用户名: 密码: 验证码:
采用光辅助MOCVD方法生长YBCO薄膜和厚膜及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
YBa2Cu3O7-δ(YBCO)材料在弱电方面的应用,特别是微波通讯所需的微波滤波器方面已经走上了实用化的道路。但是,制作高温超导滤波器所需的核心部分原材料,高质量双面YBCO高温超导体薄膜在国内仍然很难大批量提供。因此,为了解决这一难题,我们利用自行设计和搭建的光辅助MOCVD(photo-assisted Metel-organic Chemical Vapor Deposition)系统制备了高质量YBCO薄膜,并对其性能做了较为系统的研究。
     通过我们自行搭建的光辅助MOCVD系统,不断优化长膜实验条件,包括衬底温度、三种金属有机源的挥发温度、载气及氧气和一氧化二氮的流量、生长时间、及生长总压等,制备出了质量比较高的YBCO高温超导膜。
     在优化制膜实验过程中,首次通过计算机模拟了第一台石英反应室内部气流、压力、温度等参数的分布情况。通过与实验结果对比,发现模拟与实验基本吻合,数学上的模拟对于反应室结构的设计非常有参考意义。
     同时进一步分析了金属有机源的热学特性,分析了金属有机源对薄膜表面的影响,通过改进源炉内部的内罐结构,改善了源挥发的均匀性。
     通过计算机编程控制三种金属有机源挥发过程的温度,使得三种源可以在相对较长的时间内(15分钟)实现按预定比例均匀供给,薄膜的厚度可以达到4.5μm。对YBCO外延膜的厚度可以进行有效的控制,生长小面积(3×10cm)YBCO薄膜及厚膜(膜厚在1μm以上者)的重复率已经达到了80%以上。这一改进对实现高温超导膜产业化生产的目标具有重要意义。
     本论文主要目的是为以光辅助MOCVD法制备大面积高质量YBCO外延膜作前期必需的准备工作,例如膜生长参数的优化及有效控制膜的厚度。
Many HTS superconductors are being engineered for use in high-current applications. In these HTS superconductors, because of its excellent electrical property high temperature superconductor (high-Tc) YBa2Cu3O7-x (YBCO) thin films have significant potential for applications in microwave devices, so more and more people attach importance to it. For these reason we plan to applied high quality YBCO thin films on larger area LAO(100) substrates by photo-assisted MOCVD. We have designed and assembled two photo-assisted MOCVD systems, one of them has a quartz reactor, the other one has a reactor made of stainless steel. In this study a systemic study of the characteristic of YBCO films prepared by the first photo-assisted MOCVD systems whose reactor was made of quartz was described.
     1. Design of the photo-assisted MOCVD systems
     Two photo-assisted MOCVD systems were designed and assembled. The precursors(Y(tmhd)、Ba(tmhd) and Cu(tmhd) ) used in our MOCVD system are solid state under room temperature, moreover they can not boil away easily under more higher temperature. So in our MOCVD systems the pipelines should be more shorter and can not have many turnings. The system is made up of eight parts, they are gas purifying plants, gas transport plants, precursor -supply system, gas mixing plants, lamp house, the reactor, 3 2 2 temperature control device and tail gas treatment. As yet these two photo-assisted MOCVD systems are running well. After the MOCVD system was fit in we optimized the MOCVD system with a quartz reactor.
     2. Enactment of the gas flows, substrate temperature and the chamber pressure
     We find the optimal parameters for YBCO thin films prepared by the photo-assisted MOCVD system: The substrate temperature is between 825℃and 855℃, the carrier gas flows of the Ba(tmhd)2,Y(tmhd)3,Cu(tmhd)2 are 300-450 sccm,100-150 sccm and 100-150 sccm, respectively;the O2 and N2O flow are 300-450 sccm and 200-300 sccm, respectively;the operating pressure is between 6 torr and 8 torr.
     3. Hot wall and cold wall
     We compared the characteristic of the YBCO films that prepared by hot wall and cold wall MOCVD, and find that the purely c-axis YBCO can prepared by cold wall MOCVD more easily.
     4. The predominance of processing electronic materials by photo
     We analyzed the predominance of processing electronic materials by photo relative to that by heat. We know that chemical or physical reaction thermal dissociation is fundamentally limited by Boltzmann distribution or thermal activation, but light in the UV, visible, as well as IR region can supply the necessary thermal energy to the sample. Various film preparation techniques, such as laser ablation, magnetron sputtering, and metal-organic chemical vapor deposition (MOCVD), have been utilized for epitaxial growth of high quality YBCO films. Among them, photo-assisted MOCVD technique has its two obvious advantages, the capability to grow both thin and thick high-quality YBCO films, one is YBCO films can be prepared with very high growth rate(above 200nm/min) another is YBCO films grown by photo-assisted MOCVD have single-crystal-like qualities, no SEM visualizable grain boundaries. So this technique has the capability to grow both thin and thick high-quality YBCO films with high growth rate. All of these advantages are all because of the photo assisting. In the photo-assisted MOCVD system, if the temperature of the substrate is settled, when the height of the substrate is changed the power of the lamps will change. And the color temperature of the filament will change according to the power. We know that in black-body radiation when the temperature of the blackbody is increased the energy eradiated will increase, so the wavelengh of the light that eradiated from blackbody is shorter. So in the experimental we set the power of the lemps beyound 85% when YBCO growing, here the color temperature of the filament is higher than 3000K the light that eradiated from filament include UV, visible, as well as IR region.
     5. Chamber pressure and characteristic of the YBCO films
     We analyzed how the chamber pressure effect on the characteristic of the YBCO films. The crystal structures of YBCO films grown under different chamber pressure were analyzed by the assist of SEM and XRD-2θscan. In our system if growth temperature is fixed, as the chamber pressure increasing the growth of pure c-axis YBCO films will change to growth of a-axis YBCO films, and the growth rate will increase at the begining and then decrease. From these experiences we find the optimization of the chamber pressure for pure c-axis YBCO grown.
     6. Simulation for gas flow patterns and temperature
     A three-dimensional simulation for gas flow patterns was conducted with commercial software FLUENT 6.0 for the first time. In the simulation, growth temperature, chamber pressure and growth time were all fixed; the only process variable was the susceptor inclination angle. The temperature of the substrate change tinily when this angle is changed. But as the angle changes, the gas flow pattern in the reactor chamber is changed accordingly. This change of gas flow pattern affect the growth mechanism of the growing YBCO films. And the experimental results were found to be well correlated with the simulations. We find that the simulation is very useful for the experimental. The experimental and the simulation show all show that when the angle between the axis of gas inlet and the susceptor surface is 22.5o the YBCO films have best characteristic.
     7. The barium precursor’s sublimation/evaporation can not be well controlled and the solution
     From the experimental we find that the barium precursor’s sublimation/evaporation can not be well controlled. We solved this problem by mending the structure of the precursors’ovens.
     8. The thickness of the YBCO films can be controled
     By evaporating the barium precursor employed with its heating temperature being appropriately programmed during the time interval of film growth the steady time of the barium precursor’s evaporating can last 15 minutes. By this method the thickness of the YBCO films can be well controlled under 4.5μm. And the characteristic of the YBCO thick films is as well as that of the thin films. The XRD-ωscan of two YBCO films (0.6μm and 4.5μm) with different thickness were analyzed, the FWHM are 0.29o and 0.30o.
引文
[1] Onnes.H. K, The resistance of pure mercury at helium temperatures, Comm. Phys. Lab. Univ. Leiden1911,120b.
    [2] J.G. Bednorz, K.A.Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z. Phys.B 1986, 64(2):189-193.
    [3] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu. Superconductivity at 93K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure[J]. Phys. Rev. Let. 1987, 58(9):908-910.
    [4]R. Yoshizaki, Y. Saito, Y. Abe,H. Ikeda,Superconducting and magnetic properties of Bi2Sr2Ca1-xYxCu2Oy (0 x 1)[J]. Physica C, 1988, 152(5):404-412.
    [5] Sheng, Z.Z., A.M. Hermann, Bulk superconductivity at 120K in the Ti-Ca/Ba-Cu-O sustem[J]. Nature, 1988, 332:138.
    [6] C.W.Chu, L.Gao, F.Chen, Z.J. Huang, R.L.Meng and Y.Y.Xue, Superconductivity above 150K in HgBa2Ca2Cu3O8+δat high pressures[J]. Nature, 1993, 365:323-325.
    [7] Zhi Yuan Shen, High-Temperature Superconducting Microwave Circuits, Artech House,1994.
    [8] D.R .Harshman, A .P .Mills. Concerning the nature of high-Tc superconductivity: Survey of experimental properties and implications for interlayer coupling[J]. Phys. Rev. B, 1992,45(18):10684-10712.
    [9] A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, A. R. Kortan, Superconductivity at 18 K in potassium-doped C60[J]. Nature, 1991,350:600-601.
    [10] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y.Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride[J]. Nature, 2001, 410:63-64.
    [11]任霄鹏,铁基超导材料将中国物理学家推向前沿[N],科学时报,2008-4-29(1).
    [12] W. Meissner and R.Ochsenfeld, A new effect in penetration of superconductors[J]. Naturwissenschaften, 1933, 21:787.
    [13]林良真,张金龙,李传义,夏平畴,杨乾声,超导电性及其应用[M],北京:北京工业大学出版社,1998.
    [14] D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, J. Clarke, High-transition-temperature superconducting quantum interference devices[J]. Rev. Mod. Phys. 1999, 71(3):631 - 686.
    [15] A.M. Zagoskin, d-Wave superconductors and quantum computers[J]. Physica C, 2002, 368(1-4):305-309.
    [16] P. Wolf , Low temperature superconducting electronic and computer circuits[J]. Cryogenics,1978, 18(8):478-482 .
    [17]马兆国,高正平,饶克谨,导弹再入过程中电磁波传输的研究[J].战术导弹控制技术,2005, 50: 89-94.
    [18] Donald U. Gubser, Superconducting motors and generators for naval applications[J]. Physica C, 2003, 392-396:1192-1195.
    [19] N. Suzuki, T. Murakami, J. Shibuya, S. Ohshima, Structural Component Development of Three-Layer Cylinders for Superconducting Generators, Part 1: Selection of Layer-Bonding Method and Development of Long Large-Gauge Three-Layer Cylindrical Structure[J]. J. Manuf. Sci. Eng. 1997, 119:68-77.
    [20] P.N. Barnes, M.D. Sumption, G.L. Rhoads, Review of high power density superconducting generators: Present state and prospects for incorporating YBCO windings[J]. Cryogenics, 2005, 45(10-11):670-686.
    [21] C.E. Oberly, L. Long, G.L. Rhoads, W. James Carr Jr, ac Loss analysis for superconducting generator armatures wound with subdivided Y–Ba–Cu–O coated tape[J]. Cryogenics, 2001, 41(2):117-124.
    [22] R.J. Abraham, D. Das, A. Patra, Automatic generation control of an interconnected hydrothermal power system considering superconducting magnetic energy storage[J]. Electrical Power and Energy Systems, 2007, 29(8):571-579.
    [23] S. Nomura, N. Watanabe, C. Suzuki, H. Ajikawa, M. Uyama, S. Kajita, Y. Ohata, H. Tsutsui, S. Tsuji-Iio, R. Shimada, Advanced configuration of superconducting magnetic energy storage[J]. Energy, 2005, 30(11-12):2115–2127.
    [24] T. Nakano, T. Yamanaka, M. Minami, S. Akita, H. Kasahara, H. Sakaguchi, The research and development of superconducting magnetic energy storage system Parameter survey for high temperature superconducting 15 kW h SMES[J]. Physica C, 2001, 357-360:1315-1318.
    [25] Adrian Porch , Colin E Gough , Microwave applications of high-temperature superconductors[J].Current Opinion in Solid State and Materials Science,1997,2(1):11-17.
    [26] M.C. Ahn, D.K. Park, S.E. Yang, M.J. Kim, C. Lee, B.-Y. Seok, T.K. Ko, Basic design of 22.9 kV/630 A resistive superconducting fault current limiting coil using YBCO coated conductor[J]. Physica C, 2007, 463-465:1176-1180.
    [27] J. Sim, K.B. Park, H.R. Kim, J.S. Kang, B.W. Lee, H.M. Kim, I.S. Oh, O.B.Hyun, 14 kV single-phase superconducting fault current limiter based on YBCO films[J]. Cryogenics, 2007, 47(3):183-188.
    [28] I.Vajda, S. Semperger, Simulation of electrical, magnetic and thermal properties of inductive fault current limiters made of YBCO ceramic superconductors[J]. J. Eur. Ceram. Soc. 2005, 25(12):2925–2929.
    [29] H. Hayashi, H. Okamoto, T. Harimoto, T. Imayoshi, A. Tomioka, T. Bouno, M. Konno, M. Iwakuma, A study for designing YBCO power transformer[J]. Physica C, 2007, 463-465:1233-1236.
    [30] S.W. Schwenterly, S.P. Mehta, M.S. Walker, R.H. Jones, Development of HTS power transformers for the 21st century: Waukesha Electric Systems/IGC-SuperPower/RG&E/ORNL SPI collaboration[J]. Physica C, 2002, 382(1):1-6.
    [31] Z. Lu, J. K. Truman, M. E. Johansson, D. Zhang, C. F. Shih, G. C. Liang, Large area double-sided YBa2Cu3O7-δfilms grown by single-source metal-organic chemical vapor deposition[J]. Appl. Phys. Lett. 1995, 67(5):712-714.
    [32] D. Seron, D.E. Oates, J. Halbritter, Effect of bulk Ca-substitution in YBaCuO thin films for microwave applications[J]. Physica C, 2008, 468(1):54-59.
    [33] S. Ohshima, Recent status of microwave applications in Japan and Asia[J]. Physica C, 2004, 412-414:1506-1512.
    [34]尹哲胜,魏斌,曹必松,郭旭波,张晓平,何文俊,何山,郜龙马,朱美红,高葆新,一种800MHz无线通信用高温超导滤波器的研究[J].低温物理学报,2006, 28(3):272-274.
    [35] V. Zakosarenko, F. Schmidl, H. Schneidewincj, L. D?rrer, and P. Seldel, Thin-film dc SQUID gradiometer using a single YBa2Cu3O7-x layer[J]. Appt. Phys. Lett. 1994, 65(6):779-780.
    [36] K.Y. Constantinian, G.A. Ovsyannikov, I.V. Borisenko, P. Yagoubov, Voltage-tunable YBCO Josephson mixer, operating in self-pumping mode at 750–970 GHz[J]. Physica C, 2002, 372-376:420-422.
    [37]王璐琳,荆华,刘璐,王家素,三种永磁轨道上YBCO的高温超导磁悬浮性能[J].低温与超导,2007,35(4):.
    [38]郭旭波等,CDMA系统用高温超导滤波器的设计[J].低温物理学报,2003, 25:55-58.
    [39]何文俊等,移动通信系统用GSM900高温超导滤波器设计与测试[J].低温物理学报,2003, 25(2):105-109.
    [40]何豫生,高温超导微波器件在移动通信中的应用[J].物理,2002, 31(4):205-213.
    [41]张强等,适用于3G移动通讯的高温超导窄带滤波器[J].低温物理学报, 2006, 28(3):280-282.
    [42] J. Xu , Y. Li, B. Tao, X. Liu, H. Wang, YBa2Cu3O7-δthin films with low surface resistance prepared by self-template sputtering method[J]. Physica C, 2000, 331(1):67-72.
    [43] X.Z. Liu, B.W. Tao, A. Luo, S.M. He, Y.R. Li, The preparation of double-sided YBCO thin films by simultaneous sputtering from single target[J]. Thin Solid Films, 2001, 396(1-2):225-228.
    [44] B. Tao, J. Chen, X. Liu, Y. Zhang, X. Deng, Y. Li, Speed modulation technique to achieve simultaneous deposition of 3-in. double-sided Y-Ba-Cu-O thin films[J]. Physica C, 2005, 433(1-2):87-92.
    [45] A. P. Shapovalov, A. I. Ruban, Yu. M. Boguslavskij, G. G. Gridneva, V. S. Melnikov, N. P. Pshentsova and O. A. Turok, Crystal structure of epitaxial YBCO films prepared on (001) MgO substrates at low oxygen partial pressures[J]. Cryogenics, 1992, 32:608-611.
    [46] K. Ramakrishna, B. Das, A. K. Singh, R. S. Tiwari, O. N. Srivastava, Electron microscopic studies of local structures of high temperature YBa2Cu3O7?x superconductor[J]. Solid State Communications. 1988, 65(8):831-834.
    [47] T. Siegrist, S. Sunshine, D. W. Murphy, R.J.Cava, S.M. Zahurak, Crystal structure of the high-Tc superconductor Ba2YCu3O9-δ[J]. Phys.Rev.B, 1987, 35(13):7137-7139.
    [48]高温超导材料特性测量, http://pec.sjtu.edu.cn/ols/experimentlib/synt hesis/072013010/intro.xml
    [49] Q.Zhong, P.C.Chou, Q.L.Li, G.S.Taraldsen, A.Ignatiev, High-rate growth of purely a-axis oriented YBCO high-Tc thin films by photo-assisted MOCVD[J]. Physica C,1995, 246(3-4):288-296.
    [50]陈光华,邓金祥等,新型电子薄膜材料[M].北京:化学工业出版社,2002.
    [51] A .Marcu, C .Grigoriu, W. Jiang, K. Yatsui.Pulsed laser deposition of YBCO thin films in a shadow mask configuration[J]. Thin Solid Films, 2000, 360(1-2):166-172.
    [52] K. H. Wu, R. C. Wang, S. P. Chen, H. C. Lin, J. Y. Juang, T. M. Uen, and Y. S. Gou, Preparation of large area and investigation of initial film growth of YBa2Cu3O7 by scanning pulsed laser deposition[J]. Appl. Phys. Lett., 1996, 69(3):421-423.
    [53] C.S. Kim, S.M. Kim, S.C. Song, S.Y. Lee, H.K. Yoon, Y.J. Yoon, Fabrication and characterization of a superconducting multiplexer using laser ablated YBCO thin films[J]. Appl. Surf. Sci. 2000, 154-155:492-494.
    [54] J. Xiong, W. Qin, X. Cui, B. Tao, J. Tang, Y. Li, High-resolution XRD study of stress-modulated YBCO films with various thicknesses[J]. J. Crystal Growth, 2007, 300(2):364-367.
    [55] X.Z. Liu, B.W. Tao, A. Luo, S.M. He, Y.R. Li, The preparation of double-sided YBCO thin films by simultaneous sputtering from single target[J]. Thin Solid Films, 2001, 396(1-2):225-228.
    [56] S. Adachi , H. Wakana, Ai Kamitani, K. Tanabe, Stable preparation process of superconductor–insulator multilayer films for HTS devices by off-axis magnetron sputtering[J]. Physica C, 2006, 445–448:895–899.
    [57] M. Mori, T. Watanabe, N. Suda, N. Kashima, S. Nagaya, T. Izumi, Y. Shiohara, Development of productive process for long coated conductors by EB evaporation[J]. Physica C, 2007, 463–465:594–599.
    [58] F.A. List , A. Goyal, M. Paranthaman, D.P. Norton, E.D. Specht, D.F. Lee, D.M.Kroeger, High Jc YBCO films on biaxially textured Ni with oxide buffer layers deposited using electron beam evaporation and sputtering[J]. Physica C, 1998, 302(1):87–92.
    [59] S. Chen, Z. Sun, K. Shi, S. Wang, J. Meng, Q. Liu, Z. Han, Preparation and crystalline qualities of SrTiO3 and CeO2 buffer layers fabricated on Ni substrates via a s1–876.
    [60] Z. Aslanoglu, Y. Akin, Marwan I. El-Kawni, W. Sigmund ,Y. S. Hascicek, Influence of the low oxygen partial pressures on thick coated conductors by sol–gel process[J]. Physica C, 2003, 384(4):501–506.
    [61] J. Lian, H. Yao, D. Shi, L.Wang, Y. Xu, Q. Liu, Z. Han, Structural characterization of epitaxial YBCO thin films prepared by a fluorine-free sol–gel method for coated conductors[J]. Supercond. Sci. Technol. 2003, 16:838–844.
    [62] Y. Tokunaga, H. Fuji, R. Teranishi, J. Matsuda, S. Asada, A. Kaneko, T. Honjo, T. Izumi, Y. Shiohara, Y. Yamada, K. Murata, Y. Iijima, T. Saitoh, T. Goto, A. Yoshinaka, A. Yajima, High critical current YBCO films using advanced TFA-MOD process[J]. Physica C, 2004, 412–414:910–915.
    [63] S.H. Jang, J.H. Lim, K.T. Kim, J.S. Lee, K.M. Yoon, H.J. Kim a, J. Joo, H. Kim, H.G Lee, G.W. Hong, The effects of the firing temperature of YBCO coated conductors fabricated by TFA-MOD process[J]. Physica C, 2006, 445–448:590-593.
    [64] T. Manabe, M. Sohma, I. Yamaguchi, W. Kondo, K. Tsukada, S. Mizuta, T. Kumagai, Preparation of high-Jc large-size YBCO films (30×10 cm2) by coating-pyrolysis process on CeO2-buffered sapphire[J]. Physica C, 2004, 412–414:896-899.
    [65] J.-K. Choi, B.-H. Jun, C.-J. Kim. Fabrication of YBCO coated conductors by MOCVD method using various templates[J]. Physica C, 2006, 445–448:521-524.
    [66] C.-J. Kim, B.-H. Jun, H.-J. Kim, J.-K. Choi, L.S. Heon, J.M. Yoo, Comparative study of YBCO film growth in the cold wall type and hot wall type MOCVD processes[J]. Physica C, 2005, 426–431:915–919.
    [67] X. Li, B.Zhang, H. Zhu, X. Dong, X. Xia, Y. Cui, K. Huang, G. Du, Properties of ZnO thin films grown on Si substratesby photo-assisted MOCVD[J]. Appl. Surf. Sci. 2007,254(7): 2081-2084.
    [68] H.M. Manasevit, Single-crystal gallium arsenide on insulating substrates[J]. Appl. Phys. Lett. 1968, 12(4):156-159.
    [69] H.M. Manasevit and W. I. Simpson, The Use of Metal-Organics in the Preparation of Semiconductor Materials[J]. J. Electrochem. Soc. 1969, 116(12):1725-1732.
    [70] H.M. Manasevit, The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates[J]. J. Cryst. Growth,1972, 13/14:306-314.
    [71]杨树人,王宗昌,王兢,半导体材料[M].北京:科学出版社,2004.
    [72] R. Singh, F. Radpour, P. Chou, Comparative study of dielectric formation by furnace and rapid isothermal processing[J]. J. Vac. Sci. Technol. 1989,A 7(3):1456-1460.
    [73] R. Singh, P. Chou, F. Radpour, A. J. Nelson and H. S. Ullal, Oxidation of tin on silicon substrate by rapid isothermal processing[J]. J. Appl. Phys. 1989, 66(6):2381-2387.
    [74] R. Singh, S. Sinha, R. P. S. Thakur, and P. Chou, Some photoeffect roles in rapid isothermal processing[J]. Appl. Phys. Lett. 1991, 58(11):1217-1219.
    [75] R. Singh, S. Sinha, N. J. Hsu, P. Chou, R. K. Singh, J. Narayan,Superconducting thin films of Y-Ba-Cu-O prepared by metalorganic chemical vapor deposition[J]. J. Appl. Phys. 1990, 67(3):1562-1565.
    [76] P.C. Chou, Q. Zhong, Q.L. Li, K. Abazajian, A. Ignatiev, C.Y. Wang, E.E. Deal, J.G. Chen, Optimization of Jc of YBCO thin films prepared by photo-assisted MOCVD through statistical robust design[J]. Physica C, 1995, 254(1-2):93-112.
    [77] S.-K. Hong, J.-G. Kim, H.-J. Kim, H.-W. Cho, S.-K. Yu, J.-H. Ahn, J.-H. Joo, G.-W. Hong, H.-G. Lee, Preparation of high Jc YBCO films on LAO by spray pyrolysis process using nitrate precursors[J]. Physica C, 2007, 463-465:536-539.
    [78] M.V. Jacob, J. Mazierska, N. Savvides, S. Ohshima, S. Oikawa, Comparison of microwave properties of YBCO films on MgO and LaAlO3 substrates[J]. Physica C, 2002, 372-376:474-477
    [79] R. J. Kennedy, W.P. Tucker, P.A. Stampe, Growth of YBa2 Cu3 O7 on silicon and LaAlO3 with MgO buffer layers[J]. Physica C,1999, 314(1-2):69-72.
    [80] S. Brück, J. Albrecht, Experimental evidence of the dominant role of low-angle grain boundaries for the critical current density in epitaxially grown YBa2Cu307-δthin films[J]. Phys. Rev. B, 2005, 71(17), 174508.
    [81] A. Augieri, G. Celentano, L. Ciontea, V. Galluzzi, U. Gambardella, J. Halbritter, T. Petrisor, A. Rufoloni, A. Vannozzi, Angular properties of pure and Ca-substituted YBa2Cu307-δsuperconducting thin films grown on SrTiO3 and CeO2 buffered Al2O3 substrates[J]. Physica C, 2007, 460-462(2):829-830.
    [82] K. D.-Bagarinao, H. Yamasaki, Y. Nakagawa, H. Obara, H. Yamada, Microcrack-free thick YBCO/CeO2/Al2O3 films prepared by a large-area pulsed laser deposition system[J]. Physica C, 2003, 392-396(2) :1229-1235.
    [83] A. K. Sood, K. Sankaran, V. S. Sastry, M. P. Janawadkar, C. S. Sundar, J. Janaki, S. Vijayalakshmi and Y. Hariharan, Experimental study of the decomposition of Y1Ba2Cu3O7?x into tetragonaland orthorhombic phases[J]. Physica C, 1988, 156(5):720-726.
    [84] Hans J. Scheel,Crystal growth problems of YBa2Cu3O7?x[J]. Physica C, 1988, 153-155(1):44-49.
    [85] Y. Sawai, K. Ishizaki, M. Takata, Y. Narukawa, Stability of YBa2Cu3O7, Y2Ba4Cu7O15 and YBa2Cu4O8 superconductors under varying oxygen partial pressure, total gas pressure and temperature[J]. Physics C, 1991, 176(1-3):147-150.
    [86] R.H.Hammond and R.Bormann, Correlation between the in situ growth conditons of YBCO thin films and the thermodynamic stability criteria[J]. Physica C, 1989,162-164(1):703-703.
    [87]吴立新,陈方玉,现代扫描电镜的发展及其在材料科学中的应用[J].武钢技术, 2005, 43(6) :36-40.
    [88] C.P. Bean, Magnetization of hard superconductors[J]. Phys. Rev. Lett. 1962, 8(6):250-253.
    [89] C.P. Bean, Magnetization of High-Fild Superconductors[J]. Rev. Mod. Phys. 1964, 36:31-39.
    [90] E.M. Gyorgy, R.B. van Dover, K.A. Jachson, L.F. Schneemeyer, J.V. Waszczak, Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model[J]. Appl. Phys. Lett. 1989, 55(3):283-285.
    [91] D.-X. Chen, A. Sanchez, J. Nogues, J. S. Mu?oz, Bean’s, Kim’s, and exponential critical-atate models for high-Tc superconductors[J]. Phys. Rev. B, 1990, 41(13):9510-9512.
    [92] P.J.Kung, M.P.Maley, M.E.McHenry, J.O.Willis, J.Y.Coulter, Magnetic husteresis and flux creep of melt-powder-melt-grpwth YBa2C3uO7 superconductors[J]. Physical Reciew B. 1992, 46(10):s387-390.
    [93] P.J. Wu, D.N. Zheng, L. Chen, W. Liu, F. Wu, H. Chen and Z.X. Zhao, Preparation of highly crystalline a-axis-oriented YBa2Cu3O7?δsuperconducting films by a self-template technique[J]. Supercond. Sci. Technol. 2001, 14:229–233.
    [94] J. Xu, Y. Li, B. Tao, X. Liu, H. Wang, YBa2Cu3O7?δthin films with low surface resistance prepared by self-template sputtering method[J]. Physica C, 2000, 331(1):67-72.
    [95] S. Mahajan, J. G. Wen, W. Ito, Y. Yoshida, N. Kubota, C.-J. Liu, and T. Morishita, Growth and superconductivity of c-axis in-plane aligned YBa2Cu3O7-x films fabricated by the self-template method[J]. Appl. Phys. Lett. 1994, 65(24):3129-3131.
    [96] J. G. Wen, S. Mahajan, W. Ito, T. Morishita, N. Koshizuka, Direct high-resolution electron microscopy observations of sputtered a-axis oriented YBa2Cu307 fillms prepared by a self-template method on SrTiO3 substrates[J]. Appl. Phys. Lett. 1994, 64(24):3334-3336.
    [97]唐睿康,表面能与晶体生长/溶解动力学研究的新动向[J].化学进展,2005,17(2):368-376.
    [98] J. F. Rabek, Experimental Methods in Photochemistry and Photophysics, Part 1, Wiley, New York, 1982, p.21.
    [99] R. Zuo, H. Zhang, Q. Xu, Numerical M odeling and Optimization of Transport Process for Radial Flow MOCVD Reactor[J]. J. synthetic crystals, 2005, 34(6) :1011-1017.
    [100] M.L. Hitchman and K.F. Jensen,“Chemical vapor deposition”, Academic Press, 1993.
    [101] D. I. Fotiadis. S. Kieda. K. F. Jensen, Transport Phenomena in Vertical Reactor for Metalorganic Vapor Phase Epitaxy[J]. J. Crystal Growth. 1990, 102(3):441-470.
    [102] W. L. Holstein, J. L. Fitzjohn, E. J. Fahy, P. W. Gilmour, E. R. Schmelzer, Mathematical modeling of cold-wall channel CVD reactors[J]. J. Crystal Growth, 1989, 94(1) :131-144.
    [103] Y. Kusumoto, T. Hayashi. and S. Komiya,Numerical Analysis of the transport Phenomena in MOCVD Process[J]. Jap. J. Appl. Phys. 1985, 24 (5) :620-625.
    [104] H. Moffat, K. F. Jensen, Complex flow phenomena in MOCVD reactors I. Horizontal reactors[J]. J. Crystal Growth, 1986, 77(1-3):108-119.
    [105] D.I. Fotiadis, Thermophoresis of solid particles in horizontal chemical vapor deposition reactors[J]. J. Crystal Growth, 1990, 102(4):743-761.
    [106] K. F. Jensen, Transport phenomena and chemical reaction issues in OMVPE of compound semiconductors[J]. J. Crystal Growth, 1989, 98(1-2):148-166.
    [107] W. L. Holstein and J. L. Fitzjohn, Effect of buoyancy forces and reactor orientation on fluid flow and growth rate uniformity in cold-wall channel CVD reactors[J]. J. Crystal Growth, 1989, 94(1):145-158.
    [108] W. L. Holstein, Modeling of chimney CVD reactors[J]. J. Crystal Growth, 1992, 125(1-2):311-319.
    [109] W.L. Holstein, Methods to improve the P/As compositional uniformity of InGaAsP thin films prepared by MOCVD[J]. J. Crystal Growth, 1996, 167(3-4):525-533.
    [110] R. Zuo, Q. Xu, H. Zhang, An inverse-flow showerhead MOVPE reactor design[J]. J. Crystal Growth, 2007, 298:425-427.
    [111] R. Zuo, H. Zhang, X.-l. Liu, Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets[J]. J. Crystal Growth 2006, 293:498-508.
    [112] R. Zuo, H. Li, Q. Xu, in“The 10th National MOCVD Academic Conference of china, Guangzhou, china November”, 2007, p.286.
    [113] C. Pelosia, G. Attolini, M. Bosi, D. Moscatelli, A. Veneroni, M. Masi, A new MOVPE reactor for heteroepitaxial GaAs deposition on large-scale Ge substrates[J]. J. Crystal Growth, 2006, 287(2):652-655.
    [114] I-T. Im, H.J. Oh, M. Sugiyama, Y. Nakano, Y. Shimogaki, Fundamental kinetics determining growth rate profiles of InP and GaAs in MOCVD with horizontal reactor[J]. J. Crystal Growth, 2004, 261(2-3):214-224.
    [115] C. Sarma, G. Schindler, D.G. Haase, C.C. Koch, A.I. Kingon, A. Goyal, Strong and weak-link behavior of single grain boundaries in melt textured bulk Ag doped YBa2Cu307-δ[J]. Physica C, 1995,244(3-4):287-292.
    [116] L. C. Pathak, S. K. Mishra, S. K. Das, D. Bhattacharya and K. L. Chopra, Effect of sintering atmosphere on the weak-link behaviour of YBCO superconductors[J]. Physica C, 2001, 351(3):295-300.
    [117] S. S. Tinchev, Properties of YBCO weak links prepared by local oxygen-ion induced modification[J]. Physica C, 1996, 256(1-2):191-198.
    [118] P.J. Kung, M.P. Maley, M.E. McHenry, J.O. willis, J.Y. Coulter, M. Murakami, S. Tanaka, Magetic hysteresis and flux creep of melt-powder-melt-growth YBa2Cu3O7 superconductors[J]. Phys. Rev. B 1992, 46(10):6427-6434.
    [119] V. Galindo, J.P. Senateur, A. Abrutis, A. Teiserskis, F. Weiss,High quality YBa2Cu3O7-δ/PrBa2Cu3O7-δmultilayers grown by pulsed injection MOCVD[J]. J. Crystal Growth, 2000, 208:357-364.
    [120] Chang-Joong Kim et al, Deposition of CeO2 and NiO buffer layers for YBCO coated conductors on biaxially textured Ni substrates by a MOCVD technique[J]. Physica C 2003, 386:327-332.
    [121] A. Ignatiev, Q. Zhong, P. C. Chou, X. Zhang, J. R. Liu, and W. K. Chu, Large Jc enhancement by ion irradiation for thick YBa2Cu3O7-x films prepared by photo-assisted metalorganic chemical vapor deposition[J]. Appl. Phys. Lett. 1997, 70(2):1474-1476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700