用户名: 密码: 验证码:
色谱法拆分手性药物中间体的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性药物的研究是目前国际新药开发的主要方向之一,开发手性药物单一对映体的制备或拆分技术也是制药行业亟待解决的重大课题。随着各种类型手性固定相的成功研制及商品化,以手性固定相为分离介质的制备色谱分离技术,如模拟移动床色谱,为单一对映体药物及中间体的获得开辟了新途径,是一种很有应用潜力的拆分技术。本文选取手性抗抑郁药帕罗西汀的关键中间体——帕罗醇和帕罗酮酯为研究对象,采用液相色谱和超临界流体色谱技术对其进行拆分,对色谱技术应用的基础性问题进行研究,开展了如下几方面的研究工作:
     1.选择对帕罗醇和帕罗酮酯对映体有较好拆分能力的手性固定相,考察流动相改性剂(包括乙醇、正丙醇和异丙醇)对色谱分离的影响,优化色谱条件,初步探讨其色谱拆分过程的手性识别机理。实验结果表明:帕罗醇和帕罗酮酯对映体在Chiralpak AD多糖手性固定相上均有较好的分离效果,帕罗酮酯对映体在Kromasil CHI-TBB酒石酸二酰胺类手性固定相上基本实现基线分离;对映体的保留因子和分离度均随改性剂含量的增加而下降,对分离因子的影响很小,帕罗酮酯在Chiralpak AD柱的保留因子随流动相极性增加反而下降的反常现象也表明氢键作用并非其主要的手性识别机理。
     2.以集总动力学模型为基础,利用线性色谱的矩量分析法测定不同色谱条件下帕罗醇和帕罗酮酯对映体在Chiralpak AD和Kromasil CHI-TBB手性固定相上平衡常数、轴向扩散系数以及总传质系数等模型参数。结果表明:温度变化对轴向扩散系数的影响很小,在Chiralpak AD柱上的轴向扩散系数约为10~(-5)数量级(cm~2/s),帕罗酮酯在Kromasil CHI-TBB柱上的轴向扩散系数为10~(-4)数量级(cm~2/s);本文的色谱过程属快速传质过程,理论等板高度(HETP)的50%以上来自轴向扩散;所测模型参数基本能近似描述本文的手性色谱分离过程。
     3.建立了一套动态法在线测定固体溶质在超临界流体中溶解度的实验装置和方法,测定了8~24MPa、308.15~328.15K范围内,帕罗醇和帕罗酮酯在超临界二氧化碳中的溶解度数据。在实验范围内,帕罗醇的摩尔分率溶解度在7.27×10~(-5)至1.184×10~(-3)之间;帕罗酮酯的摩尔分率溶解度在3.38×10~(-4)至4.57×10~(-3)之间。溶解度随着压力的上升、密度的增加而增大,等密度下溶解度随温度升高而增大。帕罗醇和帕罗酮酯的溶解度等温曲线均存在交叉点,交叉压力分别为13 MPa和14 MPa。分别采用Peng-Robinson(PR)状态方程模型和Kumar-Johnston、Chrastil以及Méndez-Santiago-Teja等半经验式方程对溶解度数据进行关联,状态方程模型关联效果较差,总体平均相对偏差(AARD)在10%以上,最高将近达29%;在三个半经验式方程中,Kumar-Johnston模型的关联效果最好,最大AARD值只有6.59%,Chrastil模型和Méndez-Santiago-Teja模型的关联效果相当,最大AARD值分别为10.12%和10.70%。
     4.研究帕罗西汀中间体在超临界流体色谱中的分离规律,以Chiralpak AD柱为固定相,考察改性剂类型(包括甲醇、乙醇和异丙醇)、温度和压力对保留因子、分离因子和分离度的影响规律。结果表明对映体的保留因子均随着改性剂含量的增加而显著下降,当改性剂含量大于10%(v%)时,保留因子的下降趋势变缓;分离帕罗酮酯时,异丙醇作改性剂的分离度和分离因子均最大,分离帕罗醇对映体时,甲醇是最佳的改性剂。保留因子和分离度均随压力的增加而减小,异丙醇作改性剂时,保留因子随温度的升高而增大;甲醇作改性剂时,压力<18MPa下保留因子随着温度的升高而增大,压力≥18MPa下保留因子随着温度的升高而减小。分离因子几乎不受压力变化的影响,随着温度的升高而下降,低温对分离有利。
     5.借鉴液相色谱分离过程的集总动力学模型,提出将轴向扩散对色谱峰展宽的贡献归结于表观总传质系数,由线性色谱的理论等板高度方程对总传质系数进行估算。采用特征点洗脱法研究SC-CO_2状态下(+)和(-)-帕罗醇对映体在Chiralpak AD手性固定相的吸附平衡关系,实验结果表明吸附量随压力的升高而减小,而温度升高吸附量的变化很小。结合所得的传质参数与吸附平衡关系,通过色谱模拟预测色谱流出曲线,其结果与实验点吻合良好。
Future directions in modern drug discovery will be focused on the development of chiral drug candidates. To explore new technologies for resolution and preparation of optically pure enantiomers is also a critical challenge to pharmaceutical industry. As an increasing number of chiral stationary phases have been developed and some of them are commercially available, preparative chromatography based on chiral stationary phase, such as simulated moving bed chromatography, has received significant attention and is now considered as a powerful approach for preparation of single-enantiomer drugs or chiral intermediates. In this work, the key intermediates of paroxetine trans-(±)-4-(4'-fluorophenyl)-1-methylpiperidine (1) and trans-(±)-3-ethoxycarbonyl-4-(4'-fluorophenyl)-1-methylpiperidine-2,6-dione (2) were resolved by chiral liquid chromatography and supercritical fluid chromatography. Some fundamental issues were studied. The details are summarized as follows.
     1. The performance of different chiral stationary phases for the racemic compounds 1 and 2 were compared by HPLC. The effects of the alcohol modifier including ethanol, 1-propanol and 2-propanol on enantioseparation were investigated. It was found that compounds 1 and 2 were well separated on Chiralpak AD-H and that only compound 2 can be baseline resolved on Kromasil CHI-TBB. Retention factor and resolution for all enantiomers decreased with the content of modifier increased, while minor variation in enantioselectivity was observed. For compound 2, an unusual phenomena, i.e., the retention of enantiomer on Chiralpak AD-H increased when the alcohol modifier was changed from 2-propanol to ethanol, was found. This implied that the chiral discrimination mechanism did not lie in hydrogen bonding.
     2. The equilibrium constants and axial dispersion and mass transfer coefficients were determined by moment analysis based on the lumped kinetic model for linear chromatography. The results show that axial dispersion coefficient did not change obviously as the temperature varied. In case of Chiralpak AD-H, the axial dispersion coefficients for both enantiomers are about 10~(-5) cm~2/s, while it is about 10~(-4) cm~2/s for compound 2 on Kromasil CHI-TBB column. Fast kinetics of mass transfer in both chiral stationary phases was observed and more than 50% of height equivalent of theoretical plate (HETP) comes from axial dispersion. The model parameters obtained were utilized to simulate the elution profiles and the simulated and experimental results match well.
     3. A flow-type apparatus has been established for solubility determination of solid in supercritical CO_2. The solubility of paroxetine intermediates in supercritical CO2 was measured in the pressure range from (8 to 24) MPa and at temperatures of (308.15, 318.15, 328.1) K. Results showed that under the present operation conditions, the solubility of compound 1 and 2 were in the range of (7.27×10~(-5) to 1.184×10~(-3)) and (3.38×10~(-4) to 4.57×10~(-3)) in mole fraction, respectively. The solubility increased with rising pressure or density at constant temperature as well with temperature increased at constant density. The crossover pressure for compound 1 and 2 can be found at about 13 and 14 MPa, respectively. The experimental solubility data were correlated with the Peng-Robinson equation of state with an AARD above 10%, besides empirical equations of Kumar-Johnston, Chrastil and Méndez-Santiago-Teja were also used to fit the data with an AARD of 6.59%, 10.12% and 10.70%, respectively.
     4. Separation of paroxetine intermediates by chiral supercritical fluid chromatography was studied. The effect of pressure, temperature and type of modifier in mobile phase on the retention factor, selectivity and resolution was investigated. It was found that retention for both enantiomers decreased markedly as modifier concentration rose up to 10% (vol%). In the case of racemate 2, better resolution was obtained when using 2-propanol as modifier in the place of methanol and ethanol, while for racemate 1, methanol provided the best performance. Both retention and resolution decreased with increase in pressure. When using 2-propanol as modifier, enantiomers were more retained as the temperature increased. Nevertheless, in the case of methanol as modifier, retention factor only increased with temperature increased at the pressure below 18 MPa. Increasing pressure had little significant effect on the selectivity, and lower temperature was favorable to the enantioseparation.
     5. The lumped kinetic model for liquid chromatography was adopted to describe the chromatographic process in supercritical fluid by introducing all band broadening effects to the overall mass transfer coefficient, which can be estimated from the equation of HETP. Adsorption isotherms of both enantiomers of compound 1 on Chiralpak AD from supercritical fluid were determined by a characteristic point (ECP) method. It was observed that adsorption capacity decreased with the increasing pressure, and minor variation was found when the temperature altered. With the adsorption isotherms and mass transfer coefficients obtained, the simulated elution profiles showed a good agreement with the experiments.
引文
1.尤启冬:林国强,手性药物——研究与应用.化学工业出版社:北京,2003.
    2.杨振云;张贻亮,手性工业.中国医药工业杂志 1996,27,(10),469-475.
    3.王普善;王宇梅,手性药物开发战略的再认识.精细与专用化学品 2004,12,(10),4-8.
    4.张骁;束梅英,手性药物研发进展.中国制药信息 2007,23,(12),7-9.
    5.Thayer,A.,Supercritical fluid chromatography gains favor in preparative-scale separations of enantiomers.Chemical & Engineering News 2005,83,(36),49-53.
    6.Jorgen,A.C.;Richard,ES.1981.
    7.Dechant,K.L.;Clissold,S.P.,Paroxetine.A review of its pharmacodynamic and pharmacokinetic properties,and therapeutic potential in depressive illness.Drugs 1991,41,(2),225-253.
    8.钱澄宇;王祖承,帕罗西汀介绍.临床精神医学杂志 1998,8,(6),358-360.
    9.于振云,我国抗抑郁药的生产与市场分析.化工中间体 2004,1,(1),24-31.
    10.Rouhi,A.M.,Chiral roundup.Chemical & Engineering News 2002,80,(23),43-50.
    11.De Risi,C.;Fanton,G.;Pollini,G.P.;Trapella,C.;Valente,F.;Zanirato,V.,Recent advances in the stereoselective synthesis of trans-3,4-disubstituted-piperidines:applications to (-)-paroxetine.Tetrahedron-Asymmetry 2008,19,(2),131-155.
    12.林国强;陈耀全;陈新滋,手性合成——不对称反应及其应用.科学出版社:北京,2000.
    13.Gill,C.D.;Greenhalgh,D.A.;Simpkins,N.S.,Application of the chiral base desymmetrisation of imides to the synthesis of the alkaloid jamtine and the antidepressant paroxetine.Tetrahedron 2003,59,(46),9213-9230.
    14.Ito,M.;Sakaguchi,A.;Kobayashi,C.;Ikariya,T.,Chemoselective hydrogenation of imides catalyzed by Cp*Ru(PN) complexes and its application to the asymmetric synthesis of paroxetine.Journal of the American Chemical Society 2007,129,(2),290-291.
    15.Brandau,S.;Landa,A.;Franzen,J.;Marigo,M.;Jorgensen,K.A.,Organocatalytic conjugate addition of malonates to alpha,beta-unsaturated aldehydes:Asymmetric formal synthesis of (-)-paroxetine,chiral lactams,and lactones.Angewandte Chemie-International Edition 2006,45,(26),4305-4309.
    16.Rossi,R.;Turchetta,S.;Donnarumma,M.The process for the production of paroxetine.WO00/50422,2000.
    17.尤田耙,手性化合物的现代研究方法.中国科学技术大学出版社:合肥,1993.
    18.Jorgen,A.C.;Richard,F.S.4-Phenylpiperidine compounds.US400176,1977.
    19.Brook,C.S.;Curzons,A.D.;Grady,C.W.;O'Connor,A.J.Novel process.US0004352,2003.
    20.焦育红 一种盐酸帕罗西汀重要中间体的制备方法.CN101205211,2008.
    21.Ali,F.E.;Thomas,M.R.Process for the preparation of aryl-piperidine carbinols.EP0223334,1987.
    22.Kiyoshi,S.;Nobushige,I.Optical resolution of a piperidine derivative.EP1384711,2004.
    23.张玉彬,生物催化的手性合成.化学工业出版社:北京,2002.
    24.de Gonzalo,G.;Brieva,R.;Sanchez,V.M.;Bayod,M.;Gotor,V.,Enzymatic resolution of trans-4-(4'-fluorophenyl)-3-hydroxymethylpiperidines,key intermediates in the synthesis of (-)-paroxetine.Journal of Organic Chemistry 2001,66,(26),8947-8953.
    25.de Gonzalo,G.;Brieva,R.;Sanchez,V.M.;Bayod,M.;Gotor,V.,Anhydrides as acylating agents in the enzymatic resolution of an intermediate of(-)-paroxetine.Journal of Organic Chemistry 2003,68,(8),3333-3336.
    26.de Gonzalo,G.;Brieva,R.;Sanchez,V.M.;Bayod,M.;Gotor,V.,Enzymatic alkoxycarbonylation reactions on the intermediate in the synthesis of(-)-paroxetine,trans-N-benzyloxycarbonyl-4-(4'-fluorophenyl)-3-hydroxymethyl-piperidine.Tetrahedron-Asymmetry 2003,14,(12),1725-1731.
    27.Palomo,J.M.;Femandez-Lorente,G.;Mateo,C.;Fernandez-Lafuente,R.;Guisan,J.M.,Enzymatic resolution of(+/-)-trans-4-(4'-fluorophenyl)-6-oxo-piperidin-3-ethyl carboxylate,an intermediate in the synthesis of(-)-Paroxetine.Tetrahedron-Asymmetry 2002,13,(21),2375-2381.
    28.Palomo,J.M.;Fernandez-Lorente,G.;Mateo,C.;Fuentes,M.;Guisan,J.M.;Fernandez-Lafuente,R.,Enzymatic production of(3S,4R)-(-)-4-(4'-fluorophenyl)-6-oxo-piperidin-3-carboxylic acid using a commercial preparation of lipase A from Candida antarctica:the role of a contaminant esterase.Tetrahedron-Asymmetry 2002,13,(24),2653-2659.
    29.Fernandez-Lorente,G.;Palomo,J.M.;Mateo,C.;Guisan,J.M.;Fernandez-Lafuente,R.,Resolution of paroxetine precursor using different lipases-Influence of the reaction conditions on the enantio selectivity of lipases.Enzyme and Microbial Technology 2004,34,(3-4),264-269.
    30.Schulte,M.;Strube,J.,Preparative enantioseparation by simulated moving bed chromatography.Journal of Chromatography A 2001,906,(1-2),399-416.
    31.Nagamatsu,S.;Murazumi,K.;Makino,S.,Chiral separation of a pharmaceutical intermediate by a simulated moving bed process.Journal of Chromatography A 1999,832,(1-2),55-65.
    32.Seidel-Morgenstern,A.;Kessler,L.C.;Kaspereit,M.,New developments in simulated moving bed chromatography.Chemical Engineering & Technology 2008,31,(6),826-837.
    33.卢铁钢;杨茂俊,羧甲基.β-环糊精手性流动相添加剂法拆分帕罗西汀及其中间体对映体.色谱2007,25,(6),830-833.
    34.张孝君;倪乐平,盐酸帕罗西汀中R-异构体的HPLC测定.中国医药工业杂志 2005,36,(3),461-462.
    35.Ferretti,R.;Gallinella,B.;La Torte,E;Turchetto,L.,Validated chiral high-performance liquid chromatographic method for the determination of trans-(-)-paroxetine and its enantiomer in bulk and pharmaceutical formulations.Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1998,710,(1-2),157-164.
    36.Zukowski,J.;Brightwell,M.;De Biasi,V.,Chiral HPLC method for chiral purity determination of paroxetine drug substance.Chirality 2003,15,(7),600-604.
    37.Vivekanand,V.V.;Kumar,V.R.;Mohakhud,P.K.;Reddy,G.O.,Enantiomeric separation of the key intermediate of paroxetine using chiral chromatography.Journal of Pharmaceutical and Biomedical Analysis 2003,33,(4),803-809.
    38.Phinney,K.W.,Enantioselective separations by packed column subcritical and supercritical fluid chromatography.Analytical and Bioanalytical Chemistry 2005,382,(3),639-645.
    39.Schmalzing,D.;Nichlson,G.J.;Jung,M.;Schurig,V.,Enantiomer separation by capillary SFC and GC on immobilized permethyl-&b.beta;-cyclodextrin:a systematic comparison..J.Micro.Sep.1992,4,(1),23-28.
    40.Armstrong,D.W.;Tang,Y.;Ward,T.;Nichols,M.,Derivatized cyclodextrins immobilized on fused-silica capillaries for enantiomeric separations via capillary electrophoresis,gas chromatography,or supercritical fluid chromatography.Anal Chem.1993,65,(8),1114-1117.
    41.Schurig,V.;Jung,M.;Mayer,S.;Fluck,M.;Negura,S.;Jakubetz,H.,Unified enantioselective capillary chromatography on a chirasil-DEX stationary phase advantages of column miniaturization.J.Chromatogr.A 1995,694,(1),119-128.
    42. Liu, Y.; Lantz, A.W.; Armstrong, D.W., High efficiency liquid and super-/subcritical fluid-based enantiomeric separations: An overview. Journal of Liquid Chromatography & Related Technologies 2004, 27, (7-9), 1121-1178.
    43. Poole, CR, Progress in packed column supercritical fluid chromatography: materials and methods. Journal of Biochemical and Biophysical Methods 2000,43, (1 -3), 3-23.
    44. Mourier, P.A.; Eliot, E.; Caude, M.; Rosset, R.; Tambute, A., Supercritical and subcritical fluid chromatography on a chiral stationary phase for the resolution of phosphine oxide enantiomers. Anal. Chem. 1985, 57, (14), 2819-2823.
    45. Whatley, J., Enantiomeric separation by packed column chiral supercritical fluid chromatography. J. Chromatogr. A 1995, 697, (1-2), 251-255.
    46. Williams, K.L.; Sander, L.C., Enantiomer separations on chiral stationary phases in supercritical fluid chromatography. Journal of Chromatography A 1997, 785, (1-2), 149-158.
    47. Terfloth, G., Enantioseparations in super- and subcritical fluid chromatography. Journal of Chromatography A 2001,906, (1-2), 301-307.
    48. Mangelings, D.; Heyden, Y.V., Chiral separations in sub- and supercritical fluid chromatography. Journal of Separation Science 2008, 31, (8), 1252-1273.
    49. Cox, G.B., Preparative enantioselective chromatography. Blackwell: Oxfor, 2005.
    50. Anton, K.; Siffrin, C., Packed-column SFC in the pharmaceutical industry: cGMP aspects. Analusis 1999, 27, (8), 691-701.
    51. Jusforgues, P.; Shaimi, M.; Barth, D., Preparative supercritical fluid chromatography:Grams, Kilograms, and Tons. In Supercritical fluid chromatography with packed columns, Anton, K.; Berger, C., Eds. Marcel Dekker: New York, 1995; p 403.
    52. Subramanian, G., Chiral separation techniques.a practical approach. 3rd ed.; Wiley-VCH: Weinheim, 2007.
    53. Armstrong, D.W.; DeMond, W., Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J. Chromatogr. Sci. 1984, 22, (99), 411-415.
    54. Cyclobond Handbook. 6th ed.; Advanced Separation Technology, Inc.: Whippany, NJ, 2002.
    55. Beesley, T.E.; Scott, R.P.W., Chiral chromatography. John Wiley & Sons: Chichester, 1998.
    56. Macaudiere, P.; Caude, M.; Rosset, R.; Tambute, A., Resolution of racemic amides and phosphine oxide on a β-cylcodextrin-bonded stationary phase by subcritical fluid chromatography. J. Chromatogr. 1987,405, 135-143.
    57. Macaudiere, P.; Caude, M.; Rosset, R.; Tambute, A., Chiral resolutions in SFC: mechanisms and applications with various chiral stationary phases. J. Chromatogr. Sci. 1989, 27, (10), 583-591.
    58. Williams, K.L.; Sander, L.C.; Wise, S.A., Comparison of liquid and supercritical fluid chromatography using naphthylethylcarbamoylated-&b.beta;-cyclodextrin chiral stationary phase. J. Chromatogr. A 1996, 746, (1), 91-101.
    59. Ilisz, I.; Berkecz, R.; Peter, A., HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases: A review. Journal of Separation Science 2006, 29, (10), 1305-1321.
    60. Armstrong, D.W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwill, C.; Chen, J., Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal. Chem. 1994, 66, (9), 1473-1484.
    61. Chirobiotic Handbook. 4th ed.; Advanced Separations Technologies, Inc.: Whippany, NJ, 2002.
    62. Dungelova, J.; Lehotay, J.; Rojkovicova, T., HPLC chiral separations utilising macrocyclic antibiotics - A review. Chemia Analityczna 2004,49, (1), 1-17.
    63. Ward, T.J.; Farris, A.B., Chiral separations using the macrocyclic antibiotics: a review. Journal of Chromatography A 2001,906, (1-2), 73-89.
    64. Berthod, A.; Liu, Y.; Bagwill, C.; Armstrong, D.W., Facile LC enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase. J. Chromatogr. A 1996, 731, (1-2), 123-137.
    65. Peter, A.; Torok, G.; Armstrong, D.W., High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase. Journal of Chromatography A 1998, 793, (2), 283-296.
    66. Donnecke, J.; Svensson, L.A.; Gyllenhaal, O.; Karlsson, K.E.; Karlsson, A.; Vessman, J., Evaluation of a Vancomycin chiral stationary phase in packed capillary supercritical fluid chromatography. Journal of Microcolumn Separations 1999, 11, (7), 521-533.
    67. Toribio, L.; David, F.; Sandra, P., Enantiomeric separation of some cyclic ketones and dioxalene derivatives by chiral SFC. Quimica Analitica 1999, 18, (3), 269-273.
    68. Medvedovici, A.; Sandra, P.; Toribio, L.; David, F., Chiral packed column subcritical fluid chromatography on polysaccharide and macrocyclic antibiotic chiral stationary phases. Journal of Chromatography A 1997, 785, (1-2), 159-171.
    69. Svensson, L.A.; Owens, P.K., Enantioselective supercritical fluid chromatography using Ristocetin A chiral stationary phases. Analyst 2000,125, (6), 1037-1039.
    70. Liu, Y.; Berthod, A.; Mitchell, C.R.; Xiao, T.L.; Zhang, B.; Armstrong, D.W., Super/subcritical fluid chromatography chiral separations with macrocyclic glycopeptide stationary phases. Journal of Chromatography A 2002, 978, (1-2), 185-204.
    71. Liu, Y.; Rozhkov, R.V.; Larock, R.C.; Xiao, T.L.; Armstrong, D.W., Fast super/subcritical fluid chromatography enantiomeric separations of dihydrofurocoumarin derivatives with macrocyclic glycopeptide stationary phases. Chromatographia 2003, 58, (11-12), 775-779.
    72. Hesse, G.; Hagel, R., Complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 1973, 6, (6), 277-280.
    73. Lindner, K.R.; Mannschreck, A., Separation of enantiomers by high-performance liquid chromatography on triacetylcellulose. J. Chromatogr. 1980, 193, (2), 308-310.
    74. Blaschke, G., Chromatographic resolution of chiral drugs on polyamides and cellulose triacetate. J. Liq. Chromatogr. 1986,9, (2-3), 341-368.
    75. Okamoto, Y.; Kawashima, M.; Yamamoto, K.; Hatada, K., Useful chiral packing materials for high-performance liquid chromatographic resolution. Cellulose triacetate and tribenzoate coated on macroporous silica gel. Chem. Lett. 1984, 13, (5), 739-742.
    76. Okamoto, Y.; Kawashima, M.; Hatada, K., Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel. J. Am. Chem. Soc. 1984, 106, (18), 5357-5359.
    77. Ichida, A.; Shibata, T.; Okamoto, I.; Yuki, Y.; Namikoshi, N.; Toga, Y., Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 1984, 19, (1), 280-294.
    78. Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y., Immobilized polysaccharide-based chiral stationary phases for HPLC. Polymer Journal 2006, 38, (2), 91-108.
    79. Chenl, X.M.; Yamamoto, C.; Okamoto, Y., Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography. Pure and Applied Chemistry 2007, 79,(9), 1561-1573.
    80. Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y., Immobilized polysaccharide derivatives: Chiral packing materials for efficient HPLC resolution. Chemical Record 2007, 7, (2), 91-103.
    81. Anton, K.; Eppinger, J.; Frederiksen, L.; Francotte, E.; Berger, T.A.; Wilson, W.H., Chiral separations by packed-column super- and subcritical fluid chromatography. Journal of chromatography 1994, 666, (1-2), 395-401.
    82. Bernal, J.L.; Toribio, L.; del Nozal, M.J.; Nieto, E.M.; Montequi, M.I., Separation of antifungal chiral drugs by SFC and HPLC: a comparative study. Journal of Biochemical and Biophysical Methods 2002, 54, (1-3), 245-254.
    83. Toribio, L.; del Nozal, M.J.; Bernal, J.L.; Alonso, C.; Jimenez, J.J., Comparative study of the enantioselective separation of several antiulcer drugs by high-performance liquid chromatography and supercritical fluid chromatography. Journal of Chromatography A 2005, 1091, (1-2), 118-123.
    84. del Nozal, M.J.; Toribio, L.; Bernal, J.L.; Alonso, C.; Jimenez, J.J., Chiral separation of omeprazole and several related benzimidazoles using supercritical fluid chromatography. Journal of Separation Science 2004,27, (12), 1023-1029.
    85. Toribio, L.; Alonso, C.; del Nozal, M.J.; Bernal, J.L.; Jimenez, J.J., Enantiomeric separation of chiral sulfoxides by supercritical fluid chromatography. Journal of Separation Science 2006, 29, (10), 1363-1372.
    86. Svensson, S.; Karlsson, A.; Gyllenhaal, O.; Vessman, J., Chiral separations of metoprolol and some analogs with carbon dioxide on Chiralcel OD and Chiralpak AD stationary phases. Use of chemometrics. Chromatographia 2000, 51, (5-6), 283-293.
    87. Phinney, K.W.; Sander, L.C., Additive concentration effects on enantioselective separations in supercritical fluid chromatography. Chirality 2003, 15, (4), 287-294.
    88. Stringham, R.W., Chiral separation of amines in subcritical fluid chromatography using polysaccharide stationary phases and acidic additives. Journal of Chromatography A 2005, 1070, (1-2), 163-170.
    89. VanOverbeke, A.; Sandra, P.; Medvedovici, A.; Baeyens, W.; Aboulenein, H.Y., Application of chiralcel OJ in supercritical fluid chromatography for the resolution of different groups of frequently used drug racemates. Chirality 1997, 9, (2), 126-132.
    90. Aboul-Enein, H.Y.; Ali, I., Chiral separations by liquid chromatography and related technologies. Marcel Dekker: New York, 2003.
    91. Yang, G.S.; Yuan, S.L.; Lin, X.J.; Qi, Z.N.; Liu, C.B.; Aboul-Enein, H.Y.; Felix, G., The study of chiral discrimination of organophosphonate derivatives on pirkle type chiral stationary phase by molecular modeling. Talanta 2004,64, (2), 320-325.
    92. Zhao, C.F.; Cann, N.M., The docking of chiral epoxides on the Whelk-O1 stationary phase: A molecular dynamics study. Journal of Chromatography A 2007, 1149, (2), 197-218.
    93. Francotte, E.R., Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. Journal of Chromatography A 2001, 906, (1-2), 379-397.
    94. Hyun, M.H.; Kang, M.H.; Han, S.C., Liquid chromatographic resolution of 2-hydroxycarboxylic acids a new chiral stationary phase derived from (S)-leucine. Journal of Chromatography A 2000, 868, (1), 31-39.
    95. Machida, Y.; Nishi, H.; Nakamura, K..; Nakai, H.; Sato, T., Enantiomeric separation of diols and beta-amino alcohols by chiral stationary phase derived from (R,R)-tartramide. Journal of Chromatography A 1997, 757, (1-2), 73-79.
    96. VatonChanvrier, L.; Peulon, V.; Combret, Y.; Combret, J.C., Synthesis, characterization and enantioselectivity of cholic acid-bonded phases for high performance liquid chromatography. Chromatographia 1997,46, (11-12), 613-622.
    97. Iuliano, A.; Salvadori, P.; Felix, G., Synthesis of a new family of four deoxycholic acid derived chiral stationary phases and their evaluation in the HPLC resolution of racemic compounds. Tetrahedron-Asymmetry 1999, 10, (17), 3353-3364.
    98. Williams, K.L.; Sander, L.C.; Wise, S.A., Comparison of liquid and super-critical fluid chromatography for the separation of enantiomers on chiral stationary phases. Journal of Pharmaceutical and Biomedical Analysis 1997, 15, (11), 1789-1799.
    99. Terfloth, G.J.; Pirkle, W.H.; Lynam, K.G.; Nicolas, E.C., Broadly applicable polysiloxane-based chiral stationary phase for high-performance liquid chromatography and supercritical fluid chromatography. J. Chromatogr. A 1995, 705, (2), 185-194.
    100. Wolf, C.; Pirkle, W.H., Enantioseparations by subcritical fluid chromatography at cryogenic temperatures. Journal of Chromatography A 1997, 785, (1-2), 173-178.
    101. Edge, A.M.; Heaton, D.M.; Bartle, K.D.; Clifford, A.A.; Myers, P., A computational study of the chromatographic separation of racemic mixtures. Chromatographia 1995, 41, (5-6), 161-166.
    102. Bargmann-Leyder, N.; Sella, C.; Bauer, D.; Tambute, A.; Caude, M., Supercritical Fluid Chromatographic Separation of .beta.-Blockers on Chyrosine-A: Investigation of the Chiral Recognition Mechanism Using Molecular Modeling. Anal. Chem. 1995, 67, (5), 952-958.
    103. Welch, C.J.; Leonard, W.R.; DaSilva, J.O.; Biba, M.; Albaneze-Walker, J.; Henderson, D.W.; Laing, B.; Mathre, D.J., Preparative chiral SFC as a green technology for rapid access to enantiopurity in pharmaceutical process research. Lc Gc Europe 2005, 18, (5), 264-+.
    104. Wu, D.R.; Leith, L.; Balasubramanian, B.; Palcic, T.; Wang-Iverson, D., The impact of chiral supercritical fluid chromatography in drug discovery: From analytical to mudtigram scale. American Laboratory 2006,38, (12), 24-+.
    105. Geiser, F.; Schultz, M.; Betz, L.; Shaimi, M.; Lee, J.; Champion, W., Direct, preparative enantioselective chromatography of propranolol hydrochloride and thioridazine hydrochloride using carbon dioxide-based mobile phases. Journal of Chromatography A 1999, 865, (1-2), 227-233.
    106. Kraml, C.M.; Zhou, D.H.; Byrne, N.; McConnell, O., Enhanced chromatographic resolution of amine enantiomers as carbobenzyloxy derivatives in high-performance liquid chromatography and supercritical fluid chromatography. Journal of Chromatography A 2005, 1100, (1), 108-115.
    107. Majewski, W.; Valery, E.; Ludemann-Hombourger, O., Principle and applications of supercritical fluid chromatography. Journal of Liquid Chromatography & Related Technologies 2005,28,(7-8), 1233-1252.
    108. Welch, C.J.; Fleitz, F.; Antia, F.; Yehl, P.; Waters, R.; Ikemoto, N.; Armstrong, J.D.; Mathre, D.J., Chromatography as an enabling technology in pharmaceutical process development: Expedited multikilogram preparation of a candidate HIV protease inhibitor. Organic Process Research & Development 2004, 8, (2), 186-191.
    109. White, C., Integration of supercritical fluid chromatography into drug discovery as a routine support tool - Part I. Fast chiral screening and purification. Journal of Chromatography A 2005, 1074,(1-2), 163-173.
    110. Yan, T.Q.; Orihuela, C., Rapid and high throughput separation technologies - Steady state recycling and supercritical fluid chromatography for chiral resolution of pharmaceutical intermediates. Journal of Chromatography A 2007, 1156, (1-2), 220-227.
    111. Yanik, G.; Mannerino, F.; Kocergin, J., Preparative SFC separation of enantiomers using Whelk-O(R). Lc Gc North America 2005, 34-34.
    112. Cox, G.; Stringham, R.; Matabe, A., Resolution of flurbiprofen enantiomers by preparative chiral supercritical fluid chromatography. Lc Gc North America 2002, 24-24.
    113. Peper, S.; Lubbert, M.; Johannsen, M.; Brunner, G., Separation of ibuprofen enantiomers by supercritical fluid simulated moving bed chromatography. Separation Science and Technology 2002, 37, (11), 2545-2566.
    114. Denet, F.; Hauck, W.; Nicoud, R.M.; Di Giovanni, O.; Mazzotti, M.; Jaubert, J.N.; Morbidelli, M., Enantioseparation through supercritical fluid simulated moving bed (SF-SMB) chromatography. Industrial & Engineering Chemistry Research 2001,40, (21), 4603-4609.
    115.Francotte,E.;Lindner,W.,Chirality in drug research.Wiley-VCH:Weinheim,2007.
    116.Zhang,Y.;Wu,D.R.;Wang-Iverson,D.B.;Tymiak,A.A.,Enantioselective chromatography in drug discovery.Drug Discovery Today 2005,10,(8),571-577.
    117.Snyder,L.R.,Role of the solvent in liquid-solid chromatography.Anal.Chem.1974,46,(11),1384-1393.
    118.卢佩章;戴朝政;张祥民,色谱理论基础.科学出版社:北京,1997.
    119.Wenslow,R.M.;Wang,T.,Solid-state NMR characterization of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary-phase structure as a function of mobile-phase composition.Analytical Chemistry 2001,73,(17),4190-4195.
    120.Pirkle,W.H.;Pochapsky,T.C.,Considerations of chiral recognition relevant to the liquid chromatography separation of enantiomers Chem.Rev.1989,89,(2),347-362.
    121.Ye,Y.K.;Bai,S.;Vyas,S.;Wirth,M.J.,NMR and computational studies of chiral discrimination by amylose tris(3,5-dimethylphenylcarbamate).Journal of Physical Chemistry B 2007,111,(5),1189-1198.
    122.Yamamoto,C.;Yashima,E.;Okamoto,Y.,Structural analysis of amylose tris(3,5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC.Journal of the American Chemical Society 2002,124,(42),12583-12589.
    123.Okamoto,Y.;Yashima,E.;Yamamoto,C.,NMR studies of chiral discrimination by phenylcarbamate derivatives of cellulose.Macromolecular Symposia 1997,120,127-137.
    124.Bereznitski,Y.;LoBrutto,R.;Variankaval,N.;Thompson,R.;Thompson,K.;Sajonz,R.;Crocker,L.S.;Kowal,J.;Cai,D.;Journet,M.;Wang,T.;Wyvratt,J.;Grinberg,N.,Mechanistic aspects of chiral discrimination on an amylose tris(3,5-dimethylphenyl)carbamate.Enantiomer 2002,7,(6),305-315.
    125.Calabro,M.L.;Raneri,D.;Tommasini,S.;Ficarra,R.;Alcaro,S.;Gallelli,A.;Micale,N.;Zappala,M.;Ficarra,P.,Enantioselective recognition of 2,3-benzodiazepin-4-one derivatives with anticonvulsant activity on several polysaccharide chiral stationary phases.Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2006,838,(1),56-62.
    126.Okamoto,Y.;Yashima,E.,Polysaccharide derivatives for chromatographic separation of enantiomers.Angewandte Chemie-International Edition 1998,37,(8),1020-1043.
    127.Wang,T.;Wenslow,R.M.,Effects of alcohol mobile-phase modifiers on the structure and chiral selectivity of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase.Journal of Chromatography A 2003,1015,(1-2),99-110.
    128.OBrien,T.;Crocker,L.;Thompson,R.;Thompson,K.;Toma,P.H.;Conlon,D.A.;Feibush,B.;Moeder,C.;Bicker,G.;Grinberg,N.,Mechanistic aspects of chiral discrimination on modified cellulose.Analytical Chemistry 1997,69,(11),1999-2007.
    129.Aboul-Enein,H.Y.,Chiral separation of some non-steroidal anti-inflammatory drugs on tartardiamide DMB chiral stationary phase by HPLC.Journal of Separation Science 2003,26,(6-7),521-524.
    130.Wang,F.;O'Brien,T.;Dowling,T.;Bicker,G.;Wyvratt,J.,Unusual effect of column temperature on chromatographic enantioseparation of dihydropyrimidinone acid and methyl ester on amylose chiral stationary phase.Journal of Chromatography A 2002,958,(1-2),69-77.
    131.翁文;姚碧霞;陈秀琴;陈友遵;林文士;曾庆乐,液相色谱手性拆分机理的热力学方法研究.化学进展 2006,18,(7-8),1056-1064.
    132.Guiochon,G.,Fundamentals of preparative and nonlinear chromatography.Academic Press:Boston,1994.
    133.Guiochon,G.,Preparative liquid chromatography.Journal of Chromatography A 2002,965,(1-2),129-161.
    134.Asnin,L.;Kaumarski,K.;Felinger,A.;Gritti,F.;Guiochon,G.,Adsorption of the enantiomers of 3-chloro-1-phenyl-propanol on silica-bonded chiral quinidine carbamate.Journal of Chromatography A 2006,1101,(1-2),158-170.
    135.Khattabi,S.;Cherrak,D.E.;Fischer,J.;Jandera,P.;Guiochon,G.,Study of the adsorption behavior of the enantiomers of 1-phenyl-1-propanol on a cellulose-based chiral stationary phase.Journal of Chromatography A 2000,877,(1-2),95-107.
    136.Lai,S.M.;Lin,Z.C.;Loh,R.R.,Optimization of the separation of 1,1'-bi-2-naphthol enantiomers in preparative liquid chromatography.Journal of the Chinese Institute of Chemical Engineers 2000,31,(5),507-522.
    137.Fornstedt,T.;Zhong,G.;Bensetiti,Z.;Guiochon,G.,Experimental and theoretical study of the adsorption behavior and mass transfer kinetics of propranolol enantiomers on cellulase protein as the selector Anal Chem.1996,68,(14),2370-12378.
    138.Cherrak,D.E.;Khattabi,S.;Guiochon,G.,Adsorption behavior and prediction of the band profiles of the enantiomers of 3-chloro-1-phenyl-1-propanol-Influence of the mass transfer kinetics.Journal of Chromatography A 2000,877,(1-2),109-122.
    139.Lai,S.M.;Wu,C.M.,Continuous separation of enantiomers by simulated moving bed chromatography:Effect of operating parameters on the system performance.Journal of the Chinese Institute of Chemical Engineers 2003,34,(4),417-428.
    140.Ruthven,D.M.,Principle of Adsorption and Adsorption Processes.John Wiley and Sons:New York,1984.
    141.Suzuki,M.,Adsorption Engineering.Elsevier:Amsterdam,1990.
    142.Wilson,E.J.;Geankoplis,C.J.,Liquid mass transfer at very low Reynolds numbers in packed beds.Ind.Eng.Chem.Fund 1966,5,(1),9-14.
    143.Miyabe,K.;Guiochon,G.,Kinetic study of the mass transfer of S-Troger's base in the system cellulose triacetate and ethanol.Journal of Chromatography A 1999,849,(2),445-465.
    144.Yu,H.W.;Ching,C.B.,Kinetic and equilibrium study of the enantioseparation of fluoxetine on a new beta-cyclodextrin column by high performance liquid chromatography.Chromatographia 2001,54,(11-12),697-702.
    145.危凤;沈波;周先波,线上求解法和MATLAB用于色谱分离动力学模拟.计算机与应用化学 2005,22,(9),745-748.
    146.Bartle,K.D.;Clifford,A.A.;Jafar,S.A.;Shilstone,G.E,Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide.J.Phys.& Chem.Ref.Data 1991,20(4),713-756.
    147.Lucien,F.P.;Foster,N.R.,Solubilities of solid mixtures in supercritical carbon dioxide:a review.Journal of Supercritical Fluids 2000,17,(2),111-134.
    148.Yamini,Y.;Bahramifar,N.,Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide.Journal of Chemical and Engineering Data 2000,45,(1),53-56.
    149.Ravipaty,S.;Sclafani,A.G.;Fonslow,B.R.;Chesney,D.J.,Solubilities of substituted phenols in supercritical carbon dioxide.Journal of Chemical and Engineering Data 2006,51(4),1310-15.
    150.Asghari-Khiavi,M.;Yamini,Y.,Solubility of the drugs bisacodyl,methimazole,methylparaben,and Iodoquinol in supercritical carbon dioxide.Journal of Chemical and Engineering Data 2003,48,(1),61-65.
    151.Housaindokht,M.R.;Bozorgmehr,M.R.,Calculation of solubility of methimazole,phenazopyridine and propranolol in supercritical carbon dioxide.Journal of Supercritical Fluids 2008,43,(3),390-397.
    152.McHugh,M.A.;Seckner,A.J.;Yogan,T.J.,High Pressure Phase Behavior of Binary Mixtures of Octacosane and Carbon Dioxide.Industrial & Engineering Chemistry Research 1984,23,413-432.
    153. Duarte, A.R.C.; Coimbra, P.; de Sousa, H.C.; Duarte, C.M.M., Solubility of flurbiprofen in supercritical carbon dioxide. Journal of Chemical and Engineering Data 2004, 49, (3), 449-452.
    154. Matias, A.A.; Nunes, A.V.M.; Casimiro, T.; Duarte, C.M.M., Solubility of coenzyme Q10 in supercritical carbon dioxide. Journal of Supercritical Fluids 2004, 28, (2-3), 201-206.
    155. Hojjati, M.; Yamini, Y.; Khajeh, M.; Vatanar, A., Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations. Journal of Supercritical Fluids 2007,41, (2), 187-194.
    156. Bristow, S.; Shekunov, B.Y.; York, P., Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems. Industrial & Engineering Chemistry Research 2001,40, (7), 1732-1739.
    157. Huang, Z.; Kawi, S.; Chiew, Y.C., Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents. Journal of Supercritical Fluids 2004, 30, (1), 25-39.
    158. Huang, Z.; Sun, G.B.; Kawi, S.; Shi, Y.; Wen, R.; Song, S.W., Solubilities of xanthone and xanthene in supercritical CO2. Fluid Phase Equilibria 2005, 238, (1), 26-32.
    159. Montequi, I.; Alonso, E.; Martin, A.; Cocero, M.J., Solubility of diisopropoxititanium bis(acetylacetonate) in Supercritical carbon dioxide. Journal of Chemical and Engineering Data 2008, 53,(1), 204-206.
    160. Mishima, K.; Yamauchi, S.; Ito, M.; Ezawa, M.; Tanabe, D., Measurement of the solubilities of flavone and 3-hydroxyflavone in supercritical carbon dioxide by supercritical fluid chromatography. Solvent Extraction Research and Development-Japan 1999, 6, 176-181.
    161. Mishima, K.; Matsuyama, K.; Baba, M.; Ohuchi, M.; Hakushi, T., Measurement of the solubilities of undecanolide and pentadecanolactone in supercritical carbon dioxide by supercritical fluid chromatography. Solvent Extraction Research and Development-Japan 2001, 8, 215-222.
    162. Suleiman, D.; Estevez, L.A.; Pulido, J.C.; Garcia, J.E.; Mojica, C., Solubility of anti-inflammatory, anti-cancer, and anti-HIV drugs in supercritical carbon dioxide. Journal of Chemical and Engineering Data 2005, 50, (4), 1234-1241.
    163.Bartle, K.D.; Clifford, A.A.; Jafar, S.A., Measurement of solubility in supercritical fluids using chromatographic retention: the solubility of fluorene, phenanthrene, and pyrene in carbon dioxide. Journal of Chemical and Engineering Data 1990, 35, 355-360.
    164. Liong, K.K.; Foster, N.R.; Ting, S.S.T., Solubility of Cholesterol in Supercritical Carbon Dioxide. Journal of Chemical and Engineering Data 1991, 30, 2476-2482.
    165. Uchida, H.; Usui, I.; Fuchita, A.; Matsuoka, M., Solubility of (S)-Boc-piperazine and racemic boc-piperazine in supercritical carbon dioxide. Journal of Chemical and Engineering Data 2004, 49,(6), 1560-1564.
    166. Kopcak, U.; Mohamed, R.S., Caffeine solubility in supercritical carbon dioxide/co-solvent mixtures. Journal of Supercritical Fluids 2005, 34, (2), 209-214.
    167. Zhang, Z.T.; Li, W.M.; Jin, J.S.; Tian, G.H., Solubility of p-methylbenzene sulfonic acid in pure and modified Supercritical carbon dioxide. Journal of Chemical and Engineering Data 2008, 53, (2), 600-602.
    168. Sparks, D.L.; Estevez, L.A.; Hernandez, R.; Barlow, K.; French, T., Solubility of nonanoic (pelargonic) acid in supercritical carbon dioxide. Journal of Chemical and Engineering Data 2008, 53, (2), 407-410.
    169. Chylinski, K.; Gregorowicz, J., Solubilities of (1-hexanol, or 1,2-hexanediol, or 2-hydroxypropanoic acid ethyl ester, or 2-hydroxyhexanoic acid ethyl ester) in supercritical CO2. Journal of Chemical Thermodynamics 1998, 30, (9), 1131-1140.
    170. Anitescu, G.; Tavlarides, L.L., Solubility of individual polychlorinated biphenyl (PCB) congeners in supercritical fluids: CO2, CO2/MeOH and CO2/n-C4H10. Journal of Supercritical Fluids 1999, 14, (3), 197-211.
    171.Ngo,T.T.;Bush,D.;Eckert,C.A.;Liotta,C.L.,Spectroscopic measurement of solid solubility in supercritical fluids.Aiche Journal 2001,47,(11),2566-2572.
    172 Vetere,A.,A short-cut method to predict the solubilities of solids in supercritical carbon dioxide.Fluid Phase Equilibria 1998,148,(1-2),83-93.
    173.Abaroudi,K.;Trabelsi,F.;Recasens,F.,Quasi-static measurement of equilibrium solubilities in SC fluids:a mass transfer criterion.Fluid Phase Equilibria 2000,169,(2),177-189.
    174.Lim,G.B.;Holder,G.D.;Shah,Y.T.,Mass transfer in gas-solid systems at supercritical conditions.Journal of Supercritical Fluids 1990,3,(4),186-197.
    175.Catchpole,O.J.;King,M.B.,Measurement and correlation of binary diffusion coefficients in near critical fluids.Industrial & Engineering Chemistry Research 1994,33,(7),1828-1837.
    176.Span,R.;Wagner,A.,A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100K at pressures up to 800 MPa.J.Phys.& Chem.Ref.Data 1996,25,(6),1509-1596.
    177.Feenghour,A.;Wakeham,W.A.;Vesovic,V.,The viscosity of carbon dioxide.J.Phys.&Chem.Ref.Data 1998,27,31-44.
    178.Xing,H.B.;Yang,Y.W.;Su,B.G.;Huang,M.;Ren,Q.L.,Solubility of artemisinin in supercritical carbon dioxide.Journal of Chemical and Engineering Data 2003,48,(2),330-332.
    179.邢华斌.青蒿素的超临界流体吸附基础研究.硕士学位论文,浙江大学,2003.
    180.钱国平.黄花蒿中提取与纯化青蒿素的研究.博士学位论文,浙江大学,2007.
    181.Coimbra,P.;Blanco,M.R.;Silva,H.S.R.C.;Gil,M.H.;de Sousa,H.C.,Experimental determination and correlation of artemisinin's solubility in supercritical carbon dioxide.Journal of Chemical and Engineering Data 20116,51,(3),1097-1104.
    182.Kazarian,S.G.;Brantley,N.H.;West,B.L.;Vincent,M.F.;Eckert,C.A.,In situ spectroscopy of polymers subjected to supercritical CO2:Plasticization and dye impregnation.Applied Spectroscopy 1997,51,(4),491-494.
    183.Sparks,D.L.;Hernandez,R.;Estevez,L.A.;Meyer,N.;French,T.,Solubility of azelaic acid in supercritical carbon dioxide.Journal of Chemical and Engineering Data 20117,52,(4),1246-1249.
    184.Ozkal,S.G.;Yener,M.E.;Bayindirli,L.,The solubility of apricot kernel oil in supercritical carbon dioxide.International Journal of Food Science and Technology 20116,41,(4),399-404.
    185 Tsai,W.C.;Ruan,Y.H.;Rizvi,S.S.H.,Solubility measurement of methyl anthranilate in supercritical carbon dioxide using dynamic and static equilibrium systems.Journal of the Science of Food and Agriculture 2006,86,(13),2083-2091.
    186.Vatanara,A.;Najafabadi,A.R.;Khajeh,M.;Yamini,Y.,Solubility of some inhaled glucocorticoids in supercritical carbon dioxide.Journal of Supercritical Fluids 21105,33(1),21-25.
    187 Asghari-Khiavi,M.;Yamini,Y.;Farajzadeh,M.A.,Solubilities of two steroid drugs and their mixtures in supercritical carbon dioxide.Journal of Supercritical Fluids 20114,30,(2),111-117.
    188.Garmroodi,A.;Hassan,J.;Yamini,Y.,Solubilities of the drugs benzocaine,metronidazole benzoate,and naproxen in supercritical carbon dioxide.Journal of Chemical and Engineering Data 2004,49,(3),709-712.
    189.Ismadji,S.;Bhatia,S.K.,Solubility of selected esters in supercritical carbon dioxide.Journal of Supercritical Fluids 2003,27,(1),1-11.
    190.Yamini,Y.;Arab,J.;Asghari-khiavi,M.,Solubilities of phenazopyridine,propranolol,and methimazole in supercritical carbon dioxide.Journal of Pharmaceutical and Biomedical Analysis 2003,32,(1),181-187.
    191 Lee,L.S.;Huang,J.F.;Zhu,O.X.,Solubilities of solid benzoic acid,phenanthrene,and 2,3-dimethylhexane in supercritical carbon dioxide.Journal of Chemical and Engineering Data 2001,46,(5),1156-1159.
    192 Stassi,A.;Bettini,R.;Gazzaniga,A.;Giordano,F.;Schiraldi,A.,Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions.Journal of Chemical and Engineering Data 2000,45,(2),161-165.
    193.朱自强,超临界流体技术:原理和应用.化学工业出版社:北京,2000.
    194.Prausnitz,J.M.,Molecular Thermodynamics of Fhdd-Phase Equilibria.Prentice-Hall:New Jersery,1969.
    195.Poling,B.E.,Prausnitz,J.M.,O'Connell,J.P.,The Properties of Gases and Liquids.5th ed.;McGraw-Hill:New York,2001.
    196.Lyman,W.J.,Reehl,W.F.and Rosenblatt,D.H.,In Handbook of Chemical Property Estimation Methods,American Chemical Society:Washington,DC,1990.
    197.Fedors,R.A.,Method for estimating both the solubility parameters and molar volume of liquids.Polym.Eng.Sci.1974,14,(2),147-154.
    198.Chrastil,J.,Solubility of solids and liquids in supercritical gases.Journal of PHysical Chemistry 1982,86,3016-3021.
    199.Kumar,S.K.;Johnston,K.P.,Modelling the solubility of solids in supercritical fluids with density as the independent variable.Journal of Supercritical Fluids 1988,1,(1),15-22.
    200.Mendez-Santiago,J.;Teja,A.S.,Solubility of solids in supercritical fluids:Consistency of data and a new model for cosolvent systems.Industrial & Engineering Chemistry Research 2000,39,(12),4767-4771.
    201.谭飞;杨基础;沈忠耀;汪家鼎,超临界流体中物质溶解度的研究.化工学报 1989,40,(4),402-409.
    202.周庆荣;张泽廷;朱美文;于恩平,固体溶质在含夹带剂超临界流体中的溶解度.化工学报 1995,46,(3),317-323.
    203.Jiang,C.Y.;Pan,Q.M.;Pan,Z.R.,Solubility behavior of solids and liquids in compressed gases.Journal of Supercritical Fluids 1998,12,(1),1-9.
    204.Berger,T.A.,Supercritical Fluid Chromatography with Packed Columns:Techniques and Applications.Marcel-Dekker:New York,1997.
    205.Jassen,J.G.;Schoenmakers,P.J.;Cramers,C.A.,A fundamental study of the effects of modifiers in supercritical fluid chromatography.J.High Resolut.Chromatogr.1989,12,645-651.
    206.Kot,A.;Sandra,P.;Venema,A.,Sub-and supercritical fluid chromatography on packed columns:a versatile tool for the enantioselective separation of basic and acidic drugs.J.Chromatogr.Sci.1994,32,(10),439-448.
    207.Byrne,N.;Hayes-Larson,E.;Liao,W.-W.;Kraml,C.M.,Analysis and purification of alcohol-sensitive chiral compounds using 2,2,2-trifluoroethanol as a modifier in supercritical fluid chromatography.Journal of Chromatography B In Press,Corrected Proof.
    208.Phinney,K.W.;Stringham,R.W.,Chiral separations using supercritical fluid chromatography.In Chiral Separation Techniques:A Practical Approach,3rd ed.;Subramanian,G.,Ed.Wiley VCH:2007;pp 135-154.
    209.Kaida,Y.;Okamoto,Y.,Optical resolution by supercritical fluid chromatography using polysaecharide derivatives as chiral stationary phases.The Chemical Society of Japan 1992,65,(8),2286-2288.
    210.Yaku,K.;Aoe,K.;Nishimura,N.;Morishita,F.,Thermodynamic study and separation mechanism of diltiazem optical isomers in packed-column supercritical fluid chromatography.Journal of Chromatography A 1999,848,(1-2),337-345.
    211.Wada,N.;Saito,M.;Kitada,D.;Smith,R.L.;Inomata,H.;Arai,K.;Saito,S.,Local excess density about substituted benzene compounds in supercritical CO_2 based on FT-IR spectroscopy J.Phys.Chem.B 1997,101,(50),10918-10922.
    212.Loughlin,T.;Thompson,R.;Bicker,G.;Tway,P.;Grinberg,N.Use of subcritical fluid chromatography for the separation of enantiomers using packed cellulose based stationary phase.Chirality 1996,8,(1),157-162.
    213.Chen,L.;Thompson,R.;Johnson,B.;Wyvratt,J.M.Enantiomeric separation of a Thiazolbenzenesulfonamide compound using packed-column subcritical fluid chromatography.Chirality 2002,14,(5),393-399.
    214.Seidel-Morgenstern,A.,Experimental determination of single solute and competitive adsorption isotherms.Journal of Chromatography A 2004,1037,(1-2),255-272.
    215.Brunner,G.;Johannsen,M.,New aspects on adsorption from supercritical fluid phases.Journal of Supercritical Fluids 2006,38,(2),181-200.
    216.Bolten,D.;Johannsen,M.,Influence of 2-propanol on adsorption equilibria of alpha-and delta-tocopherol from supercritical carbon dioxide on silica gel.Journal of Chemical and Engineering Data 2006,51,(6),2132-2137.
    217.Lubbert,M.;Brunner,G.;Johannsen,M.,Adsorption equilibria of alpha-and delta-tocopherol from supercritical mixtures of carbon dioxide and 2-propanol onto silica by means of perturbation chromatography.Journal of Supercritical Fluids 2007,42,(2),180-188.
    218.Rajendran,A.;Peper,S.;Johannsen,M.;Mazzotti,M.;Morbidelli,M.;Brunner,G.,Enantioseparation of 1-phenyl-1-propanol by supercritical fluid-simulated moving bed chromatography.Journal of Chromatography A 2005,1092,(1),55-64.
    219.Ottiger,S.;Kluge,J.;Rajendran,A.;Mazzotti,M.,Enantioseparation of 1-phenyl-1-propanol on cellulose-derived chiral stationary phase by supercritical fluid chromatography Ⅱ.Non-linear isotherm.Journal of Chromatography A 2007,1162,(1),74-82.
    220.Petrusevska,K.;Kuznetsov,M.A.;Gedicke,K.;Meshko,V.;Staroverov,S.M.;Seidel-Morgenstern,A.,Chromatographic enantioseparation of amino acids using a new chiral stationary phase based on a macrocyclic glycopeptide antibiotic.Journal of Separation Science 2006,29,(10),1447-1457.
    221.Guan,H.;Stanley,J.;Guiochon,G.,Theoretical study of the accuracy and precision of the measurement of single-component isotherms by the elution by characteristic point method.Journal of chromatography 1994,659,(1),27-41.
    222.Miyabe,K.;Khattabi,S.;Cherrak,D.E.;Guiochon,G.,Study on the accuracy of the elution by characteristic point method for the determination of single component isotherms.Journal of Chromatography A 2000,872,(1-2),1-21.
    223.任其龙;苏宝根;熊任天;吴平东,EPA和DHA在超临界流体色谱中的传质动力学.化工学报 2001,52,(9),788-792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700