用户名: 密码: 验证码:
聚丙烯/聚苯乙烯共混物相结构形成演变及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用小角激光光散射和在线取样-显微分析的方法研究了聚丙烯/聚苯乙烯(PP/PS)共混体系相分散以及相归并过程中相形成、相形态及其演变规律,对相应的机理和动力学作了分析,并测试了材料的力学性能。对在线所取样品的电镜显微照片进行了数字化处理从而计算相应的结构参数-粒径及其分布宽度,并在此基础之上讨论了分散相粒径及其分布与体系组成、加工时间以及相容剂含量的关系。根据Debye-Bueche和Mie散射理论,利用光散射处理软件对光散射在线采集数据进行了分析并得出表征合金体系相结构的参数:相关距离ac、积分不变量Q、分形维数Dc等并分析了各结构参数与体系组成、共混时间及相容剂含量的关系。
     结果表明,在相分散过程中,相形态主要发生在共混的初期,后期处于颗粒破裂和归并的动态平衡中,粒径变化不大,继续延长时间,颗粒粒径会因彼此归并出现小幅反弹;加入相容剂能够有效地细化相结构,粒径尺寸对相容剂用量的依赖关系符合Favis曲线。在静态归并过程中,相尺寸随归并的进行相应地增加,分布宽度变大,加入相容剂能有效地减缓颗粒的归并;对粒径分布分维的计算结果表明,静态归并具有类似于旋节相分离后期的标度行为。在剪切诱导归并过程中,颗粒尺寸在归并前期大幅增加并于后期进入假稳态;颗粒尺寸对剪切应变的依赖关系受体系组成和剪切速率的双重影响。
     研究了PP/PS共混体系混炼初期颗粒的破碎机理,发现分散相颗粒的破碎具有脆性破碎的特征,并在此基础上分析了分散系数与共混温度及转子转速的关系,发现分散系数与共混温度及转子转速的关系有赖于共混时段。通过将相分散过程和归并过程看作不同的生灭过程,推导了多分散性体系在分散和归并过程中尺寸演变的动力学方程,方程拟和曲线与光散射计算结果能够很好的吻合表明动力学方程是适用的,特别地,对相尺寸演变标度行为的研究结果表明:在剪切诱导归并过程中,存在不同于静态归并过程中的标度行为。
     对材料力学性能的研究表明:体系的机械性能与其介观结构密切相关,对于PP/PS非相容体系,分散相颗粒更多得起到了惰性填料(或缺陷)的作用,因此,颗粒分散越均匀,性能越差;加入相容剂可有效的改善材料的性能;微观力学模型在共混聚合物的弹性模量预报上是可行的,其中Mori-Tanaka法更有效。
Small angle light scattering (SALS) and online-sampling-microscope were employed to study the morphology development of polypropylene/polystyrene blending system during the process of dispersion and coalescence. Further, the corresponding mechanism and dynamics of morphology development, as well as the mechanical properties of final products were also investigated. For SEM micrographs, a method of digital analysis was applied to these micrographs to get corresponding structure parameters-particle diameter and their distribution and subsequently, relationship between particle diameter and their distribution with blend composition, blending time and content of compatibilizer was studied. Moreover, the SALS images were digitally analyzed by means of Debye-Bueche and Mie scattering theory to obtain corresponding structure parameters describing the morphology, e.g., correlation distance ac, integral constant Q and fractal dimension Dc as well as the relationship between these parameters with blend composition, blending time and content of the compatibilizer.
     The results shows that, during the phase dispersion, the main morphology development occurs in the initial stage of the mixing and approaches to a dynamic equibilium between particle breakup and coalescence in the late stage, leading to a stable and fine phase morphology. More interesting, further increase in blending time will lead to a rebound of particle size. The addition of compatibilizer will result in a decrease in particle diameter and the dependence of particle diameter on the content of compatibilizer obeys the Favis emulsification curve; during the quiescent coalescence, particle diameter and their distribution increase with the coalescence time or equivalently, the shear strain. Analysis regarding to the fractal character of particle diameter indicated that the quiescent coalescence may obeys a scaling law which is similar with that in spinodal decomposition. During the shear-induced coalescence, the particle diameter increases distinctly and attains to a quasi-stable situation, the dependence of particle diameter on the shear stain is affected by both blend composition and shear rate.
     The mechanism of morphology development was studied. The results shows that in the initial stage of the mixing, the breakup of particles complies with a crisp-break rule and consequently, the development dynamics can be described by the typical dispersion parameter in the crisp-break theory. Study concerning these dispersion parameters shows that the effect of rotor speed and mixing temperature on the dispersion parameter was different at different mixing stage.
     Regarding the process of phase dispersion and coalescence as different living-death process, we deduced different dynamic equations of morphology development of phase dispersion and coalescence, respectively. The simulation results by these equations are accord to our experimental results, indicating these dynamic equation s are appropriate to describe the morphology development in some respects. Especially, examination of scaling character during the shear-induced coalescence indicated that there exists another scaling behavior during the shear-induced coalescence which is different from that in spinodal decomposition.
     Investigation with regard to the mechanical properties of blends shows that, the properties depend on the micro-structure of blends. For PP/PS incompatible blends, the dispersed phase often acts as inert stuff. Addition of compatibilizer can improve the mechanical properties of blends to great extent. The mechanical properties can be forecasted using corresponding micro-mechanical model among which the Mori-Tanaka is more effective.
引文
[1] Heikens D, Barentsen W. Particle dimensions in polystyrene~polyethylene blends as a function of their melt viscosity and of concentration of added graft copolymer. Polymer, 1977, 18(1): 69~72
    [2] Danesi S, Poter R S. Blends of isotactic polypropylene and ethylene~propylene rubbers:rheology, morphologyand mechanics. Polymer, 1978, 19(4): 448~457
    [3] Min K, Fellers J F. High density polyethylene/polystyrene blends: Phase distribution morphology, rheological measurements, extrusion, and melt spinning behavior. J Appl Polym Sci. 1984, 29(6): 2117~2142
    [4] Willis J M, Favis B D. Reactive processing of polystyrene~co~maleic anhydride/ela~ stomer blends: Processing morphology property relationships. Polym Eng Sci. 1988, 28(21): 1416~1426
    [5] Xie Z, Sheng J, Wan Z. Mechanical properties and morphology of polypropylene/ polystyrene blends. J Macromol Sci~Phys. 2001, B40(2): 251~261
    [6] Lee H M, Park O O. Rheology and dynamics of immiscible polymer blends. J Rheol. 1994, 38(5):1405~1425
    [7] Utracki L A, Shi Z H. Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: Droplet dispersion and coalescence-a review. Polym Eng Sci. 1992, 32(24): 1824~1833
    [8] Potente H, Bastian M. Polymer blends in co-rotating twin screw extruders. Proceedings of PPS-16. Shanghai, 2000, June 18~23: 354~355
    [9] Schreiber H P, Olguin A. Aspects of dispersion and flow in thermoplastic-elastomer blends. Polym Eng Sci. 1983, 23(3): 129~134
    [10] Plochocki A P, Dagli S S, Andrews R D. The interface in binary mixtures of polymers containing corresponding block copolymer: effects of industrial mixing processes and of coalescence. Polym Eng Sci. 1990, 30(12): 741~752
    [11] Scott C E, Macosko C W. Morphology development during the initial stages of polymer~polymer blending. Polymer. 1995, 36(3): 461~470
    [12] Ratnagiri R, Scott C E. Phase inversion during compounding with a low melting major component: polycaprolactone/polyethylene blends. Polym Eng Sci. 1998, 38(10): 1751~1762
    [13] Scott C E, Macosko C W. Model experiments concerning morphology development during the initial stages of polymer blending. Polymer Bull. 1991, 26(3): 341~348
    [14] Elemans P H M, Bos H L, Janssen J M H. Transient phenomena in dispersive mixing. Chem Eng Sci. 1993, 48(2): 267~276
    [15] Bourry D, Favis B D. Morphology development in a polyethylene/polystyrene binary blend during two-screw extrusion. Polymer. 1998, 39(10): 1851~1856
    [16] Sundararaj U, Macosko C W, Shih C K. Evidence for inversion of phase continuity during morphology development in polymer blending. Polym Eng Sci. 1996, 36(13): 1769~1781
    [17] Lee J K, Han C D. Evolution of polymer blend morphology during compounding in an internal mixer. Polymer. 1999, 40(23): 6277~6296
    [18] Lee J K, Han C D. Evolution of polymer blend morphology during compounding in a two-screw extruder. Polymer. 2000, 41(5): 1799~1815
    [19] Potente H, Krawinkel S, Bastian M, et al. Investigation of the melting behavior and morphology development of polymer blends in the melting zone of two-screw extruders. J Appl Polym Sci. 2001, 82(8): 1986-2002
    [20] Fortenly I and Kovar J. Theory of coalescence in immiscible polymer blends. Polym compos 1988, 9(2): 119~124
    [21] Uttandaraman Sundararaj, Macosko C W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules. 1995, 28(8): 2647~2657
    [22] Vinckier I, Moldenaers P, Terracciano A M, et al. Droplet size evolution during coalescence in semiconcentrated model blends. AICHE Journal. 1998, 44(4): 951~958
    [23] Kim J R, Jamieson A M, Hudson S D, et al. Influence of exothermic interaction on the morphology and droplet coalescence of melt~mixed immiscible polymer blends containing a block copolymer. Macromolecular. 1998, 31(16): 5383~5390
    [24] Smoluchowski, M V. Versuch einer mathematischen theorie der koagulationskinetik kolloider loeschungen. Z. Phys. Chem. 1917, 92(4): 129-168
    [25] Zeichner G R, Schowalter W R. AICHE Journal. Use of trajectory analysis to study stability of colloidal dispersions in flow fields. 1977, 23(3): 243~254
    [26] Chesters A K.The modeling of coalescence processer in fluid-liquid dispersions: a review of current understanding. Trans IchenE part A 1991, 69(3): 259~270
    [27] Janssen J M H, Meijer H E H. Dynamics of liquid-liquid mixing : a 2-zonemodel. Polym Eng Sci. 1995, 35(22): 1766~ 1780
    [28] Rother M A, Davis R H. The effect of slight deformation on droplet coalescence in linear flows. Phys. Fluids 2001, 13(5):1178
    [29] Lyu S P, Bated F S, Macosko C W. Modeling of coalescence in polymer blends. AICHE Journal. 2002, 48(1): 7~14
    [30] Wagner, C. Theorie der Alterung von Niederschl?gen durch Uml?sen (Ostwald Reifung). Zeitschrift Elektrochemie. 1961,65(4): 581~591
    [31] Binder K, Stauffer D. Theory for the slowing down of the relaxation and spinodal decomposition of binary mixtures. Phys Rev Lett. 1974, 33(17): 1006~1009
    [32] Siggia E D. Late stages of spinodal decomposition in binary mixtures. Phys Rev A. 1979, 20(2): 595~605
    [33] Fortelny I, Zivny A, J uza J. Coarsening of the phase structure in immiscible polymer blends. Coalescence or ostwald ripening. J Polym Sci,Part B Polym Phys.1999, 37(3): 181~187
    [34] Yu W, Zhou C X, Inoue T. A Coalescence Mechanism for the Coarsening Behavior of Polymer Blends during a Quiescent Annealing Process. I.Monodispersed Particle System. J Polym Sci B: Polym Phys. 2000, 38(18): 2378~2389
    [35] Yu W, Zhou C X, Inoue T. A Coalescence Mechanism for the Coarsening Behavior of Polymer Blends during a Quiescent Annealing Process. II. Polydispersed Particle System. Journal of Polymer Science Part B: Polymer Physics. 2000, 38(18): 2390~2399
    [36] Luciani A, Jarrin J. Morphology development in immiscible polymer blends. Polym Eng Sci. 1996, 36(12): 1619~1626
    [37] Shih C K. Mixing and morphological transformations in the compounding process for polymer blends: The phase inversion mechanism. Polym Eng Sci. 1995, 35:1688~1694
    [38] Shih C K. Better fundamental understanding of compounding processes-review from an industrial prospective. Proceedings of PPS-16. Shanghai, 2000, June 18~23: 348~349
    [39] Leukel J, Weis C, Friedrich C, et al. On-line morphology measurement during the extrusion of polymer blends. Polymer. 1998, 39(25): 6665~6667
    [40]杨其,李光宪.研究剪切流动下共混物相行为规律的实验方法.中国塑料. 2000, 14(7): 17~23
    [41] Hashimoto T, Kumaki J, Kawai H. Time-resolved light scattering studies on kinetics of phase separation and phase dissolution of polymer blends. 1. Kinetics of phase separation of a binary mixture of polystyrene and poly-(vinyl methyl ether). Macromolecules. 1983, 16(4): 641~648
    [42] Priore B E, Walker L M. Small angle light scattering analysis of morphology development of a model immiscible polymer blend in transient slit-contraction flows. J Rheol. 2001, 45(2): 383~402
    [43] Zhou J, Sheng J. Small angle light backscattering of polymer blends: 1.Multiple scattering. Polymer. 1997, 38(15): 3727~3731
    [44]周家敏.多组分多相聚合物共混过程在线分析.博士学位论文,天津大学, 1998
    [45] Debye P, Bueche A N. Scattering by an inhomogeneous solid. J Appl Phys. 1949, 20(6): 518~525
    [46] Mandelkern L. Crystallization kinetics in high polymers. II polymer-diluent mixtures. J Appl Phys. 1955, 26(4): 443~451
    [47] Stein R S, Srinivasarao M. Fifty years of light scattering: A perspective. J Polym Sci: Polym Phys. 1993, 31(13): 2003~2010
    [48] Khambatta F B, Warner F, Russell T, et al. Small-angle X-ray and light scattering studies of the morphology of blends of poly(ε~caprolactone) with poly(vinyl chloride). J Polym Sci: Polym Phys. 1976, 14(8): 1391~1424
    [49]斯坦R S讲授,徐懋等译.散射和双折射方法在高聚物研究中的应用.北京:科学出版社, 1983
    [50] Moritani M, Inone T, Motegi M, et al. Light scattering from a two-phase polymer system. Scattering from a spherical domain structure and its explanation in terms of heterogeneity parameters. Macromolecules. 1970, 3(4): 433~441
    [51] van de Hulst H C. Light scattering by small particles. New York: John Wiley&Sons, 1957:119~130
    [52] Barth H G, Flippen R B. Particle size analysis. Anal Chem. 1995, 67:257R~272R
    [53]张洪斌,周持兴.流场中高分子共混物分散相的形态变化.高分子材料科学与工程. 1999, 15(4): 4~7
    [54] Taylor G I. The viscosity of a fluid containing small drops of another fluid. Proc Roy soc. London, 1932, 138(834): 41-48
    [55] Taylor G I. The formaiton of emusions in definable fields of flow. Proc Roy soc. London, 1934, 146(858): 501~523
    [56] Cox R G. The deformation of a drop in general time-dependent fluid flow. J Fluid Mech. 1969, 37(3):601~623
    [57] Janssen J M H. Dynamics of liquid~liquid mixing. Netherlands: PhD thesis. Eindhoven University of Technology. 1993
    [58] Elmendrop J J. A study on polymer blending microrheology. Polym Eng Sci. 1986, 26(6): 418~426
    [59] Elmendrop J J, Maalcke R J. A study on polymer blending microrheology: Part 1. Polym Eng Sci. 1985, 25(16): 1041~1047
    [60] Flumerfelt R W. Drop breakup in simple shear fields of viscoelastic fluids. Ind Eng Chem Fundam. 1972,11(3): 312~318
    [61] Vanoene H. Modes of dispersion of viscoelastic fluids in flow. J Coll Interf Sci. 1972, 40(3): 448~467
    [62] Tokita N. Analysis of morphology formation in elastomer blends. Rubber chem. Technol. 1977, 50(2): 292~300
    [63] Cartier H, Hu G H. Morphology development of in situ compatibilized semicrystalline polymer blends in a co~rotating two-screw extruder. Polym Eng Sci. 1999, 39(6): 996~1013
    [64] Fortelny I. Breakup and coalescence of dispersed droplets in compatibilized polymer blends. J Macromol Sci-Phys. 2000, B39(1): 67~78
    [65] Delamare L, Vergnes B. Computation of the morphological changes of a polymer blend along a twin-screw extruder. Polym Eng Sci. 1996, 36(12): 1685~1693
    [66] Wu S. Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. Polym Eng Sci. 1987, 27(5): 335~343
    [67] Shi Z H, Utracki L A. Development of polymer blend morphology during compounding in a twin-screw extruder. Part II: Theoretical derivations. Polym Eng Sci. 1992, 32(24): 1834~1845
    [68] Ghodgaonkar P G, Sundararaj U. Prediction of Dispersed Phase Drop Diameter in Polymer Blends: The Effect of Elasticity. Polym Eng Sci. 1996, 36(12): 1656~1665
    [69] Wilczynski K, Szymaniak Z, Nastaj A. Theoretical and experimental study formorphology during single-screw extrusion of poly-blends. Proceedings of PPS-16, Shanghai, 2000, June 18~23: 356~357
    [70] Meijer H E H, Kruijt P G M, Galaktionov O S. Mapping method for mixing optimization. Proceedings of PPS-16, Shanghai, 2000, June 18~23: 305~306
    [71] Janssen J M H, Meijer H E H. Droplet breakup mechanisms: stepwise equilibrium versus transient dispersion. J Rheol. 1993, 37(4): 597~608
    [72] Doi M, Ohta T. Dynamics and rheology of complex interfaces. J Chem Phys. 1991, 95(2): 1242~1248
    [73] Guenther G K, Baird D G. An evaluation of the Doi-Ohta theory for an immiscible polymer blend. J Rheol. 1996, 40(1): 1~20
    [74] Van Gheluwe P, Favis B D, Chalifoux J-P. Morphological and mechanical properties of extruded polypropylene/nylon-6 blends. J Mater Sci. 1988, 23(15): 3910~3920
    [75] Duvall J, Sellitti C, Myers C, et al. Interfacial effects produced by crystallization of polypropylene with polypropylene~g~maleic anhydride compatibilizers. J Appl Polym Sci. 1994, 52(2): 207~216
    [76] Kudva R A, Keskkula H, Paul D R. Morphology and mechanical properties of compatibilized nylon6/polyethylene blends. Polymer. 1999, 40(22): 6003~6021
    [77] Dufresne A, Cavaille J Y, Dupeyre D, et al. Morphology, phase continuity and mechanical behaviour of polyamide6/chitosan blends. Polymer. 1999, 40(7): 1657~1666
    [78] Weidisch R, Michler G H, Fischer H, et al. Mechanical properties of weakly segregated block copolymers:1.Synergism on tensile properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers. Polymer. 1999, 40(5): 1191~1199
    [79]高歌,王静媛,马荣堂等. PP/PA1010共混物的形态结构及力学性能的研究.高分子材料科学与工程. 1999, 15(1): 114~117
    [80] Yue M Z, Chian K S. Mechanical properties and morphology of thermoplastic polyurethane elastomer with pol(vinylidene fluoride) blends. J Appl Polym Sci. 1996, 60(4): 597~603
    [81] Xie Z, Zhang D, Sheng J, et al. Effect of mixer resident time on the overall moduli of polymer blends. J Appl Polym Sci. 2002, 85(2): 307–314
    [82] Setz S, Stricker F, Kressler J, et al. Morphology and mechanical properties of blends of isotactic or syndiotactic polypropylene with SEBS block copolymers. J Appl Poly Sci. 1995, 59(7): 1117~1128
    [83] Kolarik J, Lednicky F, Locati G, et al. Ultimate properties of polycarbonate blends: Effects of inclusion plastic deformation and of matrix phase continuity. Polym Eng Sci. 1997, 37(1): 128~137
    [84]谢志民,宋凯绪,盛京等.聚丙烯/尼龙1010的形态与性能研究.天津大学学报. 2001, 34(6): 757~760
    [85] Fujiyama M. Structure and properties of injection moldings of polypropylene/polystyrene blends. J Appl Polym Sci. 1997, 63(8): 1015~1027
    [86] Charoensirisomboon P, Chiba T, Torikai K, et al. Morphology-interface-toughness relationship in polyamide/polysulfone blends by reactive processing. Polymer. 1999, 40(25): 6965~6975
    [87] Willemse R C, Speijer A, Langeraar A E, et al. Tensile moduli of co-continuous polymer blends. Polymer. 1999, 40(24): 6645~6650
    [88] Duvall J, Sellitti C, Topolkaraev V, et al. Effect of compatibilization on the properties of polyamide 66/polypropylene (75/25wt/wt) blends. Polymer. 1994, 35(18) :3948~3957
    [89] Wu S. Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer. 1985, 26(12): 1855~1863
    [90] Pham H T, Sehanobish K, Rightor E G. Interfacial property determination for immiscible polymer blends: A model system of polycarbonate/poly(ethylene terephthalate). Polym Eng Sci. 1996, 36(20): 2509~2517
    [91] Ide F, Hasegawa A. Studies on polymer blend of nylon6 and polypropylene or nylon6 and polystyrene using the reaction of polymer. J Appl Polym Sci. 1974, 18(4): 963~974
    [92] Sathe S N, Devi S, Rao G S S, et al. Relationship between morphology and mechanical properties of binary and compatibilized ternary blends of polypropylene and nylon6. J Appl Polm Sci. 1996, 61(1): 97~107
    [93] Montiel A G, Keskkula H, Paul D R. Morphology of nylon6/polypropylene blends compatibilized with maleated polypropylene. J Polym Sci: Polym Phys. 1995, 33(12): 1751~1767
    [94] Veenstra H, Verkooijen P C J, van Lent B J J, et al. On the mechanical properties of co-continuous polymer blends: Experimental and modeling. Polymer. 2000, 41(5): 1817~1826
    [95] Yu Z, Lei M, Ou Y, et al. The role of interfacial modifier in toughening of nylon-6 with a core-shell toughness. J Polym Sci: Polym Phys. 1999, 37(18): 2664~2672
    [96] Mondragon I, Nazabal J. Tensile properties of polyarylate~polycarbonate blends. Polym Eng Sci. 1985, 25(3): 178~181
    [97] Kolarik J. Positive deviations of the modulus and yield strength of blends consisting of partially misscible polymers. J Macromol Sci-Phys. 2000, B39(1): 53~66
    [98] Kolarik J. Evaluation of the extent of interfacial debonding in polymer blends. Polymer. 1996, 37(6): 887~891
    [99] Jones R M. Mechanics of composite materials. New York: Kingsport Press, 1975
    [100] Kunori T, Geil P H. Morphology-property relationships in polycarbonate-based blends. I. Modulus. J Macromol Sci-Phys. 1980, B18(1): 93~134
    [101] Kunori T, Geil P H. Morphology-property relationships in polycarbonate-based blends. II. Tensile and impact strength. J Macromol Sci-Phys. 1980, B18(1): 135~175
    [102] Serpe G, Jarrin J, Dawans F. Morphology-processing relationship in polythylene-polyamide blends. Polym Eng Sci.1990, 30(9): 553~559
    [103] Campbell J R, Hobbs S X, Shea T J, et al. Poly(Phenylene oxide)/polyamide blends via reactive extrusion. Polym Eng Sci. 1990, 30(17):1056~1062
    [104] Wills J M, Favis B D. Reactive processing of polystyrene-co-maleic anhydride/elastomer blends: Processing-morphology-property relationships. Polym Eng Sci. 1990, 30(17):1073~1084
    [105] Paul D R, Bucknall C B. Polymer Blends: formulation&performance. John Wiley&Sons, Inc. 2000
    [106] Hoffman J D, Week J J. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand 66A, 1962: 13
    [107] Ruland W. Small-angle scattering of two-phase systems:determination and significance of systematic deviations from Porod's law. J Appl Cryst. 1971, 4: 70~73
    [108] Vonk C G. Investigation of Two-phase Polymer Structures by Small-angle X-ray Scattering. J Appl Cryst.1973, 6: 81~86
    [109] Porod G. Die Rontgenkleinwinkelstreuung yon Dichtgepackten Kolloiden Systemen. Kolloid-Z. 1951, 124: 83~114
    [110] Koberstein J T, Morra B, Stein R S. The determination of diffuse-boundary thicknesses of polymers by small-angle X-ray scattering. J Appl Cryst. 1980, 13: 34~45
    [111] Ma G Q, Yuan X B, Sheng J, et al. Blends of Polypropylene with Poly(cis-butadiene) Rubber II. Small-Angle X-ray Scattering Studies of the Phase Structure of Immiscible Blends of Polypropylene with Poly(cis-butadiene) Rubber. Journal of Applied Polymer Science. 2002, 83(10): 2088~2094
    [112] Amada K, Hikosaka M, Toda A, et al. Equilibrium melting temperature of isotactic polypropylene with high tacticity: I. Determination by differential scanning calorimetry. Macromolecules. 2003, 36(13): 4790~4801
    [113] Yamada K, Hikosaka M, Toda A, et al. Equilibrium melting temperature of isotactic polypropylene with high tacticity: II. Determination by optical microscopy. Macromolecules. 2003, 36(13): 4802~4812
    [114]方开泰,许建伦.统计分布.北京:科学出版社, 1987
    [115] Goldstein M, Michalik E R, Theory of Scattering by an Inhomogeneous Solid Possessing Fluctuations in Density and Anisotropy. J Appl Phys. 1955, 26(12): 1450~1457.
    [116] Stein S, Rhodes M B. Photographic Light Scattering by Polyethylene Films. J Appl Phys. 1960, 31(11): 1873~1884
    [117] Guinier G, Fournet. Small-Angle Scattering of X-ray, Willey, New York, 1955
    [118] Elmendorp J J. A study on polymer blending microrheology. Polym Sci Eng. l986, 26(6): 418~426
    [119] Cho K, Jeon H K, Park CE, et al. The effect of end-sulfonated polystyrene on the interfacial tension of nylon-6/polystyrene blends. Polymer, l 996, 37(7): 1117~1122
    [120] Carriere C J.Cohen A, Arends CB. Estimation of interfacial tension using shape evolution of short fibers. J Rheo1. l 989, 33(5): 681~689
    [121] Luciani A, Champagne M F, Utracki L A. Interfacial tension coefficient from the retraction of ellipsoidal drops. J Polym Sci: Polym Phys. 1997, 35(9): 1393~1403
    [122] Elmendorp J J, Van der Vegt A K. study on polymer blending microrheologyⅣ: The influence of coalescence on blend morphology origination Polym Eng Sci. 1986, 26: 1332~1338.
    [123] DeBruijin RA. Dissertation, University of Technology, Eindhoven,1989
    [124] Swift D L, Friedlander S K. The Coagulation of Hydrosols by Brownian Motion and Laminar Shear Flow. J Colloid Sci. 1964, 19: 621~629
    [125]杨宇平.聚丙烯/顺丁橡胶共混物相结构形成演变及其分散动力学研究.博士学位论文,天津大学, 2006
    [126] Furukawa H. A dynamic scaling assumption for phase separation. Adv in Physical 1985, 34(6): 704~750
    [127] Lu B, Torquato S. Chord-length and free-path distribution functions for many-body systems. J Chem Phys. 1993, 98(8): 6472~6482
    [128] Korobko A V, van den Ende D, Agterof W G M, et al. Coalescence in semiconcentrated emulsions in simple shear flow. J Chem Phys. 2005, 123: 204908-1~204908-11
    [129]拜尔W H编,容现志,张顺志译.标准数学手册.北京:化学工业出版社, 1988.
    [130] Ritter P, Rittinger Von. Lehrbuch der Aufbereitungskunde. Berlin, 1867
    [131] Bond F C. The third theory of communication. Mining Engineering, 1952
    [132]王文新,董伯儒,颜德岳.分形理论在聚合物共混物界面研究中的应用.高分子材料科学与工程, 2000, 16(1): 11~12
    [133] Lepers J C, Favis B D, Tabar R J. The relative role of coalescence and interfacial tension in controlloing dispersed phase size reduciton during the compatibilization of polypropylene blendspolyethylene terephthalate /polypropylene blends. J Polym Sci, Phys. 1997, 35(14): 2271~2280
    [134]张丁浩.聚丙烯/尼龙1010体系共混过程中的在线分析及其结构与性能研究.硕士学位论文,天津大学, 2001
    [135] Lyngaae-Jorgensen J, Sondergaard K, Utracki L A, et al. Formation of ellipsoidal drops in simple shear flow. Polym Networks Blends. 1993, 3(4): 167~181
    [136] Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids. 1965, 13(4): 213~222
    [137] Budiansky B. On the elastic moduli of some heterogeneous materials. J Mech Phys Solids. 1965, 13(4): 223~227
    [138] Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusions. Act Metal. 1973, 36(21): 571~574
    [139]吴林志,杜善义,石志飞.含夹杂复合材料宏观性能研究.力学进展. 1995, 25(3): 410~423
    [140]杜善义,吴林志.含球夹杂复合材料的力学性能分析.复合材料学报. 1994, 11(1): 105~111
    [141] Dobkowski Z, In Martuscelli E, Palumbo E, et al. Polymer blends. New York:Plenum, 1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700