用户名: 密码: 验证码:
立方氮化硼线性电光效应和紫外光电效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了立方氮化硼线性电光效应和紫外光电效应的研究过程和研究结果。作者首先对两个方面的相关理论进行了阐述,之后结合材料自身的特点给出了具体的实验方案,并对实验的主要过程进行了叙述,最后结合理论对实验结果进行了分析。
     本论文克服了目前缺少大尺寸cBN单晶给研究者带来的困难,根据微小尺寸cBN晶体的实际形状设计出了一个考虑了cBN单晶微小尺寸和片状八面体外形的电极装置,在经典的横向电光调制器基础上对调制器的结构做了一些调整,在实验中用650nm连续波半导体激光器在cBN单晶上实现了横向电光调制,通过得到的横向电光调制半波电压计算出了cBN单晶的线性电光张量和二阶非线性极化率张量。由于实验中在个别样品上发现有静态相位延迟,作者对静态相位延迟的产生进行了分析,并通过理论推导和计算,提出了一种补偿静态相位延迟的简便方法。在实现了横向电光调制后,作者研究了如何用微小尺寸片状八面体cBN单晶作为探头应用到集成电路的外部电光检测技术中。通过理论计算和对样品几何形状的分析,得出了片状八面体cBN单晶探头在待测电场中应该如何确定方向,之后用片状八面体cBN单晶作为探头对陶瓷微带线中的信号进行了外部电光检测,检测结果与陶瓷微带线中的被测信号相吻合。
     基于研制立方氮化硼紫外光电探测器的需要,本文对立方氮化硼的紫外光电效应进行了研究。作者首先从理论上研究了立方氮化硼产生光电效应的物理机制,之后用cBN单晶制作了MSM结构的样品,并分别用氘灯和248nm准分子激光器作为光源,研究了MSM结构cBN样品的光电响应。实验发现当样品贴近氘灯的MgF窗口时有光电响应;样品在光功率密度较低的248nm的准分子激光照射下没有光响应,但是如果不断提高照射到样品有效接收面积上的准分子激光的光强,能够观察到样品的光响应。作者认为用氘灯做光源时样品以单光子吸收为主,用248nm波长的准分子激光做光源时样品以倍频吸收为主。实验还测量了样品在准分子激光照射下的击穿电压和从开始照射到发生击穿现象经历的时间。击穿过程中样品没有损坏,击穿现象可以重复。研究结果为进一步研制“日盲型”cBN紫外光电探测器奠定了基础。
Cubic boron nitride (cBN) is a kind of artificial crystal synthesized at high pressure and high temperature. Inartificial cBN has not been found in nature so far. cBN crystal is similar to diamond in terms of mechanical hardness, melt point and thermal conductivity. So it is a very good material for abrasives and cutting tools. cBN is also a kind of wide bandgap semiconductor material, the bandgap of cBN is indirect and about 6.3 eV. Both p-type and n-type cBN crystals can be obtained when suitable impurities are doped. cBN has zinc blende structure with 4 3m symmetry, thus, it possesses second-order nonlinear optical properties, and can be used as the nonlinear optical material. Moreover, cBN is transparent within the whole visible and most ranges of infrared and ultraviolet spectra. So cBN has great potential in high-frequency, high-temperature, and high-power electronic devices, especially in ultraviolet (UV) optoelectronic devices.
     Because it is difficult to synthesize large-size and high quality cBN crystals at present, so there are deficient researches and applications on nonlinear optical properties and semiconductor properties of cBN by now. A transverse electro-optical (EO) modulator based on a tiny octahedral wafer of cBN crystal was demonstrated, cBN crystal was prepared by hexagonal boron nitride at high pressure and high temperature using nitride as catalyst. The half-wave voltage based on experiments of transverse electro-optical modulation was obtained. The second-order nonlinear optical susceptibilityχi(j k2 )(ω,0)=1.919×10?12mV of cBN crystal was calculated by means of the half-wave voltage. In addition, the meatel-semiconductor-metal (MSM) sample based on cBN crystal with Schottky contact was manufactured, the ultraviolet photoelectric effect of cBN was investigated. The results laid the foundation for further development of solar-blind ultraviolet detector based on cBN crystal.
     Because the synthesis of cBN crystal is extremely difficult, the synthetic single crystals we can obtain are very small and have irregular forms, whose maximal size is about 0.5 mm only. Moreover, cBN is a kind of super-hard material, and can not be cut into rectangular parallelepiped easily. So, traditional EO modulation techniques are unsuitable for cBN crystals. We choose an octahedral cBN crystal wafer as sample, scheme out a novel electrode fabrication taking account of the small size and octahedral shape of cBN crystals, and introduce a developed method different from the conventional transverse EO modulator. The expression of the intensity of output beam when the input beam and the output beam do not propagate vertically to the end plane of EO crystal is thought over, and we investigate the best working condition in which the transverse EO modulator meet the best linearity and sensitivity. Then we obtain the half-wave voltage based on experiments of transverse electro-optical modulation. Finally, we figure out the second-order nonlinear optical susceptibility of cBN crystal, it isχi(j 2k )(ω,0)=1.919×10?12mV. This simple method eliminates the need for bulky crystal, moreover it is unnecessary to apply high modulation voltage and measure the absolute intensity of probing beam. So, it is very convenient and effective. We also investigate the cause of static phase retardation, and introduce a simple method compensating the static phase retardation through theory and theoretical calculations.
     The application of EO measuring based on octahedral cBN crystal wafer was investigated after the second-order nonlinear optical susceptibility was determined. According to the analysis of the geometry and theoretical calculations, octahedral cBN crystal wafer, as an EO probe, should be adjusted so that its [1 10] or [1 12] direction is parallel to the direction of electric field Thus, the syetem of EO measuring meet the best sensitivity. We use an octahedral cBN crystal wafer as an EO probe for measuring the electric signal of the ceramic microstrip, the measured signal agree with the real signal propagating on the ceramic microstrip.
     The physical mechanism of ultraviolet photoelectric effect of cBN is researched too, we believe that the ultraviolet photoelectric effect of cBN is caused by both the single-photon response and the two-photon response. Then we manufacture a meatel-semiconductor-metal (MSM) sample based on cBN crystal with Schottky contact, and test the photoelectric response under the irradiation of deuterium lamp and excimer laser at the wavelength of 248nm. We obtain the I-V curve when the cBN MSM sample is close to the MgF window. cBN MSM sample has no photoelectric response under the irradiation of excimer laser at the wavelength of 248nm when the optical power density is low. If we enhance the optical power density of excimer laser, the photoelectric response of the cBN MSM sample is observed. We believe that the excimer laser reach to cBN along with [1 11] direction lead to second harmonic generation when the optical power density is enough.
     In order to research the cBN MSM sample working in condition of critical state of avalanche breakdown, high bias was applied to cBN MSM sample subsequently. If we make cBN MSM sample under the irradiation of excimer laser at the wavelength of 248nm and enhance the optical power density of excimer laser at the same time, cBN MSM sample become avalanche breakdown when the voltage of bias is 817V. (the breakdown voltage of cBN MSM sample is 1170V when there is no irradiation of light source) The phenomenon of breakdown can repeat.We measured the current before and after breakdown happened separately, and measured the time from turing on excimer laser to happening breakdown phenomenon. These results laid the foundation for further development of solar-blind ultraviolet detector based on cBN crystal.
引文
[1] R.F.Wentorf, Cubic Form of Boron Nitride., J.Chem.Phys., 1962,36(8), 1990-1991
    [2]赵永年,邹广田,王波等,氮化硼薄膜内应力的红外光谱研究,高等学校化学学报,1998,19(7),1136~1139
    [3] P. Rodriguez-Hermandcz, M. Gonzales-Diaz, and A. Munoz. Electronic and Structural Properties of Cubic BN and BP. Phys. Rev. B, 1995, 51(20), 14705
    [4] M. Ferhat, A. Zaoui, M. Certier, and H. Aourag. Electronic Structure of BN, BP and Bas. Physica B, 1998, 252, 229
    [5] D. Litvinov, C.A. Taylor II and R. Clarke, Semicoducting cubic boron nitride, Diamond Related. Mater., 1998, 7, 360-364
    [6] K. L. Barth, A. Lunk and J. Ulmer, Influence of the deposition parameters on boron nitride growth mechanisms in a hollow cathode arc evaporation device, Surf. Coat. Technol., 1997, 92, 96-103
    [7] R.F.Wentorf., Cubic Form of Boron Nitride. J.Chem.Phys., 1957,26(4), 956
    [8] H.R.Phillip and E.A.Taft,Phys.Rev.127(1962)159
    [9] F.P.Bundy, R.H.Wentorf, Jr. Direct Transformation of Hexagonal Boron Nitride to Denser Forms. J.Chem.Phys.1963,38(5):1144~1149.
    [10] V.A.Fomichev and M.A.Rumsh, Investigation of X-ray spectra of hexagonal and cubic boron nitride J.Phys. Chem. Solids,1968, 29, 1015-1024
    [11] R.M.Chrenko, Ultraviolet and infrared spectra of cubic boron nitride, Solid Statd Communications.14,511-515(1974)
    [12] Alex Zunger, A.J,freeman, Physical Review B, 17, No.4, 2030-2042 (1978)
    [13] O.Mishima, S.Yamaoka, O.Fukunaga, Crystal growth of cubic boron nitride by temperature difference method at ~55 kbar and ~1800°C, J.Appl. Phys.,1987,61,2822-2825
    [14] O.Mishima, J.Tanaka, S.Yamaoka, and O. Fukunaga, High-Temperature Cubic Boron Nitride P-N Junction Diode Made at High Pressure, Science,1987,238 (9) 181-182
    [15] O.Mishima, K.Era, J.Tanaka, and S.Yamaoka, Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure, Appl, Phys.Lett. 53(11)1988,962-964
    [16] N.Miyata and K.Moriki, Optical constants of cubic boron nitride, Phys.Rev.B 40(17), 1989, 12028-12029
    [17] T.Taniguchi, J.Tanaka, O.Mishima, et al., High pressure synthesis of semiconducting Be-doped polycrystalline cubic boron nitride and its electrical properties, 1993,62(5)576-578
    [18] V.L.Solozhhenko,Thermochim.Acta 218,221(1993)
    [19] T.Brozek, J.Szmidt and A.Jakubowski, Electrical behaviour and breakdown in plasma deposited cubic BN layers, Diamond and Related Materials, 1994,3 , 720-724.
    [20]张铁臣,王光明,郭伟力,刘建亭,高春晓,邹广田,片状立方氮化硼合成及其导电特性研究,高压物理学报,Vol.12, No.3 Sept. 1998.
    [21] Taniguchi.T, Terajl.T, Koizumi.S, et al., Appearance of n-Type Semiconducting Properties of cBN Single Crystals Grown at High Pressure, Jpa. J. Appl. Phys. 2002, 41(2A): 109
    [22] T.Tanguchi, K.Watanabe, S.Koizumi, et al., Ultraviolet light emission from self-organized p-n domains in cubic boron nitride bulk single crystals grown under high pressure, Appl. Phys. Lett., 2002, 81(22),4145-4147
    [23] Takashi Taniguchi, Satoshi Koizumi, Kenji Watanabe, Isao Sakaguchi, Takashi Sekiguchi, Shinobu Yamaoka, High pressure synthesis of UV-light emitting cubic boron nitride single crystals, Diamond and Related Materials, Volume 12, Issues 3-7, March-July 2003, Pages 1098-1102
    [24] Cheng-Xin Wang, Guo-Wei Yang, High-quality heterojunction between p-type diamond single-crystal film and n-type cubic boron nitride bulk single crystal,Appl. Phys. Lett., 2003,83 (23),4854-4856
    [25] Levan Chkhartishvili, Quasi-classical approach: Electronic structure of cubic boron nitride crystals, Journal of Solid State Chemistry 177,(2004) 395-399
    [26] Takashi Taniguchi, Kenji Watanable, and Satoshi Koizumi, Phys. Stat. Sol. (a)201. No.112573-2577 (2004)
    [27] N. A.Shishonok, G.V.Gatal’skil and A.Yu.Erosh, Crystallography Reports, Vol.50, Suppl.1, 2005, pp.s58-s61.
    [28] Qingping Dou, Haitao Ma, Gang Jia, Zhanguo Chen, Kun Cao, Ce Ren, Jianxun Zhao, Xiuhuan Liu, Yuhong Zhang, Bao Shi and Tiechen Zhang, Light emission from cBN crystal synthesized at hight pressure and high temperature, Appl. Phys. Lett, 88 (15), 154102-1-3 (2006).
    [29] E.M. Shishonok, S.V. Leonchik, J.W. Steeds, D. Wolverson, Strong ultraviolet luminescence from cerium- and gadolinium-doped cubic boron nitride, Diamond and Related Materials, Volume 16, Issue 8, August 2007, Pages 1602-1607
    [30] D A Evans,A G Mcglynn,B M Towlson,M Gunn,D,Jones,T E Jenkins,R Winter and N R J Poolton,J.Phys.:Condens.Matter 20 (2008)075233
    [31] M. Sokolowski J. Cryst. Growth 46 (1979), p. 136.
    [32] Dworschok W,Jung K,Ehrhardt H, Thin Solid films (1995) 254:65-74
    [33] Paisley M,Bourget J,Davis R F, Thin Solid films (1993) 235:30-40
    [34] Kestr D J, Ailey K S, Lichtenwalner D J et al.J Vacuum Technoly,(2000)1253
    [35] Badi N,Bousetta A,Lu M et al.Diamond and related(1995)8:49-53
    [36] Murakwa M et al,Materials Science and engineering(1991)40:53-58
    [37] Luthje H, Bewilogua K, Dauud S et al. Thin Solid films (1995) 257:40-50
    [38] Mieno Masahire,Yeshida Toyonobu.Surface and coatings Technology, (1992)52:87-92
    [39] A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, Y. M. Chong, Y. S. Zou, W. J. Zhang, S. T. Lee, A. BenMoussa, B. Giordanengo and J.-F. Hochedez, 193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors, Appl. Phys. Lett. 92, 053501 (2008)
    [40] I.A.Petrusha, T.I.Smirnova, A.S.Osipov et al., Crystallization of diamond on the surface of cBN ceramics at high pressures and temperatures, Diamond and Related Materials,2004, 13, 666-670
    [41] T.Taniguchi, J.Tanaka, O.Mishima, et al., High pressure synthesis of semiconducting Be-doped polycrystalline cubic boron nitride and its electrical properties, Appl. Phys. Lett. 1993,62(6),576-578
    [42] R.M.Erasmus, J.D.Comins, and M.L.Fish, Raman and photoluminescence spectra of indented cubic boron nitride and polycrystalline cubic boron nitride, Diamond and Related Materials, 2000,9,600-604
    [43] B.Wang, R.Z. Wang,H.Zhou et al., Field emission mechanism from nanocrystalline cubic boron nitride films, Microelectronic Journal,2004, 35,371-374
    [44] John Cumings, A.Zettl, Field emission and current-voltage properties of boron nitride nanotubes, Solid state communications,2004,129,661-664
    [1] R.Riedel, Novel ultrahard materials, Adv. Mater.,1994, 6,549-560
    [2] B.Rother and C.Weissmantel, Structure and chemical composition of RF-sputtered boron nitride films, Phys. Status Solid, 1985, A 87, K119-K121
    [3] Z.W.Lu, Barry M. Klein, and C.Y.Fong. Electronic structure of defects and impurities inⅢ-Ⅴnitrides :Vacancies in cubic boron nitride. Phys. Rev. B , 1996, 53(8), 4377
    [4] Toshitsugu Matsuda, Naoki Uno, Hiroyuki Nakae, et al., Synthesis and structure of chemically vapour-deposited boron nitride, Journal of Materials Science, 1986, 21 (2), 649 - 658
    [5] P.Lin, C.Deshpandey, H.J.Doerr,et al., Preparation and properties of cubic boron nitride coatings, Thin Solid Films, 1987, 153,487-496
    [6] Su Yixi, Vacuum-ultraviolet reflectance spectra and optical properties of nanoscale wurtzite boron nitride, Phys. Rew. ,1994, 50(24),18637-18639
    [7]张铁臣,邹广田,《立方氮化硼》,吉林大学出版社,1993
    [8] R.F.Wentorf., Cubic Form of Boron Nitride. J.Chem.Phys., 1957,26(4), 956
    [9] V.L. Solozhenko, V.V. Chernyshev, G.V. Fetisov, V.B. Rybakov, I.A. Petrusha, Structure analysis of the cubic boron nitride crystals, Journal of Physics and Chemistry of Solids, Volume 51, Issue 8, 1990, Pages 1011-1012
    [10] T Akashi, HR Pak, AB Sawaoka, Structural changes of wurtzite-type and zincblende-type boron nitrides by shock treatments, Journal of Materials Science,21 4060 (1986)
    [11] L. Vel , Demazeau and J. Etourneau , Cubic boron nitride :Synthesis,physicochemical properties and application,Materials Science Engineering B,1991,10,149-164
    [12] Z. Yu,K Inagawa and Z. Jin,Tribological properties of cBN coating in vacuum at high temperature,Surf. Coat. Technol.,70 (1994)147
    [13] Park P. T , Terakura T , Hammada H , Band-structure calculations for boron nitrides with three different crystal structures,J . Phys. C 1987,20,1241
    [14] Gardinier CF,Physical properties of superabrasives,Cerm Bull,67(1988)1006
    [15] Wakatsuki M,Ichinose K,Aoki T ,Synthesis of polycrystalline cubic BN. Mater Res Bull,7(1972)999
    [16] Ichinose K,Wakatsuki M,Aoki T,Maeda Y,Synthesis of polycrystalline cubic BN(V),Rev Phys Chem Jpn,1975,436
    [17] DeVries RC,Cubic boron nitride:handbook of properties. Rep 72 CRD 178,Gereral Electric Company,1972
    [18] V. L. Solozhenko, Dokl. Akad. Nauk. SSSR 1988, 301, 147
    [19] Landolt-Bornstein,New Series,vol.3,Madelung O,editor. Berlin:Springer;1972
    [20] Wentorf Jr. RH. Chem Engng,68(1961)177
    [21] Tani E,Soma T,Sawaoka A,Saito S. Jpn J Appl Phys 10(1971)1605
    [22] Kobayashi T , Susa K , Taniguchi S. Pressure and temperature stabilityregion of cubic in the presence of ammonium borate,Mater Res Bull 12(1977)847
    [23] Reddy RR,Reddy ASR,Rao TVR. Physica C,132(1985)373
    [24] Gaydon AG , Dissociation energies and spectra of diatomic molecules. London: Chapman and hall;1968
    [25] Darent B. B,Bond dissociation energies in simple molecules. NBS Natl Stand Ref Data Ser,1970,30
    [26] Hildenbrat DL,Murat E,J Chem Phys 51(1969)807
    [27] Hultgren R , Orr RL , Kelly KK. Supplement to selected values of thermodynamic properties of metals and alloys. Berkeley,CA:University of california;1967
    [28] Ghodgaonkar AM,Ramini K,Acta Phys Pol A,61(1982)151
    [29] Wentzcovitch RM,Chang KJ,Cohen ML. Electronic and structural properties of BN and BP,Phys Rev B,34(1986)1071
    [30] Zunger A,Freeman A,J Phys B,17(1978)2030
    [31] Dovesi R, Pisani C, Roetti C, Dellarole P, Exact-exchange Hartree-Fock calculations for periodic systems. IV. Ground-state properties of cubic boron nitride,Phys Rev,24(1981)4170
    [32] Rodriguez-Hernandez P,Gonzalez-Diaz M,Munoz A. Electronic and structural properties of cubic BN and BP,Phys Rev B,51 (1995)10705
    [33] X. W. ZHANG,H.-G. BOYON,N. DEYNEKA,P. ZIEMANNN,F. BANHART and M. SCHRECK,Epitaxy of cubic boron nitride on (001)-orinented diamond,Nature Materials,2(2003)312
    [34] R. C. DeVries,General Electric Company Corporate Research and Development Report No.72CRD178,1972
    [35] N.Miyata and K.Moriki, Optical constants of cubic boron nitride, Phys.Rev.B 40(17), 1989, 12028-12029
    [36] R.H.Wentorf, Synthesis of the cubic form of boron nitride, The journal of chemical physics, 1961, 34(3), 809-812
    [37] O.Mishima, S.Yamaoka and O.Fukunaga, Crystal growth of cubic boron nitride by temperature difference method at ~55kbar and~1800oC, J. Appl. Phys., 1987, 61(8), 2822-2825
    [38]望贤成,张铁臣,贾晓鹏,等,MgO在Mg-hBN体系中对合成cBN晶体的影响,高压物理学报,2002,16 (3),227-230
    [39] Kun Cao, Zhanguo Chen, Ce Ren, Gang Jia, Tiechen Zhang, Xiuhuan Liu, Bao Shi and Jianxun Zhao, Measurement of second-order nonlinear optical susceptibility of cBN crystal synthesized at high pressure and high temperature, Microelectron. J (2008), doi: 10.1016/ j. mejo. 2008. 07. 016.
    [1]过巳吉,非线性光学,西北电讯工程学院出版社,1986,第一版, Chap.1-4
    [2] P. Kurz, R. Paschotta, K. Fieldler, A. Sizmann, G. Leuchsand, J. Mlynek, Squeezing by Second-Harmonic Generation in a Monolithic Resonator, Appl. Phys. (1992) B55: 216
    [3] H. Rabin and T. L. Tang, Quantum Electronics: A. Treatise, I, eds. Academic Press, 1975
    [4] J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases, Academic Press, 1984
    [5] A. L. Huillier and P. Bacon, High-Order Harmonic Generation in Rare Gases with a 1-ps 1053nm Laser, Phys. Rev. Lett. (1993) 70: 774
    [6] Harris S E , et al. Nonlinear optical processes using electromagnetically induced transparency, Phys. Rev. Lett . , 1990 , 64 :1107—1110.
    [7] J. F. Nye, Physical Properties of Crystals. New York: Oxford, 1957, p.123
    [8] A. Yariv, Quantum Electronics. New York, Wiley, 1967, Chap. 18
    [9]石顺祥,陈国夫等,非线性光学,西安电子科技大学出版社, 2003,第一版,p.131
    [10] A.雅里夫,P.叶,晶体中的光波,科学出版社,1991,第一版,p.195
    [11] V. I. Gavrilenko, R. Q. Wu,“Linear and nonlinear optical properties of group-III nitrides,”Phys. Rev. B. 61, 2632-2642 (2000).
    [12] S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, J. Robertson,“Resonant Raman scattering in cubic and hexagonal boron nitride,”Phys. Rev. B. 71, 205201 (2005)
    [13] Aillerie.M, thèfanous.N, Fontana,M.D., Measurement of the electro-optic coefficients: description and comparison of the experimental techniques, Appl.Phys, 2000, B 70: 317-334
    [14] Boyd, G.D. and D.A. Kleinman. J. Appl. Phys. 39 3597, 1968. This is for type-I phase matching. For type-II phase-matched SHG, see J.-J. Zondy. Opt. Commun. 81 427, 1991.
    [15] Craxton, R.S. IEEE J. Quantum Electron. QE-17 1771, 1981.
    [16] Craxton, R.S., S.D. Jacobs, J.E. Rizzo and R. Boni. IEEE J. Quantum Electron. QE-17 1782, 1981.
    [17] Eckardt, R.C., H. Masuda, Y.X. Fan and R.L. Byer. IEEE J. Quantum Electron. 26 922, 1990.
    [18] Hagimoto, K. and A. Mito. Appl. Opt. 34 8276, 1995.
    [19] Byer, R.L. and S.E. Harris. Phys. Rev. 168 1064, 1968.
    [20] Michael M.Choy and Robert L.Byer, Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals, Physical Review B,Volume 14,Number 4,15 August 1976
    [21] Kurtz, S.K., J. Jerphagnon and M.M. Choy. In: Landolt-Bornstein, Numerical Data and Functional Relationshipsin Science and Technology, New Series, (eds. K.H. Hellwege and A.M. Hellwege) Group III,Vol. 11, Ch. 6, Springer-Verlag, Berlin, 1979; updated edition, Vol. 18, Ch. S6, Springer-Verlag, Berlin,1984.
    [22] Boyd, G.D., H. Kasper and J.H. Mcfee. IEEE J. Quantum Electron. QE-7 563, 1971.
    [23] Chemla, D. and P. Kupecek. Rev. Phys. Appl. 6 31, 1971.
    [24] Shoji, I., T. Kondo, A. Kitamoto, M. Shirane and R. Ito. J. Opt. Soc. Am. B 14 2268, 1997.
    [25] Jerphagnon, J. and S.K. Kurtz. J. Appl. Phys. 41 1667, 1970.
    [26] P.D.Maker,R.W.Terhune,M.Niseoff and C.M.Savage,Phys.Rev. Vol.8,NO.1,Jan 1,1962
    [27] Bechthold, P.S. and S. Hauss?hl. Appl. Phys. 14 403, 1977.
    [28] Herman, W.N. and L.M. Hayden. J. Opt. Soc. Am. B 12 416, 1995.
    [29]张铁臣,邹广田,立方氮化硼,长春:吉林大学出版社,1993,p17
    [30]蔡履中,王成彦,周玉芳,光学,济南:山东大学出版社,2002,第二版,p104-105
    [31]卢春生,光电探测技术及应用,北京:机械工业出版社,1992, p66-66
    [32] J. A. Valdmanis, G. Mourou, and C. W. Gabel, Picosecond electro-optic sampling system, Appl. Phys. Lett., 1982, 41, 211-212.
    [33] Kun Cao, Zhanguo Chen, Ce Ren, Gang Jia, Tiechen Zhang, Xiuhuan Liu, Bao Shi and Jianxun Zhao, Measurement of second-order nonlinear optical susceptibility of cBN crystal synthesized at high pressure and high temperature, Microelectron. J (2008), doi: 10.1016/ j. mejo. 2008. 07. 016.
    [1]李慧蕊,新型紫外探测器及其应用,光电子技术,第20卷第1期, 2000
    [2]吴正云,XIN Xiao-bin, YAN Feng, ZHAO Jian-hui.金属-半导体-金属(MSM)结构4H-Si紫外探测器的研制,量子电子学报,Vol.21 No.2, 2004
    [3] O.Schulz, P.Heitland. Application of prominent spectral lines in the 125-180nm range for inductively coupled plasma optical emission spectrometry. Fresenius J Anal Chem, Vol.371, pp. 1070-1075, 2001
    [4] J.W.Mumford, L.M.Apatiga, J.I.Golzarri, et al. Stability of polycrystalline Diamond films as UV thermoluminescent. Materials Letters, Vol.37, pp.330-333, 1998
    [5] Wang, S.G., et al. The effects of plasma post-treatment on the photoresponsivity of CVD diamond UV photodetectors, Diamond & Related Materials, Vol.14(3-7), pp.541-545 , 2005
    [6]干福熹,信息材料,天津大学出版社, 2000
    [7]陈武,王勇,王水弟,单一林, MikkoMatikkala,硅浅结紫外光探测器的研究,半导体光电,第三期,2000
    [8]龚道本,紫外敏感硅光伏二极管的正向特性,半导体光电,第五期,1998,
    [9]郭宝增,硅基光电器件研究进展,半导体技术,第一期,1999
    [10] Anikin M M, Andreev A N, Pyatko S N, et al. UV photodetectors in 6H-SiC, Sensors and Actuators A, ,Vol.33, pp.91-93, 1992
    [11] Hirabayashi Y, Karasawa S, Kobayashi K, et al. Spectral response of a photodiode using 3C-SiC single crystalline film, Sensors and Actuators A, Vol.43, pp.164-169, 1994
    [12] Yan-Kuin Su and Yu-Zung Chiou,et al. 4H-SiC metal–semiconductor–metal ultraviolet photodetectors with Ni/ITO electrodes, Solid-State Electronics, Vol.46, pp. 2237–2240, 2002
    [13] X. Xin, F. Yan and T.W. Koeth, et al. Demonstration of 4H-SiC visible-blind EUV and UV detector with large detection area, ELECTRONICS LETTERS, Vol. 41 No. 21, 2005
    [14] Johnson W C, parons J B and Crew M C, Nitrogen compounds of galliumⅢ.gallic nitride, J Phys Chem, Vol.36, pp.2561-2572, 1932
    [15] K. Hiramatsu, A. Motogaito, GaN-based Schottky barrier photodetectors from near ultraviolet to vacuum ultraviolet (360-50 nm), Physicl Status Solidi (A) Applied Research. Vol.195, pp. 496-501, 2003
    [16] C.K. Wang,et al. GaN MSM photodetectors with TiW transparent electrodes, Materials Science & Engineering B. Vol.112, pp.25–29, 2004
    [17] Su-Sir Liu,et al. The improvements of GaN p–i–n UV sensor on 1? off-axis sapphire substrate, Materials Science and Engineering B. Vol.121, pp.86–91, 2005
    [18] Y.D. Jhou, et al. GaN MSM photodetectors with photo-CVD annealed Ni/Au electrodes,Microelectronics Journal. Vol.37, pp.328-331, 2006
    [19] Flannery L B, Harrison I and Lacklison D E, et al. Fabrication and characterization of p-type GaN metal-semiconductor-meta ultravioletphotoconductors grown by MBE, Materials Science and Engineering B, Vol.50(1-3), pp.307-310, 1997
    [20] Razeghi. M, Sandvik.P, Kung P, et al. Lateral epitaxial overgrowth of GaN on sapphire and silicon substrates for ultraviolet photodetector applications, Materials Science and Engineering B, Vol.74, pp.107-112, 2000
    [21] Xu H Z, Wang Z G, Kawabe M, et al. Fabrication and characterization of metal-semiconductor-metal(MSM) ultraviolet photodetectors on undoped GaN/sapphire grown by MBE, Journal of Crystal Growth, Vol.218, pp.1-6, 2000
    [22] Hiromichi Ohta, et al. UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-Ni/yn-ZnO, Thin Solid Films, Vol.445, pp.317–321, 2003
    [23] Tae-Hyoung Moon, et al. The fabrication and characterization of ZnO UV detector, Applied Surface Scienc, Vol.240, pp. 280–285, 2005
    [24] Y. R. Ryua, et al. ZnO devices: Photodiodes and p-type field-effect transistors, APPLIED PHYSICS LETTERS, Vol.87, pp.153504, 2005
    [25] Cheng-Liang Hsu, et al. Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires, Chemical Physics Letters, Vol.416, pp. 75–78, 2005
    [26] Zi-Qiang Xu, et al. Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol–gel method, Applied Surface Science, Vol.253(2) pp. 476-479, 2006
    [27] Q.A. Xu,et al. ZnO thin film photoconductive ultraviolet detector with fast photoresponse, Journal of Crystal Growth, Vol.289, pp.44–47, 2006
    [28] Fabricius H, Skettrup T, Bisgaard P, Ultraviolet detectors in thin sputtered ZnO films, Appl.Optics, Vol.25, pp.2764-2767, 1986
    [29] Liu Y, Gorla C R, Liang S, et al. Ultraviolet detectors based on eptaxial ZnO film grown by MOCVD, Journal of Electronic Materials, Vol.29(1), pp.69-74, 2000
    [30] Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors, Journalof Crystal Growth, Vol.225, pp.110-113, 2001
    [31] Salvatori S, Rossi M C, Scotti F, et al. High-temperature performances of diamond-based UV-photodetector, Diamond and Related Mterials. Vol.9, pp.982-986, 2000
    [32] Pace E, Di B R, Scuderi S, et al. Fast stable visible-blind and highly sensitive CVD diamond UV photodetectors for laboratory and space applications, Diamond and Related Mterials, Vol.9, pp.987-993, 2000
    [33] Tokuyuki Teraji,et al. Highly sensitive UV photodetectors fabricated using high-quality single-crystalline CVD diamond films, Diamond and Related Materials, Vol.13, pp.858–862, 2004
    [34] S.G. Wang,et al. The effects of plasma post-treatment on the photoresponsivity of CVD diamond UV photodetectors, Diamond & Related Materials. Vol.14, pp.541–545, 2005
    [35] A. Balducci, et al. Extreme UV single crystal diamond photodetectors by chemical vapor deposition, Diamond & Related Materials. Vol.14,pp.1980– 1983, 2005
    [36] Michael D. Whitfield, Simon SM Chan, and Richard B. Jackman, Thin film diamond photodiode for ultraviolet light detection, Appl. Phys. Lett. Vol.68 (3), pp.290, 1996
    [37] J F Hochedez, et al. LYRA, a solar UV radiometer on Proba2, Advances in Space Research, Vol.37, pp.303–312, 2006
    [38] Thaiyotin L, Ratanaudompisut E, Phetchakul T, et al. UV photodetector from Schottky diode diamong film, Diamond and Related Materials, Vol.11, pp.442-445, 2002
    [39] Looi H J, Whitfield M D, Jackman R B, et al. Metal-semiconductor-metal photodiode fabrication from thin-film diamond, Appl Phys Lett, Vol.77(22), pp.3332-3332, 1999
    [40] P. Gonon, S. Prawer, D. Jamieson, Thermally stimulated currents in polycrystalline diamond films: Application to radiation dosimetry, Appl. Phys.Lett. Vol.70, pp.2996, 1997
    [41] E. Gheeraert, A. Deneuville, P. Gonon, M. Benabdesselam, P.Iacconi, Thermally Stimulated Conductivity and Luminescence in Polycrystalline Diamond Films, Phys. Status Solidi A, Vol.172, pp.183, 1999
    [42] Yoon, Ki Hyun, Noh, Jung Sok, Kwon, Chul Han and Muhammed, Mamoun . Photocatalytic behavior of TiO2 thin films prepared by sol–gel process. Materials Chemistry & Physics , Vol. 95(1), pp. 79-83, 2006
    [43] S.Luzzati, M.Basso, M.Catellani et al. Photo-induced electron transfer from a dithiend thiophene-based polymer to TiO2. Thin Solid Films, Vol.403-404, pp.52-562002
    [44] Gutiérrez-Tauste, et al. New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation Journal of Photochemistry & Photobiology, A: Chemistry , Vol.175(2-3), pp. 165-171, 2005
    [45] John R. McCormick, et al. A four-point probe correlation of oxygen sensitivity to changes in surface resistivity of TiO2(001) and Pd-modified TiO2(001), Surface Science, Vol.545 pp.741–746, 2003
    [46] Teng-feng Xie and De-jun Wang et al. Application of surface photovoltage technique in photocatalysis studies onmodified TiO2 photo-catalysts for photo-reduction of CO2, Materials Chemistry and Physics, Vol.70, pp.103–106, 2001
    [47] Jiaguo Yu and Xiujian Zhao, Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Materials Research Bulletin, Vol.35, pp.1293–1301, 2000
    [48] P. Ravirajan et al. Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector APPLIED PHYSICS LETTERS, Vol.86, pp.143101, 2005
    [49] Chun-Guey Wu, Chia-Cheng Chao and Fang-Ting Kuo, Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification,Catalysis Today, Vol.97, pp.103–112, 2004
    [50] Kei Murakoshi et al. Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole, Solar Energy Materials and Solar Cells, Vol.55, pp.113-125, 1998
    [51] K. Zakrzewska,Gas sensing mechanism of TiO2-based thin films, Vacuum, Vol. 74, pp. 335–338, 2004
    [52] O.Mishima, K.Era, J.Tanaka, and S.Yamaoka, Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure, Appl, Phys.Lett. 53(11)1988,962-964
    [53] T.Tanguchi, K.Watanabe, S.Koizumi, et al., Ultraviolet light emission from self-organized p-n domains in cubic boron nitride bulk single crystals grown under high pressure, Appl. Phys. Lett., 2002, 81(22),4145-4147
    [54] A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, Y. M. Chong, Y. S. Zou, W. J. Zhang, S. T. Lee, A. BenMoussa, B. Giordanengo and J.-F. Hochedez, 193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors, Appl. Phys. Lett. 92, 053501 (2008)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700