用户名: 密码: 验证码:
硫酸铵结晶过程的研究及其固—液多相流的计算流体力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫酸铵是一种重要的氮肥。工业上硫酸铵通常是由炼钢的焦炉气被硫酸吸收后得到,或者是从生产己内酰胺的副产品中提取。为了改善饱和器结晶硫酸铵过程中,生成的晶体颗粒较小,粒度分布不均匀,色度不理想,并伴有晶体聚结现象发生等问题。本文对硫酸铵结晶工艺进行了系统的研究,并在此基础上,运用计算流体力学方法,对硫酸铵结晶器进行了模拟和优化,并对硫酸铵结晶过程进行了多相模拟。
     使用激光法测定了硫酸铵在纯水、硫酸和硫酸铁溶液中的溶解度,以及硫酸铵在纯水、硫酸和硫酸铁溶液中的超溶解度和介稳区。并应用Apelblat双对数经验方程关联了硫酸铵在不同溶剂中的溶解度随温度的变化关系。
     采用间歇动态法对硫酸铵蒸发结晶过程的动力学进行了实验测定。测得了硫酸铵晶体的粒度分布,并回归得到了硫酸铵在纯水溶液和原料液中的成核速率及生长速率方程的参数。讨论了溶液酸度以及杂质离子对于结晶动力学的影响。
     考察了投加晶种,搅拌速率,蒸发温度,pH值等操作参数,对结晶过程最终产品粒度分布和晶形质量的影响,确定了硫酸铵结晶工艺的最优的操作条件。利用实验得到的物性参数和优化的工艺条件,对实验室尺寸、2.5L小试尺寸和456.78m3工业尺寸进行了硫酸铵的结晶器的流场模拟。考察了不同尺寸结晶器内流体流动的速度大小、方向和剪切率,计算出搅拌桨的理论单位体积输入功率。同时还比较了使用PBT搅拌桨和三叶推进式搅拌桨的流场变化。
     在实验的基础上,使用欧拉-欧拉多相模型,在工业尺寸的间歇DTB结晶器中对硫酸铵结晶过程多相流进行了模拟。采用分组法求解硫酸铵结晶过程的粒数衡算方程,建立并推导了关联硫酸铵结晶过程成核速率和生长速率的相间质量传递模型,对硫酸铵的晶体粒度分布,进行了直接的模拟,并得到了工业尺寸DTB结晶器内硫酸铵的粒度分布数据。
     依据间歇DTB结晶器欧拉法多相模拟的结果,优化工业尺寸的硫酸铵连续DTB结晶器,并讨论了搅拌速率对连续结晶器内流场的影响。应用拉哥朗日离散相模型,考察了粒度为10μm、800μm和2000μm的硫酸铵晶体在连续结晶器内的悬浮效果。
Ammonium sulphate is an important nitrogenous fertilizer for agriculture. It is usually precipitated from coke oven gas (COG) of steelworks and the byproduct of caprolactam production in industry. There are many problems in precipitating ammonium sulphate from a saturator, such as small crystal size, non-uniform crystal size distribution (CSD), nonstandard chroma and aggregation of crystals. A systematic study on the crystallization process of ammonium sulphate has been performed in this thesis. Computational Fluid Dynamics (CFD) simulations and optimization of the crystallizers have been carried out in conjunction with multi-phase model.
     The solubility, supersolubility and metastable zone of ammonium sulfate in pure water, sulfuric acid solution and ferric sulfate solution have been experimentally determined using a laser monitoring observation technique. The experimental data can be correlated with temperature by a double logarithmic empirical equation, Apelblat.
     An unsteady state method was employed to measure the nucleation and growth kinetics. The CSD of ammonium sulphate has been measured, consequnently, the paratmeters of equations of nucleation and growth rate in pure water and raw mather liquid has been estimated by regression. The effects of acidity of solution and impurity in the raw material on nucleation and growth rate were investigated.
     The effects of parameters, such as seeds added, agitation speed, evaporation temperature, pH of solution etc., on the product quality have been studied. And an optimal operating condition of crystallization of ammonium sulphate has been determined.
     CFD modellings, based on the physical properties and optimal operation conditions from experiments, have been carried out to simulate (NH4)2SO4 crystallizations in a pilot scale crystallizer (2.5L) and an industrial crystallizer drafted tube baffled (DTB) (456.78m3). The velocity magnitude, vector and shear rate of fluid inside the different scale crystallizers have been observed, form which the theoretical inputting power of impellers has been calculated. The effects of impeller types (a PBT impeller and a marine propeller) on the processes have also been studied.
     Multi-phase CFD simulations of the crystallization process of ammonium sulphate in an industrial batch DTB crystallizer have been performed using Euler-Euler method. A multi-group method has been developed to solve the population balance equation of crystallization, in which an interphase mass transfer model has been established and deduced to involve the nuclear rate and growth rate equations into CFD calculation.
     An industrial continuous DTB crystallizer of ammonium sulphate has been optimized through the results of Euler multi-phase simulation of the batch DTB. The flow fields and solid concentrations at different agitation speeds have been studied. Lagrange Discrete phase model has been employed to trace the trajectories of crystal particles at different diameters of 10μm, 800μm and 2000μm in order to understand crystals’bahaviour inside the continuous DTB.
引文
[1]丁绪淮,谈遒,工业结晶,北京:化学工业出版社,1985. 74-137.
    [2]张受谦,化工手册,济南:山东科学技术出版社,1986. 2168-2171.
    [3]王静康,化学工程手册-结晶(第二版),北京:化学工业出版社,1996. 10:1-55.
    [4] Moyers C G, Rousseau R W, Crystallization operations, in Rousseau R W ed. Handbook of Separation process Technology, New York: John Wiley & sons, 1987. 758.
    [5]王静康,工业结晶新技术,国际学术动态,2002,5:37-38.
    [6]王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004. 1-200.
    [7] Jung J, Lyczkowski R W, Panchal C B, et al.,Multiphase hemodynamic simulation of pulsatile flow in a coronary artery,Journal of Biomechanics,2006,39:2064–2073.
    [8] Jung J, Hassanein A,Three-phase CFD analytical modeling of blood flow,Medical Engineering & Physics,2007,(In Press).
    [9]周雪漪,计算水力学,北京:清华大学出版社, 1995. 4-5.
    [10]陶文铨,数值传热学(第二版),西安:西安交通大学出版社,2001. 7-10.
    [11]郭泓志,传输过程数值模拟,北京:冶金工业出版社,1998. 21-25.
    [12] Anderson J D, Computational Fluid Dynamics: The Basics with Applications, New York: McGraw-Hill,1995. 15.
    [13] Fluent Inc., Fluent User’Guide, Fluent Inc., 2003, 3-4.
    [14] Versteeg H K, Malalasekere W, An introduction to Computational Fluid Dynamics:The Finite Volume Method, New York: John Wiley & sons, 1995. 20-22.
    [15]张廷芳,计算流体力学(第2版),大连:大连理工大学出版社,2007. 10.
    [16]陈景仁,湍流模型及有限分析法,上海:上海交通大学出版社,1989. 1.
    [17] Brebbia C A,The boundary element method for engineers,London:Pentech Press,1978. 1-128.
    [18] Patanker S V, Numerical Heat Transfer and Fluid Flow, Washington D.C.: Hemisphere, 1980. 1-103.
    [19] Chow P,Cross M, Pericleous K, A natural extension of conventional finite volume method into polygonal unstructured meshes for CFD application, App. Math. Modelling, 1996, 20: 170-183.
    [20]中华人民共和国国家技术监督局,GB535-1995,中华人民共和国国家标准-硫酸铵,北京:化工标准化与质量监督,1996,5:28-34.
    [21]崔小明,国内外己内酰胺的供需现状及发展前景,中国石油和化工经济分析,2006,14:56-61.
    [22]邓彦波,己内酰胺副产硫酸按的综合利用,现代化工,2002,22(12):38-40.
    [23]郭东明,脱硫工程技术与设备,北京:化学工业出版社,2007. 30-35.
    [24] Mullin J W, Crystallization, Oxford: Butterworth- Heinemann, 1993. 110-113.
    [25]小岛和夫著,傅良译.化工过程设计的相平衡.北京:化学工业出版社,1985. 124-128.
    [26]金克新,赵传钧,马沛生,化工热力学,天津:天津大学出版社, 1990.120.
    [27]朱自强,化工热力学,北京:化学工业出版社, 1991.161.
    [28] De Mateo A, Kurata F, Correlation and prediction of solubility of solid hydrocarbons in liquid methane using the redlich-kwong equation of state, Industrial & Engineering Chemistry Process Design and Development, 1975, 14 (2): 137-140.
    [29] Soave G S, Application of the redlich-kwong-soave equation of state to solid-liquid equilibrium calculations, Chemicl Engineering Science, 1979, 34 (2): 225-229.
    [30] Masuoka H, Tawaraya R, Satio S, Calculation of solid-liquid equilibriums using the modified bwr equation of state of lee and kesler, Journal of Chemical Engineering of Japan, 1979, 12 (2): 257-262.
    [31] Reid R C, Prausnitz J M, Sherwood T K, The properties of gases and liquids, New York: McGraw-Hill, 1977. 40-55.
    [32] Lee M J, Chi P C, Solid-liquid equilibrium for mixtures containing cresols, piperazine, and dibutyl ether, Journal of Chemical and Engineering Data, 1993, 38: 292-295.
    [33] Anderko A, A simple equation of state incorporating association, Fluid Phase Equilibria, 1989, 45 (1): 39-67.
    [34] Myerson A S, Handbook of industrial crystallization, Boston: Butterworth- Heinemann, 2002.90-91.
    [35] Hildebrand J H, Prausnitz J M, Scott R L, Regular and related solutions, New York: Van Nostrand-Reinhold, 1970. 26-166.
    [36] Preston G T, Prausnitz J M, Thermodynamics of solid solubility in cryogenic solvents, Industrial & Engineering Chemistry Process Design and Development, 1970, 9 (2): 264-271.
    [37] Myers A L, Prausnitz J M, Thermodynamics of solid carbon dioxide solubility in liquid solvents at low temperatures, Industrial & Engineering Chemistry Fundamental, 1965, 4 (2): 209-212.
    [38] Wilson G M, Vapor-liquid equilibrium. A new expression for the excess free energy of mixing, Journal of the American Chemical Society, 1964, 86: 127-130.
    [39] Morimi J, Nakanishi. K, Use of the wilson equation to calculate solid-liquid phase equilibria in binary and ternary systems, Fluid Phase Equilibria, 1977, 1 (2): 153-160.
    [40] Muir R F, Howart C S, Predicting solid-liquid equilibrium data from vapor-liquid data, Chemical Engineering, 1982, 89 (4): 89-92.
    [41] Abrams D S, Prausnitz J M, Statistical thermodynamica of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems, AIChE Journal, 1975, 21: 116-128.
    [42] Domanska U, Domanski K, Correlation of the solubility of hexacosane in aliphatic alcohols, Fluid phase equilibria, 1991, 68: 103-114.
    [43]刘金晨,陆九芳,氨基酸溶解平衡的热力学研究,清华大学学报:自然科学版, 1997, 37 (12): 32-36.
    [44]李小森,陆九芳,改进的uniquac模型在非离子表面活性剂溶液中的应用,化工学报, 1999, 50 (9): 228-234.
    [45] Fredenslund A, Gmehling J, Michelsen M L, et al., Computerized design of multicomponent distillation columns using the unifac group contribution method for calculation of activity coefficients, Industrial & Engineering Chemistry Process Design and Development, 1977, 16 (4): 450-462.
    [46] Fredenslund A, Jones R L, Prausnitz J M, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE Journal, 1975, 21 (6): 1086-1099.
    [47] Gmehling J G, Anderson T F, Prausnitz J M, Solid-liquid equilibrium using unifac, Industrial & Engineering Chemistry Fundamental, 1978, 17 (4): 269-273.
    [48] Spiliotis N, Tassios D, A unifac model for phase equilibrium calculations in aqueous and nonaqueous sugar solutions, Fluid Phase Equilibria, 2000, 173 (1): 39-55.
    [49] Peres a M, Macedo E A, A modified unifac model for the calculation of thermodynamic properties of aqueous and non-aqueous solutions containing sugars, Fluid Phase Equilibria, 1997, 139 (1-2): 47-74.
    [50]王志容,尹潜,汽液固三相平衡的计算, 1986, 14 (6): 52-55.
    [51]张玉华,张雪梅,张卫江等, Unifac基团贡献法对合成硝基麝香固液平衡的研究,化学工程, 2005, 33 (5): 69-71.
    [52] Domanska U, Solubility of n-alkanols (c16,c18,c20) in binary solvent mixtures, Fluid Phase Equilibria, 1989, 46 (2-3): 223-248.
    [53] Domanska U, Kozlowska. M K, Solubility of imidazoles in ketones, Fluid Phase Equilibria, 2003, 206 (1-2): 253-266.
    [54] Domanska U, Lachwa J, (solid + liquid) phase equilibria of binary mixtures containing n-methyl-2-pyrrolidinone and long-chain n-alkanols at atmospheric pressure, Fluid Phase Equilibria, 2002, 198 (1): 1-14.
    [55] Domanska U, Rolinska J, Measurement and correlation of the solubility of n-alkanols (c18, c20) in n-alkanes (c7-c16), Fluid Phase Equilibria, 1993, 86: 233-250.
    [56] Ferreira L A, Macedo E A, Pinho S P, Pinho solubility of amino acids and diglycine in aqueous alkanol solutions, Chemical Engineering Science, 2004, 59 (15): 3117-3124.
    [57] Buchowski H, Khiat A, Solubility of solids in liquids: One-parameter solubility equation, Fluid Phase Equilibria, 1986, 25 (3): 273-278.
    [58] Buchowski H, Ksiazczak A, Pietrzyk S, Solvent activity along saturation line and solubility of hydrogen-bonding solids, Journal of Physical Chemistry, 1980, 84: 975-979.
    [59] Domanska U, Hofman T, Rolinska J, Solubility and vapour pressures in saturated solutions of high-molecular-weight hydrocarbons, Fluid Phase Equilibria, 1987, 32: 273-293.
    [60]孔学军,夏清,维生素B6和维生素B6酮的溶解度测定与关联,化学工程, 2000, 28 (6): 38-41.
    [61] Apelblat A, Manzurola E, Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-dl-aspartate in water from T=(278 to 348) k, Journal of Chemical Thermodynamics, 1999, 31: 85-91.
    [62] Li D-Q, Evans D G, Duan X, Solid-liquid equilibria of terephthalaldehydic acid in different solvents, Journal of Chemical and Engineering Data, 2002, 47 (5):1220-1221.
    [63] Wang S, Wang J, Yin Q, Measurement and correlation of solubility of 7-aminocephalosporanic acid in aqueous acetone mixtures, 2005, 44 (10): 3783-3787.
    [64]刘江鶵,陈忠民,田洪河等,苯甲酸溶解度的测定及关联,郑州工业大学学报, 2001, 22 (1): 97-99.
    [65]任国宾,盐酸帕罗西汀结晶过程研究(博士学位论文),天津大学, 2005
    [66]徐衡,董奕,顺丁烯二酸酐在邻苯二甲酸酯中溶解度的研究.,石油化工, 2000, 29 (7): 502-504.
    [67] Rosenberger F, Fundamentals of crystal growth, Berlin: Springer-Verlag, 1979
    [68] Rosenberger F, Riveros H G, Segregation in alkali halide crystallization from aqueous solution, Journal of Chemical Physics, 1974, 60: 668-674.
    [69] Chernov A A, Modern crystallography iii, crystal growth springer series on solid state, Berlin: Springer, 1984.179
    [70] Givand J C, Chang B K, Teja A S, et al., Distribution of isomorphic amino acids between a crystal phase and an aqueous solution, Industrial & Engineering Chemistry Research, 2002, 41: 1873-1876.
    [71] Givand J C, Teja A S, Rousseau R W, Effect of relative solubility on amino acid crystal purity, AIChE Journal, 2001, 47: 2705-2712.
    [72] Teja A S, Givand J C, Rousseau R W, Correlation and prediction of crystal solubility and purity, AIChE Journal, 2002, 48: 2629-2634.
    [73] Sha Z L, Alatalo H, Louhi-Kultanen M, et al., Purification by crystallization from solutions of various viscosities, Journal of Crystal Growth, 1999, 198-199: 692-696.
    [74] Burton J A, Prim R C, Slichter W P, The distribution of solute in crystals grown from the melt. Part i. Theoretical, Journal of Chemical Physics, 1953, 21 (11): 1987-1996.
    [75] Sangwal K, Palczynska T, On the supersaturation and impurity concentration dependence of segregation coefficient in crystals grown from solutions, Journal of Crystal Growth, 2000, 212 (3-4): 522-531.
    [76] Sloan G J, Mcghie A R, Techniques of melt crystallization, New York: John Wiley & Sons, 1988.442-447
    [77] Thomas B R, Chernov a A, Vekilov P G, et al., Distribution coefficients of protein impurities in ferritin and lysozyme crystals-self-purification in microgravity, Journal of Crystal Growth, 2000, 211 (1-4): 149-156.
    [78] Woensdregt C F, Hartman-perdok theory-influence of crystal-structure andcrystalline interface on crystal-growth, Faraday discussions, 1993, 95 (95): 97-107.
    [79] Weiser K, Theoretical calculation of distribution coefficients of impurities in germanium and silicon, heats of solid solution, Journal of Physics and Chemistry of Solids, 1958, 7 (2-3): 118-126.
    [80] B.P.潘普林主编,刘如水,沈德中,张红武等译,晶体生长,北京:中国建筑工业出版社,1982. 64-68.
    [81] Mullin, J.W., Crystallisation 2nd.Ed. London: Butterworths, 1972. 4-6.
    [82] McCabe, W D, Smith J C, Unit operation of Chemical engineering 3rd. Ed, New York: McGraw-Hill, 1976. 83-90.
    [83] Estrin J. Secondary nucleation. In:Wilcox W R, ed. Preparation and properties of solid state materials. Vol. 2. New York: Marcel Dekker, Inc., 1976. 1-42.
    [84] Janse A H, Dejone E J, On the width of the metastable zone,Trans Inst Eng, 1978, 56(3): 187-192.
    [85] Johnson B, Lerrigo A F, Crystalline sodium penicillin G observations on its stability in solution and on related matters, J. Pharm Pharmacol, 1947, 20:183-197.
    [86] Bowling R, Barnes R C, Williams E F, Infrared analysis of crystalline penicillins, Anal Chem, 1947, 19:620-627.
    [87] Jancic S and Garside J, A new technique for accurate crystal size distribution analysis in an MSMPR crystallizer. In: Mullin J W,ed. Industrial Crystallization. New York: Plenum Press, 1976. 363-370.
    [88] Gabas N, Biscans B, Laguérie C, Growth Rate Dispersion in Seeded Batch D-Xylose Crystallization, Journal of Crystal Growth, 1990, 99: 1108-1111.
    [89] Berglund K A,Larson M A,Growth of Contact Nuclei of Citric Acid Monohydrate,AIChE Symposium Series,1982,78 (215):9-13.
    [90] Larson M A, Mullin J W, Crystallization Kinetics of Ammonium Sulphate, Journal of Crystal Growth, 1973, 20:183-191.
    [91] Rauls M, Bartosh K, Kind M, The Influence of Impurities on Crystallization Kinetics-a Case Study on Ammonium Sulfate, Journal of Crystal Growth, 2000, 213:116-128.
    [92] Westhoff G M, Butler B K, Kramer H J M,Growth behavior of crystals formed by primary nucleation on different crystallizer scales, Journal of Crystal Growth, 2002, 237-239: 2136-2141.
    [93] Virone C, ter Horst J H, Kramer H J M, Growth rate dispersion of ammonium sulphate attrition fragments,Journal of Crystal Growth,2005,275:1397-1401.
    [94] Hojjati H, Rohani S, Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer,Chemical Engineering and Processing, 2005, 44: 949–957.
    [95] Hu Q, Rohani S, Wang D X, Optimal control of a batch cooling seeded crystallizer, Powder Technology, 2005, 156:170– 176.
    [96] Meadhra R and Van Rosmalen G M , Scale-up of ammonium sulphate crystallization in a DTB crystallizer,Chemical Engineering Science, 1996, 51(16): 3943-3950.
    [97] Virone C, Kramer H J M, Van Rosmalen, G M, Primary nucleation induced by ultrasonic cavitation,Journal of Crystal Growth,2006,294: 9-15.
    [98] Randolph A D,Larson M A, Theory of Particulate Processes,New York: Academic Press,1971, 25-40.
    [99] Randolph A D, Larson M A, Transient and Steady-state Distributions in Continuous Mixed Suspension Crystallizers,AIChEJ,1962,8:639-651.
    [100] Sowul L, Crystallization Kinetics of Sucrose in a MSMPR Evaporative Crystallizer, Ind. Eng. Chem. Proc. Des. Dev., 1981, 20(2):197-199.
    [101] Tavare N S, Garside J, Simultaneous Estimation of Crystal Nucleation and Growth Kinetics from Batch Experiments, Chem. Eng. Res. Des., 1986, 4:109-118.
    [102]杨国杰,硫铵工艺取代浓氨水工艺的生产实践,天津冶金, 2000, 6: 26-28.
    [103]王静康,王永莉,单产品间歇过程最优化设计.化学工程, 1993, 21(5): 60-69.
    [104]孔珑,工程流体力学(第二版),北京:水利电力出版社,1992. 5-80.
    [105] Saleh J M,邓敦夏译,流体流动手册,北京:中国石化出版社,2004. 1-3.
    [106]罗惕乾,流体力学,北京:机械工业出版社, 1999. 3-100.
    [107] Streeter V L, Wylie E B, Fluid Mechanics, Eighth Edition, New York: McGraw-Hill, 1985. 10-133.
    [108]吴望一,流体力学,北京:北京大学出版社,1983. 25-160.
    [109] Batchelor G K, An Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, England, 1967. 10-205.
    [110]王致清,流体力学基础,北京:高等教育出版社,1987. 30-188.
    [111] Hinze J O,Turbulence, An Introduction to Its Mechanism and Theory, New York: McGraw-Hill, 1959. 15-160.
    [112] Spalart P,Allmaras S,A one-equation turbulence model for aerodynamic flows,Technical Report AIAA-92-0439, American Institute of Aeronautics andAstronautics, 1992.
    [113] Wilcox D C,Turbulence Modeling for CFD,California:DCW Industries, Inc., 1998. 1-205.
    [114] Launder B E,Spalding D B,Lectures in Mathematical Models of Turbulence,London:Academic Press, 1972. 42-166.
    [115] Yakhot V,Orszag S A,Renormalization Group Analysis of Turbulence: I. Basic Theory,Journal of Scientific Computing, 1986,1(1):1-51.
    [116] Shih T H, Liou W W , Shabbir A, Yang Z , et al.,A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation,Computers Fluids, 1995,24(3):227-238.
    [117] Mathey F, Cokljat D, Bertoglio J P, et al., Specification of LES Inlet Boundary Condition Using Vortex Method. In:Hanjali K, Nagano Y, Tummers M, eds. 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya: Begell House, Inc., 2003. 67-79.
    [118] Smirnov R, Shi S, Celik I,Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling,Journal of Fluids Engineering, 2001,123: 359-371.
    [119] Kim S E,Large eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models. In:Technical Report AIAA-2004-2548. 34th Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2004. 55-80.
    [120] Erlebacher G, Hussaini M Y, Speziale C G, et al., Toward the Large-Eddy Simulation of Compressible Turbulent Flows, J. Fluid Mech., 1992, 238: 155-185.
    [121] Luo J Y, Issa R I, Gosman A D, Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference, In IChemE Symposium Series, 1994, 136: 549-556.
    [122] Luo J Y, Gosman A D, Issa R I, et al., Full flow field computation of mixing in baffled stirred vessels. Trans. IChemE, 1993, 71 (A): 342-344.
    [123] Tabor G, Gosman A D, Issa R, Numerical simulation of the flow in a mixing vessel stirred by a Rushton turbine, IChemE Symp., 1996,140: 25-34.
    [124] Holland F A , Chapman F S,Liquid Mixing and Processing in Stirred Tank,New York: Reinhold Publishing Corporation, 1966. 3-187.
    [125]哈恩贝N,爱德华兹M F,尼瑙A W,工业中的混合过程(俞芷青,王英琛等译),北京:中国石化出版社,1991.157-172.
    [126]丁绪怀,周理,液体搅拌,北京:化学工业出版社,1983. 133-185.
    [127]傅堉街,马继舜等,化学工程手册:搅拌与混合,北京:化学工业出版社,1985. 1-10.
    [128]归俊川,一种新型混合装置/结晶器的开发与研究:[硕士学位论文],天津:天津大学,2004.
    [129] Vanhook A,Crystallization-Theory and Practice, Landon: Chapman & Hall, 1961. 25-202.
    [130]陶文铨,数值传热学,西安:西安交通大学出版社,2001. 50-53.
    [131]沈荣春,束忠明,黄发瑞等,导流筒结构对气升式环流反应器内气液两相流动的影响,石油化工,2005,959-964.
    [132] Alberto B, Michele C, Franco G, et al., Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modeling approaches, Chemical Engineering Science, 1998, 53(21): 3653-3684.
    [133] Altobelli S A, Givler R C, Fukushima E, Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging, Journal of Rheology, 1991, 35(5): 721–735.
    [134] Kruis F E, Kusters K A, The collision rate of particles in turbulent flow, Chemical Engineering Communications, 1997, 158: 201.
    [135] Fradette L, Tanguy P A, Bertrand F, et al., CFD phenomenological model of solid–liquid mixing in stirred vessels, Computers and Chemical Engineering, 2007, 31: 334–345
    [136]柳来栓,李淑萍,刘有智,用DTB型结晶器从工业芒硝中制取无水硫酸钠,山西化工,2001,21(1):5-7.
    [137]化工部第一设计院, HG/T 20569-94,机械搅拌设备,北京:化工部工程建设标准编辑中心,1995.
    [138] Seckler M M, Bruinsma O S L, Van Rosmalen G M, Influence of hydrodynamics on precipitation: A computational study, Chem. Eng. Commun., 1995, 135: 113.
    [139] Van Leeuwen M L , Bruinsma O S L, Van Rosmalen G M, Influence of mixing on the product quality in precipitation, Chem. Eng. Sci., 1996, 51 (11): 2595.
    [140] Wei H Y, Garside J, Application of CFD modelling to precipitation system, Trans. Inst. Chem. Eng., 1997, 75(A): 719.
    [141] Wei H Y, Garside J, CFD’s Simulation of precipitation processes in stirred tanks. In: Proceedings of the Institute of Chemical Engineers, Nottingham: Institution ofChemical Engineers, 1997. 517.
    [142] Wei HY, Garside J, Simulations and scale-up of precipitation using CFD techniques. In: Proceedings of the 3rd International Symposium on Mixing in Industrial Processes, Hokkaido: The Society of Chemical Engineers, 1999. 45.
    [143] Al-Rashed M H, Jones A G, CFD modelling of gas-liquid reactive precipitation, Chem. Eng. Sci., 1999, 54: 4779.
    [144] Piton D, Fox R O, Marcant B, Simulation of fine particle formation by precipitation using computational fluid dynamics, Can. J. Chem. Eng., 2000, 78: 983.
    [145] Marchiso D L, Barresi A A, Baldi G, et al., Comparison of different modelling approaches to turbulent precipitation. In: Proceedings of the 10th European Conference on Mixing, Amsterdam: Elsevier Science, 2000. 77.
    [146] Wei H Y, Zhou W, Garside J, Computational Fluid Dynamics Modeling of the Precipitation Process in a Semibatch Crystallizer, Ind. Eng. Chem. Res., 2001, 40: 5255-5261.
    [147] McGraw R, Description of Aerosol Dynamics by the Quadrature Method of Moments, Aerosol Science and Technology, 1997, 27:255-265.
    [148] Azbel D, Two-phase flows in chemical engineering, London: Cambridage Univ. Press, 1981. 1-300.
    [149] Li A, Ahmadi G, Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow, Aerosol Science and Technology, 1992, 16: 209-226.
    [150] Hirt C W, Nichols B D, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, 39: 201-225.
    [151] Manninen M, Taivassalo V, Kallio S, On the mixture model for multiphase flow,VTT Publications 288, Technical Research Centre of Finland, 1996.
    [152] Drew D A,Lahey R T, In Particulate Two-Phase Flow, Boston: Butterworth Heinemann, 1993. 509-566.
    [153] Sha Z L, Marjatta L K, Pekka O, et al., CFD Simulation of Size-Dependent Classification in an Imperfectly Mixed Suspension Crystallizer. In: 14th International Symposium on Industrial Crystallization, Cambridge: CD-ROM publication,1999.
    [154] Marchisio D L, Virgil R D, Fox R O, Quadrature Method of Moments for Aggregation-Breakage Processes, Journal of Colloid and Interface Science, 2003, 258: 322-334.
    [155] Madec L, Falk L, Plasari E, Simulation of agglomeration reactors via a coupledCFD/direct Monte-Carlo method, Chemical Engineering Science, 2001, 56: 1731-1736.
    [156] Hou S L, Shan X W, Zou Q, et al., Evaluation of Two Lattice Boltzmann Models for Multiphase Flows, Journal of Computational Physics, 1997, 138: 695–713.
    [157] Anderson T B, Jackson R, A Fluid Mechanical Description of Fluidized Beds, I & EC Fundam., 1967, 6:527-534.
    [158] Bowen R M, Theory of Mixtures. In: Eringen A C, eds. Continuum Physics. New York: Academic Press, 1976. 1-127.
    [159] Alder B J, Wainwright T E, Studies in Molecular Dynamics II: Behaviour of a Small Number of Elastic Spheres, J. Chem. Phys., 1990, 33:1439.
    [160] Chapman S, Cowling T G., The Mathematical Theory of Non-Uniform Gases, 3rd edition, Cambridge: Cambridge University Press, 1990. 1-331.
    [161] Ding J, Gidaspow D, A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow, AIChE J., 1990, 36(4):523-538.
    [162] Lun C K K , Savage S B, Jeffrey D J, et al., Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field, J. Fluid Mech., 1984, 140:223-256.
    [163] Ogawa S, Umemura A, Oshima N, On the Equation of Fully Fluidized Granular Materials, J. Appl. Math. Phys., 1980, 31:483.
    [164] Syamlal M, O'Brien T J, Computer Simulation of Bubbles in a Fluidized Bed, AIChE Symp. Series, 1989, 85:22-31.
    [165] Dalla Valle J M, Micromeritics, London: Pitman, 1948. 105-223.
    [166] Garside J, Al-Dibouni M R, Velocity-Voidage Relationships for Fluidization and Sedimentation, I & EC Process Des. Dev., 1977, 16:206-214.
    [167] Richardson J R, Zaki W N, Sedimentation and Fluidization: Part I, Trans. Inst. Chem. Eng., 1954, 32:35-53.
    [168] Syamlal M, Rogers W, O'Brien T J, MFIX Documentation: Volume 1, Theory Guide, DOE/METC-9411004, NTIS/DE9400087, Springfield: National Technical Information Service of Vatican City State, 1993.
    [169] Wen C Y, Yu Y H, Mechanics of Fluidization, Chem. Eng. Prog. Symp. Series, 1966, 62:100-111.
    [170] Gidaspow D, Bezburuah R, Ding J, Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. In: Potter O E, Nicklin D J, eds. Proceedings of the7th Engineering Foundation Conference on Fluidization, Brisbane: Engineering Foundation, 1992. 75-82.
    [171] Ergun S, Fluid Flow through Packed Columns, Chem. Eng. Prog., 1952, 48(2): 89-94.
    [172] Syamlal M, The Particle-Particle Drag Term in a Multiparticle Model of Fluidization, DOE/MC/21353-2373, NTIS/DE87006500, Springfield: National Technical Information Service of Vatican City State, 1987.
    [173] Iddir H, Arastoopour H, Modeling of multi-type particle flow using kinetic approach, AICHE Journal, 2005, 51(6): 1620-1632.
    [174] Ma D, Ahmadi G, A Thermodynamical Formulation for Dispersed Multiphase Turbulent Flows, Int. J. Multiphase Flow, 1990, 16: 323-351.
    [175] Hounslow M J, Ryall R L, Marshall V R, A Discretized Population Balance for Nucleation, Growth, and Aggregation, AIChE Journal, 1988, 34(11): 1821-1832.
    [176] Litster J D, Smit D J, Hounslow M J, Adjustable Discretization Population Balance for Growth and Aggregation, AIChE Journal, 1995, 41(3): 591-603.
    [177] Ramkrishna D, Population Balances: Theory and Applications to Particulate Systems in Engineering, San Diego: Academic Press, 2000. 27-266.
    [178] Sha Z L, Palosaari S, Mixing and Crystallization in Suspensions, Chemical Engineering Science, 2000, 55: 1797-1806.
    [179] Lun C K K, Savage S B, Jeffrey D J, et al., Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field, J. Fluid Mech., 1984, 140: 223-256.
    [180] Schaeffer D G., Instability in the Evolution Equations Describing Incompressible Granular Flow, J. Diff. Eq., 1987, 66: 19-50.
    [181] Morsi S A, Alexander A J, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 1972, 55(2): 193-208.
    [182] Haider A, Levenspiel O, Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles, Powder Technology, 1989, 58: 63-70.
    [183] Saffman P G, The Lift on a Small Sphere in a Slow Shear Flow, J. Fluid Mech., 1965, 22: 385-400.
    [184] Baxter L L, Smith P J, Turbulent Dispersion of Particles: The STP Model, Energy & Fuels, 1993, 7: 852-859.
    [185] Engineering Equipment Users' Association, Agitator Selection and Design. London: Constable, 1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700