [196] M.R. Landry, Thermoporometry by differential scanning calorimetry: experimental considerations and applications, Thermochimica Acta, 2005, 433: 27–50
    [197]苏保卫,克林霉素磷酸酯乙醇水溶液的纳滤浓缩及其传递特性的研究:[博士学位论文],天津:天津大学,2004
    [198]赵英会,张念华,杜立新,鸡卵清蛋白表达控制,生物技术,2004,14(4):82-84
    [199]祝振鑫,吴立明,胡晓君,用鸡蛋清中的卵清蛋白测定常用超滤膜的切割分子量,膜科学与技术,1999,19(5):44-50
    [200]俞三传,高从堦,沉入沉淀相转化法制膜,膜科学与技术,2000,20(5):36-41
    [201]王国庆,张守海,杨大令,等,蒸发对新型聚芳醚腈酮超滤膜性能的影响,膜科学与技术,2005,25(3):18-21
    [202] C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids, J. Membr. Sci. 1992, 73: 259-275
    [203] T. Kajiyama, K. Tanaka, A. Takahara, Surface segregation of the higher surface free energy component in symmetric polymer blend films, Macromolecules 1998, 31: 3746–3749
    [204] L.P. Zhu, L. Xu, B.K. Zhu, Y.-X. Feng, Y.Y. Xu, Preparation and characterization of improved fouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEG copolymers as additives, J. Membr. Sci. 2007, 294: 196–206
    [205]王成国,丁洪太,侯绪荣,材料分析测试方法,上海:上海交通大学出版社,1994
    [206] Y. P. Guo, Y. Zhou, Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study, European Polymer Journal, 2007, 43(6): 2292-2297
    [207] V. Gupta, N. Miura, Electrochemically deposited polyaniline nanowire's network - A high-performance electrode material for redox supercapacitor,Electrochemical and Solid State Letters, 2005, 8(12): A630-A632
    [208] S. Q. Jiao, H. H. Zhou, J. H Chen, S. L Luo, Y. F. Kuang, Influence of the preparation conditions on the morphology of polyaniline electrodeposited by the pulse galvanostatic method, Journal of Applied Polymer Science, 2004, 94(4): 1389-1394
    [209] E.T. Kang, K.L. Tan, K. Kato, Y. Uyama, Y. Ikada, Surface modification and functionalization of polytetrafluoroethylene films, Macromolecules, 1996, 29: 6872-6879
    [210] L.Y. Ji, E.T. Kang, K.G. Neoh, Oxidation graft polymerization of aniline on PTFE films modified by surface hydroxylation and silanizatioin, Langmuir, 2002, 18: 9035-9040
    [211] W. Zhong, Y. Wang, Y. Yan, Y. Sun, J. Deng, W. Yang, Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons, J. Phys. Chem. B 2007, 111: 3918-3926
    [212] W. Zhong, S. Liu, X. Chen, Y. Wang, W. Yang, High-yield synthesis of superhydrophilic polypyrrole nanowire networks, Macromolecules, 2006, 39: 3224-3230
    [213] W. Zhong, J. Deng, Y. Yang, W. Yang, Synthesis of large-area three-dimensional polyaniline nanowire networks using a“soft template’”, Macromol. Rapid Commun., 2005, 26: 395–400
    [214] W. Zhong, Y. Yang, W. Yang, Oxidative graft polymerization of aniline on the surface of poly (propylene)-graft-polyacrylic acid films, Thin Solid Films, 2005, 479: 24-30
    [215] W. Zhong, J. Deng, Y. Wang, W. Yang, Oxidative graft polymerization of aniline on the modified surface of polypropylene films, Journal of Applied Polymer Science, 2007, 103: 2442-2450
    [216] W. Zhong, X. Chen, S. Liu, et al., Synthesis of highly hydrophilic polyaniline nanowires and sub-micro/nanostructured dendrites on poly (propylene) film surfaces, Macromolecular Rapid Communications, 2006, 27: 563-569
    [217] T. Sata, Y. Ishii, K. Kawamura, K. Matsusakiet, Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis, Journal of the Electrochemical Society, 1999, 146(2): 585-591
    [218] R. K. Nagarale, G. S. Gohil, V. K. Shahi,G. S. Trivedi, R. Rangarajanet, Preparation and electrochemical characterization of cation- and anion-exchange / polyaniline composite membranes, Journal of Colloid and Interface Science, 2004, 277(1): 162-171
    [219] R. K. Nagarale, G. S. Gohil, V.K. Shahiet, Sulfonated poly(ether ether ketone) / polyaniline composite proton-exchange membrane, Journal of Membrane Science, 2006, 280(1-2): 389-396
    [220] M.-H. Lee, H.J. Kim, E. Kim, et al., Effect of phase separation on ionic conductivity of poly(methyl methacrylate)-based solid polymer electrolyte, Solid State Ionics, 1996, 85: 91-98
    [221] T.A. Zawodzinski, J.M. Neeman, L.O. Sillerud, et al., Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, J. Phys. Chem., 1991, 95: 6040-6044
    [222] J.J. Summer, S.E. Creager, J.J. Ma, et al., Proton conductivity in Nafion117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane, J. Electrochem. Soc., 1998, 145(1): 107-110
    [223] L. Yu, J.-II Lee, K.-W Shin, Preparation of aqueous polyaniline dispersions by micellar-aided polymerization, Journal of Applied Polymer Science, 2003, 88, 1550-1555
    [224] Z. Wei, L. Zhang, M. Yu, Y. Yang, M. Wan, Self-assembling sub-mircrometer-sized tube junctions and dendrites of conducting polymers, Adv. Mater., 2003, 15(16): 1382-1385
    [225] L. Zhang, Y. Long, Z. Chen, M. Wan, The effect of hydrogen bonding on self-assembled polyaniline nanostructures, Adv. Funt. Mater., 2004, 14(7): 693-697
    [226] C.-H Chen, C.-F. Mao, S.-F. Su, Y.-Y. Fahn, Preparation and characterization of conductive poly (vinyl alcohol)/polyaniline doped by dodecyl benzene sulfonic acid (PVA/PANDB) blend films, Journal of Applied Polymer Science, 2007, 103: 3415–3422
    [227] P. Wang, K.L. Tan, E.T. Kang, K.G. Neoh, Preparation and characterization of semi-conductive poly (vinylidene fluoride)/polyaniline blends and membranes, Applied Surface Science, 2002, 193: 36-45
    [228] C. R. Martin, W. Liang, V. Menon, R. Parthasarathy and A. Parthasarathy, Electronically conductive polymers as chemically-selective layers for membrane-based separations, Synthetic Metals, 1993, 57: 3766-3773
    [229] C.R. Martin, W. Liang, V. Menon, R. Parthasarathy, A. Parthasarathy, Electronically conductive polymers as chemically-selective layers for membrane-based separations, Synthetic Metals, 1993, 55-57: 3766-3773
    [230] D.L. Feldheim, C. M. Elliott, Switchable gate membranes. Conducting polymer films for the selective transport of neutral solution species, Journal of Membrane Science, 1992, 70: 9-15
    [231] I.-H. Loh, R.A. Moody, Electrically conductive membranes: synthesis andapplications, Journal of Membrane Science, 1990, 50: 31-49
    [232] Z. Cai, C.R. Martin, Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities, Journal of the American Chemical Society, 1989, 111: 4138-4139
    [233] J. Roeder, V. Zucolotto, S. Shishatskiy, J.R. Bertolino, S.P. Nunes, A.T.N. Pires, Mixed conductive membrane: Aniline polymerization in an acid SPEEK matrix, Journal of Membrane Science, 2006, 279: 70–75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700