用户名: 密码: 验证码:
有机分子在分子筛中的吸附和扩散过程的计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机模拟作为一种有效的方法广泛用于固体材料,尤其是微孔材料的研究中,在结构、热力学、吸附分离和催化等性质的研究中取得巨大成功。本文采用了蒙特卡罗和动力学方法研究了有机分子在MOR和MCM-22分子筛中的吸附和扩散行为。并得到如下结果:
     1.通过分子模拟得到了噻吩在MOR分子筛中的吸附等温线和吸附热。温度和压力影响吸附等温线,但对吸附热影响较小。对于噻吩和异辛烷的二元混合物,噻吩在MOR分子筛中的吸附能力明显高于异辛烷,说明二元混合物可通过MOR分子筛分离开来。
     2.噻吩在MCM-22分子筛十元环和超笼中都可以吸附,异辛烷主要吸附在超笼中,温度和压力对其吸附量和吸附位有影响,但对吸附热影响不大。二元混合物间存在竞争吸附,噻吩在MCM-22分子筛中的吸附能力明显大于异辛烷。动力学模拟发现在超笼中异辛烷的扩散速度高于噻吩分子,这与蒙特卡罗模拟结果相对应。因此通过MCM-22分子筛可以将两者很好的分离开来。
     3.噻吩和苯分子单纯物质在MCM-22分子筛中吸附趋势基本相同,都可以在MCM-22两个独立孔道中吸附,并且扩散主要发生在超笼中。两者的二元混合物存在竞争吸附,噻吩的吸附能力高于苯分子。因此可以通过MCM-22分子筛将两者分离。
     4. 1-丁烯和正丁烷在MCM-22分子筛两个独立孔道中都可以吸附,并优先吸附在十元环孔道和超笼的底部和顶部;动力学模拟结果显示扩散主要发生在超笼的孔道系统中。1-丁烯和正丁烷在MCM-22分子筛中的催化反应主要发生在十元环孔道和超笼的底部和顶部。
Recently, with increasing attention has been paid to the environmental protection, the product of clean fuel has been the focus which people are concerned about. The deep desulfurization of gasoline and incrase of the octane number of lead free gasoline have become the emphosis of investigation. Zeolites are microporous materials that have been found widespread useing in several technological fields. These materials have outstanding properties due to their regular structure and high internal surface areas, and they have been used as catalysts ino exchangers, and adsobents. The adsorption of thiophene in zeolite microporous materials is of great scientific interest in the context of separation and catalysis processes. For instance, the separation of thiophene from gasoline is performed by using selective adsorption in synthetic-type zeolites. MOR and MCM-22 are two kinds of microporous materials. MOR zeolite possesses 12-MR(member rings) channel systems; and MCM-22 zeolite possesses an interesting and unusual framework structure: two independent pore systems formed by interconnected sinusoidal 10-MR(member rings) pores with a 0.41×0.51 nm diameter and an independent 12-MR supercage with 1.82×0.71 nm linked by 10-MR windows with 0.40×0.55 nm diameter. The organic molecules can adsorb and diffuse in two independent pore systems because of their large surface area and the high thermal stability of the framework. It is very important to understand the adsorption and diffusion of the pure organic molecules and the mixture of organic molecules in MCM-22 zeolite. But it is very difficult or impossible to be interpreted by the experimental and theoretical study. It is of great importance to investigate that by molecular simulation techniques.
     In this paper, we employed Monte Carlo and Dynamic technique to simulate the adsorption and diffusion of thiophene/isooctane, thiophene/benzene and their mixtures, and 1-butene and n-butane in MCM-22 zeolite; and obtained the the adsorption isotherms, the heat of adsorption, mass cloud and diffusion coefficients. Then the located sites and the mainly diffusion channel can be predicted. The fellowing results can be drawn:
     1. Adsorption of thiophene and thiophene/iso-octane mixtures in MOR zeolite by Monte Carlo simulation
     At first, the adsorption isotherm of thiophene in MOR zeolite was studied with CVFF and COMPASS forcefield by Monte Carto simulation. The simulated results showed that the result with compass is more exactly than that with CVFF compared with the reference. Thus, the COMPASS force field was used to simulate. The adsorption of thiophene/iso-octane mixtures in MOR zeolite was studied by Monte Carlo simulation. The results showed that Thiophene and iso-octane can be separated effectively by MOR zeolite.
     2. Adsorption and diffusion of thiophene and thiophene/iso-octane mixtures in MCM-22 zeolite by Monte Carlo simulation and dynamic simulation
     The adsorption isotherm, the heat of adsorption and the located sites of the pure thiophene and iso-octane molecules can be obtained by MC simulation. It can be showed that thiophene can be adsorbed in 10-MR channel and 12-MR supercage system, but iso-octane mainly is adsorbed in supercage system. And the adsorption capacity and the adsorption sites can be affected by the temperature and the pressure. The binary mixtures obey competition classification, and thiophene is adsorbed more strongly than iso-octane. The diffusion coefficients of iso-octane are larger than these of thiophene, and the result is in agreement with that of GCMC simulation. The molecules of thiophene and iso-octane can be segregated by MCM-22 zeolite.
     3. Adsorpion of thiophene and thiophene/benzene mixture in MCM-22 zeolite by Monte Carlo simulation
     The adsorption tendencies of thiophene and benzene are similar in MCM-22 zeolite, which can be adsorbed in two independent channel systems. On the other hand, the binary mixtures have competition adsorption, and thiophene adsorbs more strongly than benzene. The adsorption of the ternary mixtures of thiophene, benzene and iso-octane in MCM-22 was studied by MC simulation. The results showed that the adsorptive capacity of thiophene in MCM-22 zeolite is strongest, and the iso-octane is weakest. Then MCM-22 zeolite is a eximious sorbent of deep desulfurization of gasoline.
     4. Adsorption and diffusion of 1-butene and n-butane in MCM-22 zeolite were studied by Monte Carlo and Monte Carlo simulation
     The adsorption and diffusion of 1-butene and n-butane in MCM-22 zeolite were studied by Monte Carlo and Molecular Dynamic simulation. The calculated results showed that 1-butene and n-butane can be adsorbed in two independent channel systems, and can be preferentially adsorbed in 10-MR channel systems. The dynamic simulation was performed at 400K and 673K, and the two kinds of molecules can diffuse in two independent channel systems and mainly diffuse in the center of the supercage systems. It can be predicted that the catalytic reactions mainly happen in 10-MR channel, and the upper and lower of the supercage systems.
引文
1. Chen N. Y., Garwood, W. E., Dwyer F. G. Shape SelectiVe Catalysis in Industrial Applications; Marcel Dekker: New York, 1989.
    2. Ruthven D. M. Principles of Adsorption and Adsorption Processes; John Wiley and Sons: Canada, 1984.
    3. Brechtelsbauer C., Emig G. Shape selective methylation of biphenyl within zeolites: An example of transition state selectivity, Appl. Catal. A, 1997, 161, 79-92.
    4. Brzozowski R., Ski W. Zeolite Pore Entrance Effect on Shape Selectivity in Naphthalene Isopropylation, J. Catal., 2002, 210, 313-318.
    5. Bundens R. G., Keville K. M., Huss Jr., Chu C. T. W., Husain A. Mobil Oil Corporation. Olefin Interconversion by Shape Selective Catalysis., U.S. Patent 5, 146, 029, 1992.
    6. Calero S., Schenk M., Smit, B., Maesen T. L. M. Alkane hydrocracking: shape selectivity or kinetics, J. Catal., 2004, 221, 241-251.
    7. Choudhary V. R., Akolekar D. B. Evaluation of sorbate/reactant shape-selectivity of zeolites by GC pulse techniques, J. Mol. Catal., 1990, 60, 173-188.
    8. Degnan J. The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemicalindustries, J. Catal. 2003, 216, 32-46.
    9. Deniaud D., Odobel F., Bujoli B., Spyroulias G. A., Bartoli J. F., Battioni P., Mansuy D., Pinel. Shape selectivity for alkane hydroxylation with a new class of phosphonate-based heterogenised manganese porphyrins, C. New J. Chem., 1998, 22, 901-905.
    10. Ka J., Hansildaar S., Ponec V. The Shape Selectivity in the Skeletal Isomerisation ofn-Butene to Isobutene, J. Catal., 1997, 167, 273-278.
    11. Klemm E., Scheidat H., Emig G. A study of shape selectivity on zeolites in ethylbenzene disproportionation [simulation and experiment, Chem. Eng. Sci., 1997, 52, 2757-2768.
    12. Marcilly C. R. Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes, Top. Catal., 2000, 13, 357-366.
    13. Llorens F. J., Cepeda E., Gayubo A. G., Aguayo A. T., Bilbao J. The role of shape selectivity and intrinsic selectivity of acidic sites of the catalysts in the skeletal isomerization of n-butenes, J. Chem. Technol. Biotechnol., 1998, 71, 6-14.
    14. Mostad H. B., Riis T. U., Ellestad O. H. Shape selectivity in Y-zeolites: Catalytic cracking of decalin-isomers in fixed bed micro reactors, Appl. Catal., 1990, 58, 105-117.
    15. Prasada Rao T. S. R., Viswanadham N., Murali Dhar G., Ray N. ACS Symp. Ser. 1999, 738, 130-144.
    16. Villemin D., Nechab B. Shape Selectivity in Enol Thioether Synthesis Catalyzed by Zeolites, React. Kinet. Catal. Lett., 2000, 69, 9-13.
    17. Wang Y., Davis B. H., Tungate F. L. ACS Symp. Ser., 1999, 738, 145-159.
    18.李春喜,田茹,卢贵武,电解质模型流体的MonteCarlo分子模拟,化学学报, 2003, 61, 175-180.
    19.张伟平,杨林昱,李总成.简单分子三元混合物汽液平衡的分子模拟计算,石油学报(石油加工), 1996, 12(1), 80-84.
    20. Siepmann J. I. Monte Carlo methods for simulating phase equilibria of complex fluids, Adv. Chem. Phys., 1999, 105, 443-460.
    21.顾冲,高光华,于养信.单壁碳纳米管吸附氢气的计算机模拟,高等学校化学学报, 2001, 22(6), 958-961.
    22. Fritzsche S., Kalrger J. Tracing Memory Effects in Correlated Diffusion Anisotropy in MFI-Type Zeolites by MD Simulation, J. Phys. Chem. B, 2003, 107, 3515-3521.
    23. Skoulidas A. I., Sholl D. S., Krishna R. Correlation Effects in Diffusion of CH4/CF4 Mixtures in MFI Zeolite. A Study Linking MD Simulations with the Maxwell-Stefan Formulation, Langmuir, 2003, 19, 7977-7988.
    24. Shams A., Dehkordi A. M., Goodarznia I. Desulfurization of Liquid-Phase Butane by Zeolite Molecular Sieve 13X in a Fixed Bed: Modeling, Simulation, and Comparison with Commercial-Scale Plant Data, Energy & Fuels, 2008, 22, 570-575.
    25. Plant D. F., Maurin G., Bell R. G. Diffusion of Methanol in Zeolite NaY: A Molecular Dynamics Study, J. Phys. Chem. B, 2007, 111, 2836-2844.
    26. Liu B., Garc?′a-Pe′rez E., Dubbeldam D., Smit B., Calero S.Understanding Aluminum Location and Non-framework Ions Effects on Alkane Adsorption in Aluminosilicates: A Molecular Simulation Study, J. Phys. Chem. C, 2007, 111, 10419-10426.
    27. Chempath S., Krishna R., Snurr R. Q. Nonequilibrium Molecular Dynamics Simulations of Diffusion of Binary Mixtures Containing Short n-Alkanes in Faujasite, J. Phys. Chem. B, 2004, 108, 13481-13491.
    28. Maddox M. W., Olivier J. P., Gubbins K. E. Characterization of MCM-41 Using Molecular Simulation: Heterogeneity Effects, Langmuir 1997, 13, 1737-1745.
    29. Jousse F., Auerbach S. M., Vercauteren D. P. Adsorption Sites and Diffusion Rates of Benzene in HY Zeolite by Force Field Based Simulations, J. Phys. Chem. B, 2000, 104, 2360-2370.
    30. Yazaydin A. O., Thompson R. W. Molecular Simulation of the Adsorption of MTBE in Silicalite, Mordenite, and Zeolite Beta, J. Phys. Chem. B, 2006, 110, 14458-14462.
    31. Nascimento M. A. C. Computer simulations of the adsorption process of light alkanes in high-silica zeolites, J. Mol. Struct. (Theochem), 1999, 464, 239-247.
    32. Chandross M., Webb III, Grest E. B. G. S., Martin M. G., Thompson A. P., Roth M. W. Dynamics of Exchange at Gas-Zeolite Interfaces I: Pure Component n-Butane and Isobutane, J. Phys. Chem. B, 2001, 105, 5700-5712.
    33. Skoulidas A. I. Molecular Dynamics Simulations of Gas Diffusion in Metal-Organic Frameworks: Argon in CuBTC, J. Am. Chem. Soc., 2004, 126, 1356-1357.
    34. Fuchs, A. H., Cheetham A. K. Adsorption of Guest Molecules in Zeolitic Materials: Computational Aspects, J. Phys. Chem. B, 2001, 105, 7375-7383.
    35. Schuring D., Jansen A. P. J., Santen R. A. Concentration and Chainlength Dependence of the Diffusivity of Alkanes in Zeolites Studied with MD Simulations, J. Phys. Chem. B, 2000, 104, 941-948.
    36. Vlugt T. J. H., Krishna R., Smit B. Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite, J. Phys. Chem. B, 1999, 103, 1102-1118.
    37. Krishna R., Smit B., Vlugt T. J. H. Sorption-Induced Diffusion-Selective Separation of Hydrocarbon Isomers Using Silicalite, J. Phys. Chem. A, 1998, 102, 7727-7730.
    38. Makrodimitris K., Papadopoulos G. K., Theodorou D. N. Prediction of Permeation Properties of CO2 and N2 through Silicalite via Molecular Simulations, J. Phys. Chem. B, 2001, 105, 777-788.
    39. Kamat M., Dang W-J, Keffer D. Agreement between Analytical Theory and Molecular Dynamics Simulation for Adsorption and Diffusion in Crystalline Nanoporous Materials, J. Phys. Chem. B, 2004, 108, 376-386.
    40. Gener I., Ginestet G., Buntinx G., Bre′mard C. Sorption of Biphenyl in Nonacidic Faujasitic Y Zeolites: Modeling and Spectroscopic Studies, J. Phys. Chem. B, 2000, 104, 11656-11666.
    41. June R. L., Bell A. T., Theodorou D. N. Molecular Dynamics Studies of Butane and Hexane in Siiicalite, J. Phys. Chem., 1992, 96, 1051-1060.
    42. Klein H., Fuess H., Mobility of Aromatic Molecules in Zeolite NaYby Molecular Dynamics Simulation, J. Phys. Chem., 1996, 100, 11101-11112.
    43. Moloy E. C., Davila L. P., Shackelford J. F., Navrotsky A. High-silica zeolites: a relationship between energetics and internal surface areas, Microporous Mesoporous Mater., 2002, 54, 1-13.
    44. Adhangale P., Keffer D. A Grand Canonical Monte Carlo Study of the Adsorption of Methane, Ethane, and Their Mixtures in One-Dimensional Nanoporous Materials, Langumr, 2002, 18, 10455-10261.
    45. Kowalczyk P., Tanaka H., Kaneko K., Terzyk A. P., Do D. D. Grand Canonical Monte Carlo Simulation Study of Methane Adsorption at an Open Graphite Surface and in Slitlike Carbon Pores at 273 K, Langmuir, 2005, 21, 5639-5646.
    46. Corma A. State of the art and future challenges of zeolites as catalysts, J. Catal., 2003, 216, 298-312.
    47. http://www.iza-structure.org/database
    48. Weisz P. B., Frilette V. J. Interacrystalline and molecular-shape-selective catalysis by zeolite salts, J. Phys. Chem., 1960, 64, 382-382.
    49. Miale J. N., Chen N. Y., Weisz P. B. Catalysis by crystalline aluminosilicates : IV. Attainable catalytic cracking rate constants, and superactivity, J. Catal., 1966, 6(2), 278-287.
    50. Argauer R. J. Crystalline zeolite ZSM-5 and method of preparing the same zeolite, US 3702886, 1972.
    51.韩淑云,徐如人.高等学校化学学报, 1982, 3(3), 430.
    52. Jentys A., Lugstein A., Vinek H. Characterization of metallic specieson Ni- and Co-containing ZSM-5 catalysts--reduction behavior and catalytic properties, Zeolites, 1997, 18, 391-397.
    53. Giannetto G., Garcia L, Papa J. et al. Synthesis and characterization of [Cr, Al]-ZSM-5 zeolites, Zeolites, 1997, 19, 169-174.
    54. Llorens F. J., Gayubo A. G., Cepeda E., Aguayo A. T., Bilbao J. The Role of Shape Selectivity and Intrinsic Selectivity of Acidic Sites of the Catalysts in the Skeletal Isomerization of n-Butenes, J. Chem. Technol. Biotechnol., 1998, 71, 6-14.
    55. Wilson S., Lok B. M., Flanigen E. M. Crystalline metalline metallophosphate compositions, US 4310440, 1982.
    56. Lok B. M., Messina C. A, Patton R. L. Crystalline sillicoaluminophosphate, US 4440871, 1984.
    57. Rubin M. K., Chu P. US 4 954 325, 1990 [chem. Abstr. 1990, 113, 238862]
    58. Leonowicz M. E., Lawton J. A. et al. Science, 1994, 264, 1910-1913.
    59. Lawton J. A, Lawton S. L., Leonowicz M. E. et al. Studies in Surface Science and Catalysis, 1995, 98, 250-251.
    60. Corma A., Corell C., Llopis F., Martinez A., Perez-Pariente J. Proposed pore volume topology of zeolite MCM-22 based on catalytic tests, Appl. Catal. A, 1994, 115, 121-134.
    61. Corma A., Martinez A., Martinez C. Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and acidity on activity and selectivity, Catal. Lett., 1994, 28, 87.
    62. Souverijins W., Verrelst W., Vanbustsele G., Martens J. A., Jacobs P. A. J. Chem. Soc. Chem. Commun., 1994, 1671-1672.
    63. Corma A., Gonzalez-Alfaro V., Orchilles A.V. Catalytic cracking of alkanes on MCM-22 zeolite. Comparison with ZSM-5 and beta zeolite and its possibility as an FCC cracking additive, Appl. Catal. A, 1995, 129, 203-215.
    64. Asensi M. A., Corma A., Martinez A. Skeletal Isomerization of 1-Butene on MCM-22 Zeolite Catalyst, J. Catal., 1996, 158, 561-569.
    65. Corma A., Martinez-Triguero J. The Use of MCM-22 as a Cracking Zeolitic Additive for FCC, J. Catal., 1997, 165, 102-120.
    66. Meriaudeau P., Tuan Vu. A., Nghiem Vu. T., Lefevbre F., Ha Vu. T. Characterization and Catalytic Properties of Hydrothermally Dealuminated MCM-22, J. Catal., 1999, 185, 378-385.
    67. Rodriguez I., Climent M. J., Iborra S., Fornes V., Corma A. Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols, J. Catal., 2000, 192, 441-447.
    68. Laforge S., Martin D., Paillaud J. L., Guisnet M. m-Xylene transformation over H-MCM-22 zeolite: 1. Mechanisms and location of the reactions, J. Catal., 2003, 220, 92-103.
    69. Rigoreau J., Laforge S., Gnep N. S., Guisnet M. Alkylation of toluene with propene over H-MCM-22 zeolite. Location of the main and secondary reactions, J. Catal., 2005, 236, 45-54.
    70. Wang Y., Zhou D-H, Yang G., Miao S-J, Liu X-C, Bao X-H. A DFT Study on Isomorphously Substituted MCM-22 Zeolite, J. Phys. Chem. A, 2004, 108, 6730-6734.
    71. Zheng A., Chen L., Yang J., Zhang M-J, Su Y-C, Yue Y., Ye C-H, Deng F. Combined DFT Theoretical Calculation and Solid-State NMR Studies of Al Substitution and Acid Sites in Zeolite MCM-22, J. Phys. Chem. B, 2005, 109, 24273-24273.
    72. Wang Y., Yang G., Zhou D-H, and Bao X-H. Density Functional Theory Study of Chemical Composition Influence on the Acidity of H-MCM-22 Zeolite, J. Phys. Chem. B, 2004, 108, 18228-18233.
    73. Vries A. H., Sherwood P., Collins S. J., Rigby A. M., Rigutto M., Kramer G. J. Zeolite Structure and Reactivity by Combined Quantum-Chemical-Classical Calculations, J. Phys. Chem. B, 1999, 103, 6133-1641.
    74. Vos A. M., Rozanska X., Schoonheydt R. A., van Santen R. A., Hutschka F., Hafner J. A Theoretical Study of the Alkylation Reaction of Toluene with Methanol Catalyzed by Acidic Mordenite, J. Am. Chem. Soc., 2001, 123, 2799-2809.
    75. Ivanova Shor E. A., Shor A. M., Nasluzov V. A., Vayssilov G. N., Ro¨sch N. Effects of the Aluminum Content of a Zeolite Framework: A DFT/MM Hybrid Approach Based on Cluster Models Embedded in an Elastic Polarizable Environment, J. Chem. Theory Comput., 2005, 1, 459-471.
    76. Perego C., Amarilli S., Millini R., Bellussi G., Girotto G., Terzoni G. Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis, Microporous Mater., 1996, 6, 395-404.
    77. Klemm E., Wang J.G., et al. A comparative study of the sorption of benzene and phenol in silicalite, HAlZSM-5and NaAlZSM-5 bycomputer simulation., Microporous Mesoporous Mater.,1998, 26, 11-21.
    78. Vlugt T. J. H., Zhu W., Kapteijn F., et al., Adsorption of Linear and Branched Alkanes in the Zeolite Silicalite-1, J. Am. Chem. Soc., 1998, 120, 5599-5600.
    79.王建国,秦张峰,郭向云.低碳烷烃在silicalite中吸附的分子水平模拟研究.燃料化学学报, 1999, 27(增刊), 158.
    80. Krishna R., Paschek D., Maginn E. J. Pure and binary component sorption equilibria of light hydrocarbons in the zeolite silicalite from grand canonical Monte Carlo simulations, Fluid Phase Equil, 1999, 158, 19-27.
    81. Anne G., David S. S., et al. Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolite: The Impact of Pore Size and Shape, J. Phys. Chem. B., 2002, 106, 8367-8375.
    82.孙书勇,曹达鹏,王文川. MCM-22型分子筛中纯的和混合的轻烃的吸附行为的Monte Carlo模拟研究,北京化工大学学报, 2003, 30(4), 1-5.
    83.吕铃红,王琦,刘迎春.断链烷烃二元混合物在分子筛上吸附分离的分子模拟,化学学报, 2003, 61(8), 1232-1240.
    84. Yue, X. P., Yang X. N. Molecular Simulation Study of Adsorption and Diffusion on Silicalite for a Benzene/CO2 Mixture, Langmuir 2006, 22, 3138-3147.
    85. Xiao J., Wei J. Diffusion mechanism of hydrocarbons in zeolites-Ⅱ. Analysis of experiment observations, Chem. Eng. Sci., 1992, 47, 1143-1159.
    86. Hernandez E., Catlow C. R. A. Molecular dynamics simulations ofn-butane and n-hexane diffusion in silicalite, Proc. R. Soc., 1995, 448, 143-160.
    87. Frerich J. K., et al. Modeling of Diffusion in Zeolites., Rev. Chem. Eng., 2000, 16, 71-179.
    88. Klein H., Fuess H. Mobility of Aromatic Molecules in Zeolite NaY by Molecular Dynamics Simulation, J. Phys. Chem., 1996, 100, 11101-11112.
    89. Kamat M., Dang W-J, Keffer D. Agreement between Analytical Theory and Molecular Dynamics Simulation for Adsorption and Diffusion in Crystalline Nanoporous Materials, J. Phys. Chem. B, 2004, 108, 376-386.
    90. Rungsirisakun R., Nanok T., Probst Mi., Limtrakul J. Adsorption and diffusion of benzene in the nanoporous catalysts FAU, ZSM-5 and MCM-22: A molecular dynamics study, J. Mol. Graphics Modell., 2006, 24, 373-382.
    91. Hussain I., Titiloye J. O. Molecular dynamics simulations of the adsorption and diffusion behavior of pure and mixed alkanes in silicalite, Microporous Mesoporous Mater., 2005, 85, 143-156.
    92. Ma L. P., Yang R. T. Heats of Adsorption from Liquid Solutions and from Pure Vapor Phase: Adsorption of Thiophenic Compounds on NaY and 13X Zeolites, Ind. Eng. Chem. Res., 2007, 46, 4874-4882.
    93. Takahashi A., Yang F. H., Yang R. T. New Sorbents for Desulfurization by -Complexation: Thiophene/Benzene Adsorption, Ind. Eng. Chem. Res., 2002, 41, 2487-2496.
    94. Yang R. T., Hernandez-Maldonado A. J., Yang F. H. Desulfurizationof Transportation Fuels with Zeolites Under Ambient Conditions, Science, 2003, 301, 79-81.
    95. Velu S., Ma X., Song C. Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents, Ind. Eng. Chem. Res., 2003, 42, 5293-5304.
    96. Geobaldo F., Palomino G. T., Bordiga S., Zecchina A., Area C. O. Phys. Chem. Chem. Phys., 1999, 1, 561-569.
    97. Zhang Z. Y., Shi T. B., Jia C. Z., Ji W. J., Chen Y., He M.Y. Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites, Appl. Catal., B: Environmental, 2008, 82, 1-10.
    98. Chica A., Strohmaier K., Iglesia E. Adsorption, Desorption, and Conversion of Thiophene on H-ZSM5, Langmuir, 2004, 20, 10982-10991.
    99. Asensi M. A., Corma A., Martinez A. Isomorphous substitution in ZSM-22 zeolite. The role of zeolite acidity and crystal size during the skeletal isomerization of n-butene, Appl. Catal., A: General, 1998, 174: 163-175.
    100. Jung H. J., Park S. S., Shin C. H., Park Y. K., Hong S. B. Comparative catalytic studies on the conversion of 1-butene and n-butane to isobutene over MCM-22 and ITQ-2 zeolites, J. Catal., 2007, 245, 65-74.
    1.吕铃红.烷烃在沸石分子筛中吸附分离的分子模拟研究,浙江大学博士学位论文, 2005.
    2. Hammersley J. M., Handscomb D. C. Monte Carlo Method, Methuen, London, 1964.
    3. Tocher K. The Art of Simulation, The English Univ. Press, London, 1963.
    4.裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中应用,北京:科学出版社, 1980.
    5. Adsms D. J. A grand canonical of gases at high pressure:Ⅰ. The critical region, Mol. Phys., 1975, 29, 307-311.
    6. Megen W. V., Snook I. K. Physical adsorption of gases of at high pressureⅡ. Adsorption in slit-like pores, Mol. Phys., 1982, 45, 629-636.
    7. Megen W. V., Snook I. K. Physical adsorption of gases of at high pressureⅢ. Adsorption in slit-like pores, Mol. Phys., 1985, 54(3), 741-755.
    8.王建国,秦张峰,郭向云.计算机模拟在分子筛研究中的应用,燃料化学学报, 1999, 27(增), 149-157.
    9. Alder B. J., Wainwright T. E. Phase transition for a bardsphere system. J. Chem. Phys., 1957, 27, 1208-1209.
    10. Verlet L. Computer experiments classical fluids. ?. Thermodynamical properties of Lennard-Jonesmolecules, Phys. Rev., 1967, 159, 98-103.
    11. Gear C. W. Numerical Initial Value Problems in Ordinary Differential Equation. Englewood Cliffs, Prentice-Hall, 1971, 1-54.
    12. Swop W. C., Anderson H. C., Berens P. H., Wilson K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys., 1982, 76, 637-649.
    13. Honeycutt R. Q. The potential calculation and some application, Methods in Computation Physics, 1970, 9, 136-211.
    14. Beeman D. Some multistep methods for use in molecular dynamics calculations, J. Compt. Phys., 1976, 20, 130-39.
    15. Rahman A. Correlations in the motion of atoms in liquid argon, Phys. Rev. A, 1964, 136, 405-411.
    16. Andrews D. H. The Relation Between the Raman Spectra and the Structure of Organic Molecules, Phys. Rev., 1930, 36, 544-554.
    17. Hill T. L. J. On the origin of energy barriers in the excited states of He2, Chem. Phys., 1946, 14, 465-478.
    18. Dostrovsky I. Mechanism of substitution at a saturated carbon atom. Part XXXII. The r?le of steric hindrance. (Section G) magnitude of steric effects, range of occurrence of steric and polar effects, and place of the wagner rearrangement in nucleophilic substitution and elimination, J. Chem. Soc., 1946, 173-194.
    19. Westhermer L. H., A Calculation of the Energy of Activation for the Racemization of 2, 2-Dibromo–4, 4-Dicarboxydiphenyl, J. Chem. Phys, 1947, 15, 252-260.
    20. Westhermer L. H. The Calculation and Determination of the Buttressing Effect for the Racemization of 2,2',3,3'-Tetraiodo-5,5'-dicarboxybiphenyl, J. Am. Chem. Soc., 1950, 72, 19-28.
    21. Wilson E. B., Decius J. C., Cross P. C. Molecular Vibrations, Newyork: McGraw-Hill, 1955.
    22. Westhermer B. H., Newman M. S. Ed., New York: Wiley, 1956.
    23. Hendrickson J. B. Molecular Geometry. I. Machine Computation of the Common Rings, J. Am. Chem. Soc., 1961, 83, 4537-4547.
    24. Lifson A., Warshel S. Consistent force field for calculations of conformation, vibrational spectra and enthalpies of cycloalkane and n-alkane molecules, J. Chem. Phys., 1968, 49, 5116-5229.
    25. Allinger N. L., Tribble M. T., M A Miller et al. Conformational analysis. LXIX. Improved force field for the calculation of the structures and energies of hydrocarbons, J. Am. Chem. Soc., 1971, 93, 1637-1648.
    26. (a) Allinger N. L. Representations of molecular force fields. 3. Gauche conformational energy, J. Am. Chem. Soc., 1977, 99, 3279-3282. (b) Bartell L. S. On the Effects of Intramolecular van der Waals Forces, J. Chem. Phys., 1960, 32, 827-831.
    27. Weiner S. J., Kollman P. A., Case D. A. A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc.,1984, 106, 765-784.
    28. Brooks B. R., Bruccoleri R. E., Olafson B. D. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 1983, 4, 187-217.
    29. Brooks B. R., Mackerell A. D. The Encyclopedia of Computational Chemistry, John Wiley & Sons: Chichester, 1998, 1, 271-277.
    30. Allinger N. L., Yuh Y. H., Lii J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1, J. Am. Chem. Soc., 1989, 111,8551-8565.
    31. Mayo S. L., Olafson B. D., Goddard W. A., et al. DREIDING: a generic force field for molecular simulations, J. Phys. Chem., 1990, 94, 8897-8909.
    32. Allured V. S., Kelly C. M., Landis C. R. SHAPES empirical force field: new treatment of angular potentials and its application to square-planar transition-metal complexes, J. Am. Chem. Soc., 1991,113, 1-12.
    33. Rappe A. K., Casewit C. J., Colwell K. S. et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 1992, 114, 10024-10035.
    34. Halgren T. A. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions, J. Comp. Chem., 1996, 17, 520-522.
    35. Jorgensen W. L., Maxwell D. S., Tirado-Rives J. J. Am. Chem. Soc., 1996, 118, 11225-11236.
    36. Allinger N. L., Chen K., Lii J. H. Molecular mechanics (MM4) vibrational frequency calculations for alkenes and conjugated hydrocarbons, J. Comput. Chem., 1996, 17, 730-746.
    37. Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998,102, 7338-7364.
    38. Introduction of DFF Z 2002 Aeon Technology Inc.
    1. Song C. S., Ma X. L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Appl. Catal. B: Environmental, 2003, 41, 207-238.
    2. Tian F. P., Jiang Z. X., Liang C. H. et al. Deep desulfurization of gasoline by adsorption on mesoporous MCM-41, Chinese Journal of Catalysis, 2005, 26(8), 628-630.
    3. Song C. S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel and jiet fuel, Catal. Today, 2003, 86, 211-263.
    4. Kim H. J., Ma X. L., Zhou A. N. et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism, Catalysis, 2006, 111, 74-83.
    5. Sano Y., Du G. K., Choi K. et al. Two-step adsorption process for deep desulfurization of diesel oil, Fule, 2005, 84, 903-910.
    6. Babich I. V., Moul I. J. A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review, Fuel, 2003, 82, 707-631.
    7.居沈贵,曾勇平,姚虎卿.非常规汽油脱硫技术,现代化工, 2004, 24(1), 56-59.
    8.单国彬,刘会洲,邢建民.汽油吸附脱硫的研究进展,现代化工, 2002, 23 (6), 18-21.
    9. Hernandez-Maabonado A., Yang R. T. Desulfurization of commercial liquid fuels by selective adsorption viaπ2complexation with Cu (I) 2Yzeolites, Ind. Eng. Chem. Res., 2003, 42, 3103-3110.
    10. Jaroniec, M.非均匀固体上的物理吸附,加璐译,化学工业出版社,北京, 1997, p.164.
    11.增永平,闵元增,居沈贵.分子模拟在脱硫机理研究中的应用,现代化工, 2006, 26(4), 66-73.
    12.曾永平,冯辉,居沈贵.载锌5A分子筛在汽油模拟体系中吸附脱硫性能的研究,现代化工, 2005, 25, 207-212.
    13. Lu L-H, Wang Q., Liu Y-C. The Adsorption and Localization of Mixtures of C4-C7 Alkane Isomers in Zeolites by Computer Simulation,J. Phys. Chem. B 2005, 109, 8845-8851.
    14.吕玲红,王琦,刘迎春.短链烷烃二元混合物在分子筛上吸附分离的分子模拟,化学学报, 2003, 61(8), 1232-1240.
    15. Beerdsen E., Smit B., Calero S. The Influence of Non-framework Sodium Cations on the Adsorption of Alkanes in MFIand MOR-Type Zeolites, J. Phys. Chem. B, 2002, 106, 10659-10667.
    16. Liu B., Garc?′a-Pe′rez E., Dubbeldam D., Smit B., Calero S. Understanding Aluminum Location and Non-framework Ions Effects on Alkane Adsorption in Aluminosilicates: A Molecular Simulation Study, J. Phys. Chem. C, 2007, 111, 10419-10426.
    17. Macedonia M. D., Moore D. D., Maginn E. J. Adsorption Studies of Methane, Ethane, and Argon in the Zeolite Mordenite: Molecular Simulations and Experiments, Langmuir, 2000, 16, 3823-3834.
    18. Granato M. A., Vlugt T. J. H., Rodrigues A. E. Molecular Simulation of Propane-Propylene Binary Adsorption Equilibrium in Zeolite 13X, Ind. Eng. Chem. Res., 2007, 46, 7239-7245.
    19. Clark L. A., Gupta A., Snurr R. Q. Siting and Segregation Effects of Simple Molecules in Zeolites MFI, MOR, and BOG, J. Phys. Chem. B, 1998, 102, 6720-6731.
    20. Simon L., Ommen J. G. V, Jentys A., Lercher J. A. In Situ XANES Study of Pt/Mordenite during Benzene Hydrogenation in the Presence of Thiophene, J. Phys. Chem. B, 2000, 104, 11644-11649.
    21. Simon L. J., Rep M., Ommen J. G. V., Lercher J. A. Thiophene decomposition on Pt-supported zeolites: a TPD study, Appl. Catal. A: General, 2001, 218, 161-170.
    22. Koranyi T. I., Vinek A. J. H. Adsorption and reaction of thiophene over nickel and cobalt-containing zeolites, Stud. Surf. Sci. catal., 1995, 94, 582-589.
    23. Stratmann, R. E., Scuseria, G. E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 1998, 109, 8218-8224.
    24. Matsuzawa, N. N., Ishitani, A. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region , J. Phys. Chem., A 2001, 105, 4953-4962.
    25. Casida M. E., Jamorski C., Casida, K. C., Salahub, D. R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys., 1998, 108, 4439-4449.
    26. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648-5652.
    27. Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098-3100.
    28. Lee C., Yang W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785-789.
    29. Sun H, Rigby D. Polysilxanes: ab initio force field and structural, conformational and thermophysical properties, Spectrochim. Acta, part A, 1997, 53, 1301-1323.
    30. Sun H., Eichinger B. E. Synthesis of Haemophilus influenzae carbohydrate surface antigens, Polym. Int., 1997, 44, 311-330.
    31. Sun H., Ren P., Fried J. R. The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theo. Polym. Sci., 1998, 8 (1/2), 229-246.
    32. Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B 1998, 102, 7338-7364.
    33. Cerius2 V. 4.2, Accelrys, Inc.: San Diego, CA 1999
    34. Hagler A. T., Huler E., Lifson S. Energy Functions for Pepetides and Proteins. I. Derivation of a Consistent Force Field Including the Hydrogen Bond from the Amide Crystals, J. Am. Chem. Soc, 1974, 96, 5319-5327.
    35. Hagler A. T., Lifson S. Energy Functions for Peptides and Proteins. II. The Amide Hydrogen Bond and Calculation of Amide Crystal Properties, J. Am. Chem. Soc, 1974, 96, 5327-5335.
    36. Lifson S., Hagler A. T., Dauber P. Consistent Force Field Studies ofIntermolecular Forces in Hydrogen Bonded Crystals. I. Carboxylic Acids, Amides and the C=O ... H-O Hydrogen Bonds, J. Am. Chem. Soc., 1979, 101, 5111-5121.
    37. Hagler A. T., Lifson S., Dauber P. Consistent Force Field Studies of Intermolecular Forces in Hydrogen Bonded Crystals. II. A Benchmark for the Objective Comparison of Alternative Force Fields, J. Am. Chem. Soc., 1979, 101, 5122-5130.
    38. Hagler A. T., Dauber P., Lifson S. Consistent Force Field Studies of Intermolecular Forces in Hydrogen Bonded Crystals. III. The C=O ... H-O Hydrogen Bond and the Analysis of the Energetics and Packing of Carboxylic Acids, J. Am. Chem. Soc., 1979, 101, 5131-5141.
    39. Kitson D. H., Hagler A. T. Theoretical Studies of the Structure and Molecular Dynamics of a Peptide Crystal, Biochem., 1988, 27, 5246-5257.
    40. Kitson D. H., Hagler A. T. Catalysis of a Rotational Transition in a Peptide by Crystal Forces, Biochem., 1988, 27, 7176-7180.
    41. Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and Energetics of Ligand Binding to Proteins: E. Coli Dihydrofolate Reductase-Trimethoprim, a Drug-Receptor System, Proteins: Structure, Function and Genetics, 1988, 4, 31-47.
    42. Zeng Y-P, Ju S-G, Xing W-H, Chen C-L. Computer simulation of the adsorption of thiophene/benzene mixtures on MFI and MOR, Sepa. Purif. Technol., 2007, 55, 82-90.
    1. Hansford R. C., Woodbury, Caesar P. D. Alkylation of thiophene, US Pat. Appl, US 2469823, 1949.
    2.居沈贵,曾勇平,姚虎卿.非常规汽油脱硫技术,现代化工, 2004, 24(1), 56-59.
    3.单国彬,刘会洲,邢建民,等.汽油吸附脱硫的研究进展,现代化工,2002 ,23(6), 18-21.
    4. Ju S-G, Zeng Y-P, Yao H-Q. Computer simulation of the adsorption of ethanethiol in silicalite of MFI and MOR, J. Chem. Phys., 2004, 121(18), 9098-9102.
    5. Singh A. P., Singh P. C., Singh V. N. Removal of 1-butanethiol from diesel oil by red mud, Ind Eng Chem Res., 1988, 27(11), 2101-2104.
    6. Singh A. P., Singh P. C., Singh V. N. Chem Eng (Indian), 1991, 33(2), 47-52.
    7. Tachibana S., Y., Hirai K. I., Komasawa T. Photochemical Production of Biphenyls from Oxidized Sulfur Compounds Obtained by Oxidative Desulfurization of Light Oils, Energy and Fuels, 2003, 17(1), 95-100.
    8. Yazu K., Yamamoto Y., Furuya T., et al. Oxidation of Dibenzothiophenes in an Organic Biphasic System and Its Application to Oxidative Desulfurization of Light Oil, Energy and Fuels, 2001, 15(6), 1535-1536.
    9.杜建云,庄源益,谷文新.负载型吸附剂对煤油中硫醇类硫的吸附特性,上海环境科学, 2002, 21(7), 416-418.
    10.王鹏,傅军,何鸣元.含噻吩烷烃在分子筛上裂化脱硫的研究,石油炼制与化工, 2000, 31(3), 58-62.
    11. Salem A. B. S. H., Hamid H. S. Removal of Sulfur Compounds from Naphtha Solutions by Using Solid Adsorption, Chem. Eng. Technol., 1997, 20(5), 342-347.
    12. Salem A. B. S. H. Naphtha Desulfurization by Adsorption, Ind. Eng. Chem., 1994, 33(2), 336-340.
    13. Sara Y. Yu, Garcia-Martinez J., Li W., Meitzner G. D., Iglesia E. Kinetic, infrared, and X-ray absorption studies of adsorption, desorption, and reactions of thiophene on H-ZSM5 and Co/H-ZSM5, Phys. Chem. Chem. Phys., 2002, 4, 1241-1251.
    14. Marathon Oil Co. Removal of sulfur from a hydrocarbon stream by low severity adsorption [P], WO 98/51762, 1999-07-06.
    15. Hernandez-Maldonado A. J., Yang R. T. Desulfurization of Liquid Fuels by Adsorption viaπComplexation with Cu(I)-Y and Ag-Y Zeolites, Ind. Eng. Chem. Res., 2003, 42, 123-129.
    16. Chica A., Strohmaier K., Iglesia E. Adsorption, Desorption, and Conversion of Thiophene on H-ZSM5, Langmuir, 2004, 20, 10982-10991.
    17. Richardeau D., Joly G., C. Magnoux C. P., Guisnet M., Thomasb M., Nicolaos A. Adsorption and reaction over HFAU zeolites of thiophene in liquid hydrocarbon solutions, Appl. Catal. A: General, 2004, 263, 49-61.
    18. Ma L-P, Yang R. T. Heats of Adsorption from Liquid Solutions and from Pure Vapor Phase: Adsorption of Thiophenic Compounds on NaY and 13X Zeolites, Ind. Eng. Chem. Res., 2007, 46, 4874-4882.
    19. Li F-F, Song L-J, Duan L-H, Li X-Q, Sun Z-L. A frequency responsestudy of thiophene adsorption in zeolite catalysts, Appl. Surf. Sci., 2007, 253, 8802-8809.
    20. Chica A., Strohmaier K. G., Iglesia E. Effects of zeolite structure and aluminum content on thiophene adsorption, desorption, and surface reactions, Appl. Catal. B: Environmental, 2005, 60, 223-232.
    21. Takahashi A., Yang F. H., Yang R. T. New Sorbents for Desulfurization by e-Complexation: Thiophene/Benzene Adsorption, Ind. Eng. Chem. Res., 2002, 41, 2487-2496.
    22. Geobaldo F., Palomino G. T., Bordiga S., Zecchina A., Area C. O. Spectroscopic study in the UV-Vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite H-Y, Phys. Chem. Chem. Phys., 1999, 1, 561-569.
    23. Tang K., Song L-J, Duan L-H, Li X-Q, Gui J-Z, Sun Z-L. Deep desulfurization by selective adsorption on a heteroatoms zeolite prepared by secondary synthesis, Fuelprocessing Technology, 2008, 89, 1-6. 24. McMillanof butane and hexane in silicalite, J Phys Chem, 1992, 96 (3), 1051-1060.
    28. Vlugt T. H., Krishna R., Smit B. Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite, J. Phys. Chem. B, 1999, 103 (7), 1102-1118.
    29. Vlugt, T. J. H., Zhu, W., Kapteijn, F., Moulijn, J. A., Smit, B., Krishna, R. Adsorption of Linear and Branched Alkanes in the Zeolite Silicalite-1, J. Am. Chem. Soc., 1998, 120(22), 5599-5600.
    30. Zeng Y-P, Ju S-G, Xing W-H, Chen C-L. Computer simulation of the adsorption of thiophene/benzene mixtures on MFI and MOR, Sep. Purif. Technol., 2007, 55, 82-90.
    31. Ju S-G, Zeng Y-P, Xing W-H, Chen C-L. Computer Simulation of the Adsorption of Thiophene in All-Silica Y and Na-Y, Langmuir, 2006, 22, 8353-8358.
    32. Delitala C., Cadoni E., Delpiano D., Meloni D., Melis S., Ferino I. Microporous Mesoporous Mater., 2008, 110, 197-215.
    33. Zhang Z. K., Niu X. L., Liu S. L., Zhu X. X., Yu H. W., Xu L. Y. The performance of HMCM-22 zeolite catalyst on the olefin alkylation thiophenic sulfur in gasoline, Catal. Commun., 2008, 9, 60-64.
    34. Stratmann, R. E., Scuseria, G. E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 1998, 109, 8218-8224.
    35. Matsuzawa, N. N., Ishitani, A. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region, J. Phys. Chem. A, 2001, 105, 4953-4962.
    36. Casida M. E., Jamorski C., Casida, K. C., Salahub, D. R. Molecularexcitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys., 1998, 108, 4439-4449.
    37. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648-5652.
    38. Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098-3100.
    39. Lee C., Yang W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785-789.
    40. Sun H, Rigby D. Polysilxanes: ab initio force field and structural, conformational and thermophysical properties, Spectrochim. Acta part A, 1997, 53: 1301-1323.
    41. Sun H., Eichinger B. E. Synthesis of Haemophilus influenzae carbohydrate surface antigens, Polym. Int., 1997, 44, 311-330.
    42. Sun H., Ren P., Fried J. R. The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theo. Polym. Sci., 1998, 8 (1/2), 229-246.
    43. Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102 7338-7364.
    44. Cerius2 V. 4.2, Accelrys, Inc.: San Diego, CA 1999
    45.侯延军,朱丽荔,徐筱杰. MCM-22型分子筛中苯分子吸附行为的蒙特卡罗模拟,化学学报, 2000, 58, 1216-1220.
    46. Takahashi A., Yang F. H., Yang R. T. New Sorbents for Desulfurization by Complexation: Thiophene/Benzene Adsorption, Ind. Eng. Chem. Res., 2002, 41, 2487-2496.
    47. Gupta A., Snurr R. O. A Study of Pore Blockage in Silicalite Zeolite Using Free Energy Perturbation Calculations, J. Phys. Chem. B, 2005, 109, 1822-1833.
    48. Yue X-P, Yang X-N. Molecular Simulation Study of Adsorption and Diffusion on Silicalite for a Benzene/CO2 Mixture, Langmuir, 2006, 22, 3138-3147.
    49. Fox J. P., Bates S. P. Simulating the Adsorption of Binary and Ternary Mixtures of Linear, Branched, and Cyclic Alkanes in Zeolites, J. Phys. Chem. B, 2004, 108, 17136-17142.
    50. Adhangale P., Keffer D. A Grand Canonical Monte Carlo Study of the Adsorption of Methane, Ethane, and Their Mixtures in One-Dimensional Nanoporous Materials, Langmuir, 2002, 18, 10455-10461.
    1. Hernandez M. A. J., Yang R. T. Desulfurization of Diesel Fuels via -Complexation with Nickel(II)-Exchanged X- and Y-Zeolites, Ind. Eng. Chem. Res., 2004, 43(4), 1081-1089.
    2. Yang R. T., Hernandez M. A. J., Yang F. H. Des-ulfufiztion of Transportation Fuels with Zeolites UnderAmbient Conations, Science, 2003, 301(4), 79-81.
    3. Velu S., Ma X., Song C. Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents, Ind. Eng. Chem. Res., 2003, 42, 5293-5304.
    4.居沈贵,曾勇平,姚虎卿.非常规汽油脱硫技术,现代化工, 2004, 24(1), 56-59.
    5.单国彬,刘会洲,邢建民,等.汽油吸附脱硫的研究进展,现代化工, 2002, 23 (6), 18-20.
    6.居沈贵,曾勇平,姚虎卿.吸附脱硫及分子模拟计算应用的研究进展,现代化工, 2005, 25(7), 11-15.
    7. Ma L-P, Yang R. T. Heats of Adsorption from Liquid Solutions and from Pure Vapor Phase: Adsorption of Thiophenic Compounds on NaY and 13X Zeolites, Ind. Eng. Chem. Res., 2007, 46, 4874-4888.
    8. Zhang Z-K, Niu X-L, Liu S-L, Zhu X-X, Yu H-W, Xu L-Y. The performance of HMCM-22 zeolite catalyst on the olefin alkylation thiophenic sulfur in gasoline, Catal. Commun., 2008, 9, 60-64.
    9. Li F-F, Song L-J, Duan L-H, Li X-Q, Sun Z-L. A frequency response study of thiophene adsorption in zeolite catalysts, Appl. Surf. Sci., 2007,253, 8802-8809.
    10. Ju S-G, Zeng Y-P, Yao H-Q. Computer simulation of the adsorption of ethanethiol in silicalite of MFI and MOR, J. Chem. Phys., 2004, 121 (18), 9098-9102.
    11. Zeng Y-P, Ju S-G, Xing W-H, Chen C-L. Computer simulation of the adsorption of thiophene/benzene mixtures on MFI and MOR, Sep. Purif. Technol., 2007, 55, 82–90.
    12. Cerius2 V. 4.2, Accelrys, Inc.: San Diego, CA 1999
    13. Stratmann, R. E., Scuseria, G. E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 1998, 109, 8218-8224.
    14. Matsuzawa, N. N., Ishitani, A. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region, J. Phys. Chem. A, 2001, 105, 4953-4962.
    15. Casida M. E., Jamorski C., Casida K. C., Salahub D. R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys., 1998, 108, 4439-4449.
    16. Becke A. D. Density-functional thermochemistry.Ш. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648-5653.
    17. Becke A. D. Density-function exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098-3100.
    18. Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys.Rev. B, 1988, 37, 785-789.
    19. Sun H, Rigby D. Polysilxanes: ab initio force field and structural, conformational and thermophysical properties, Spectrochim. Acta part A, 1997, 53, 1301-1323.
    20. Sun H., Eichinger B. E. Synthesis of Haemophilus influenzae carbohydrate surface antigens, Polym. Int., 1997, 44, 311-330.
    21. Sun H., Ren P., Fried J. R. The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theo. Polym. Sci., 1998, 8 (1/2), 229-246
    22. Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B 1998, 102, 7338-7364.
    23. Ewald P. P., Die, Berchnung optischer und elekrostatischer Gitterpotentiale, Ann. Phys., 1921, 64, 253-287.
    24.侯庭军,朱丽荔,徐筱杰. MCM-22型分子筛中苯分子吸附行为的蒙特卡罗模拟研究,化学学报, 2000, 58(10), 1216-1220.
    25.侯庭军,朱丽荔,徐筱杰. MCM-22型分子筛中苯分子吸附行为的分子动力学模拟,物理化学学报, 2000, 16(8), 701-707.
    26. Sastre G., Coma C. A. Diffusion of Benzene and Propylene in MCM-22 Zeolite. A Molecular Dynamics Study, J. Phy. Chem. B, 1999, 103, 5187-5196.
    27. Li Y-W, Yang F. H., Qi G-S, Yang R. T. Effects of oxygenates and moisture on adsorptive desulfurization of liquid fuels with Cu(I)Y zeolite, Catal. Today, 2006, 116, 512–518.
    28. Holmes H., Beemano N. Removal of Thiophene from Benzene, Ind.Eag. Chem., 1933, 26, 172-174.
    29. Dasgupta S., Agnihotri V., Gupta P., Nanoti A., Garg M. O., Goswami A. N. Simulation of a fixed bed adsorber for thiophene removal, Catal. Today, in press.
    30. Tian F-P, Wu W-C, Jiang Z-X, Liang C-H, Yang Y-X, Ying P-X, Sun X-P, Cai T-X, Li C. The study of thiophene adsorption onto La(III)-exchanged zeolite NaY by FT-IR spectroscopy, J. Colloid Interf. Sci., 2006, 301, 395-401.
    31.段林海,范景新,宋丽娟,张晓彤,唐克,李秀奇,孙兆林.噻吩、苯和正辛烷在Y型分子筛上的选择性吸附,工业催化, 2006, 14(10), 12-14.
    32.曾勇平,冯辉,居沈贵.载锌5A分子筛在汽油模拟体系中吸附脱硫性能的研究,现代化工, 2005, 25, 207-212.
    33.谭小耀,杨乃涛,于如军,王祥生.焦化苯中噻吩在改性ZSM-5分子筛上吸附动力学研究,山东工程学院学报, 2000, 14(3), 15-20.
    34.唐克,宋丽娟,段林海,李秀奇,桂建舟,孙兆林.杂原子Y分子筛的二次合成及其吸附脱硫性能,物理化学学报, 2006, 20(9), 1116-1120.
    1. Asensi M. A., Corma A., Martinez A. Skeletal Isomerization of 1-Butene on MCM-22 Zeolite Catalyst, J. Catal., 1996, 158, 561-569.
    2. Rubin M. K., Chu P. Composition of Synthetic Porous Crytalline Material, Its Synthesis and Use, U. S. Patent, 4 954 325, 1990
    3.吴通好,许宁. MCM-22族分子筛的结构及催化性能,化学通报, 2004, 67, 1-21.
    4. Corma A., Catlow C. R. A., Sastre G. Diffusion of Linear and Branched C7 Paraffins in ITQ-1 Zeolite. A Molecular Dynamics, J. Phys. Chem. B, 1998, 102(37), 7085-7099.
    5. Karger J., Caro J. Interpretation and correlation of zeolitic diffusivities obtained from nuclear magnetic resonance and sorption experiments, J. Chem. Soc., Faraday Trans., 1977, 73, 1363-1376.
    6. Jobic H., Bee M., Caro J., Bullow M., Karger J. Molecular self-diffusion of methane in zeolite ZSM-5 by quasi-elastic neutron scattering and nuclear magnetic resonance pulsed field gradient technique, J. Chem. Soc., Faraday Trans., 1989, 85, 4201-4209.
    7. Jousse F., Auerbach S. M., Vercauteren D. P. Adsorption Sites and Diffusion Rates of Benzene in HY Zeolite by Force Field Based Simulations, J. Phys. Chem. B, 2000, 104, 2360-2370.
    8. Nascimento M. A. C. Computer simulations of the adsorption process of light alkanes in high-silica zeolites, J. Mol. Struct. (Theochem), 1999, 464, 239-247.
    9. Skoulidas A. I. Molecular Dynamics Simulations of Gas Diffusion inMetal-Organic Frameworks: Argon in CuBTC, J. Am. Chem. Soc., 2004, 126, 1356-1359.
    10. Yazaydin A. O., Thompson R. W. Molecular Simulation of the Adsorption of MTBE in Silicalite, Mordenite, and Zeolite Beta, J. Phys. Chem. B, 2006, 110, 14458-14462.
    11. Yue X-P, Yang X-N. Molecular Simulation Study of Adsorption and Diffusion on Silicalite for a Benzene/CO2 Mixture, Langmuir, 2006, 22, 3138-3147.
    12. Karger, J., Ruthven D. M. On the comparison between macroscopic and n.m.r. measurements of intracrystalline diffusion in zeolites, Zeolites, 1989, 9, 267-281.
    13. Hou T. J., Zhu L. L., and Xu X. J. Adsorption and Diffusion of Benzene in ITQ-1 Type Zeolite: Grand Canonical Monte Carlo and Molecular Dynamics Simulation Study, J. Phys. Chem. B, 2000, 104 (39), 9356-9364.
    14. Hou T. J., Zhu L. L., Xu X. J. The adsorption of a series of aromatics in ITQ-1: grand canonical Monte Carlo simulations, J. Mol. Catal. A: Chem., 2001, 171, 103-114.
    15.侯延军,朱丽荔,徐筱杰,计明娟,叶学其.物理化学学报, 2000, 16, 701-707.
    16.侯延军,朱丽荔,徐筱杰. MCM-22型分子筛中苯分子吸附行为的蒙特卡罗模拟,化学学报, 2000, 58, 1216-1200.
    17. Hou T.J., Zhu L.L., Li Y.Y., Xu X.J. The localization and adsorption of benzene and propylene in ITQ-1 zeolite: grand canonical Monte Carlo simulations, J. Mol. Struct. (Theochem), 2001, 535, 9-23.
    18. Du H-W, Kalyanaraman M., Camblor M. A., Olson D. H. Hydrocarbon sorption properties of pure silica MCM-22 type zeolite, Microporous Mesoporous Mater., 2000, 40, 305-312.
    19. Sastre G., Catlow C. R. A., Corma A. Diffusion of Benzene and Propylene in MCM-22 Zeolite. A Molecular Dynamics Study, J. Phys. Chem. B, 1999, 103 (25), 5187-5196.
    20. Sastre G., Catlow C. R. A., Chica A., Corma A. Molecular Dynamics of C7 Hydrocarbon Diffusion in ITQ-2. The Benefit of Zeolite Structures Containing Accessible Pockets, J. Phys. Chem. B, 2000, 104, 416-422.
    21. Cerius2 V. 4.2, Accelrys, Inc.: San Diego, CA 1999
    22. Ewald P. P. Die Berchnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys., 1921, 64, 253-287.
    23 Hagler A. T., Huler E., Lifson S. Energy Functions for Pepetides and Proteins. I. Derivation of a Consistent Force Field Including the Hydrogen Bond from the Amide Crystals, J. Am. Chem. Soc, 1974, 96, 5319-5327.
    24. Hagler A. T., Lifson S. Energy Functions for Peptides and Proteins. II. The Amide Hydrogen Bond and Calculation of Amide Crystal Properties, J. Am. Chem. Soc, 1974, 96, 5327-5335.
    25. Lifson S., Hagler A. T., Dauber P. Consistent Force Field Studies of Intermolecular Forces in Hydrogen Bonded Crystals. I. Carboxylic Acids, Amides and the C=O ... H-O Hydrogen Bonds, J. Am. Chem. Soc., 1979, 101, 5111-5121.
    26. Hagler A. T., Lifson S., Dauber P. Consistent Force Field Studies of Intermolecular Forces in Hydrogen Bonded Crystals. II. ABenchmark for the Objective Comparison of Alternative Force Fields, J. Am. Chem. Soc., 1979, 101, 5122-5130.
    27. Hagler A. T., Dauber P., Lifson S. Consistent Force Field Studies of Intermolecular Forces in Hydrogen Bonded Crystals. III. The C=O ... H-O Hydrogen Bond and the Analysis of the Energetics and Packing of Carboxylic Acids, J. Am. Chem. Soc., 1979, 101, 5131-5141.
    28. Kitson D. H., Hagler A. T. Theoretical Studies of the Structure and Molecular Dynamics of a Peptide Crystal, Biochem., 1988, 27, 5246-5257.
    29. Kitson D. H., Hagler A. T. Catalysis of a Rotational Transition in a Peptide by Crystal Forces, Biochem., 1988, 27, 7176-7180.
    30. Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and Energetics of Ligand Binding to Proteins: E. Coli Dihydrofolate Reductase-Trimethoprim, a Drug-Receptor System, Proteins: Structure, Function and Genetics, 1988, 4, 31-47.
    31. Halicioglu T., Pound M. Metal parameters from Calculation of potential energy parameters form crystalline state properties, Phys. Stat. Sol. (a), 1975, 30, 619.
    32. Mayo S. L., Olafson B. D., W. A. Goddard III, DREIDING: a generic force field for molecular simulations, J. Phys. Chem., 1990, 94, 8897-8909.
    33. The Zeolites and Aluminophosphates force field of Erik de Vos Burchart, Ph. D. Thesis, 1992, Studies on Zeolites: Molecular Mechanics, Framework Stability and Crystal Growth, Table I, Chapter XII.
    34. Denayer J. F. M., Ocakoglu R. A., Thybaut J., Marin G., Jacobs P., Baron J. M. G. V. n- and Isoalkane Adsorption Mechanisms on Zeolite MCM-22, J. Phys. Chem. B, 2006, 110 (17), 8551-8558.
    35. Allen M. P., Tildesley D. J. Computer Simulation of Liquids, Oxford: Clarendon Press, 1987.
    36. Thomas J. M. Solid Acid Catalysts, Sci. Am. April, 1992, 266, 112-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700